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ON THE SET OF HILBERT POLYNOMIALS

ALEXANDER B. LEVIN

We characterise the set of all Hilbert polynomials of standard graded algebras
over a field and give solutions of some open problems on Hilbert polynomials. In
particular, we prove that a chromatic polynomial of a graph is a Hilbert polynomial
of some standard graded algebra.

1.INTRODUCTION

The purpose of this paper is to describe the set of all Hilbert polynomials of stan-
dard graded commutative algebras over a field and to prove some conjectures on Hilbert
polynomials.

Throughout the paper Z, P , and N denote the sets of integers, positive integers
and non-negative integers, respectively.

A polynomial f(t) in one variable t with rational coefficients is called numerical if
f(r) € Z for all sufficiently large r € N , that is, there exists s € N such that / ( r ) 6 Z
for all r € N , r ^ 5.

It is clear that every polynomial with integer coefficients is numerical. As an
example of a numerical polynomial with non-integer coefficients one can consider a
polynomial (£) = t(t - 1 ) . . . (t - k + \)/k\ where A; € P . In what follows, we use some
relationships between "binomial" numerical polynomials (£) that arise from well-known
identities for binomial coefficients. In particular, the classical identity ("^j1) = (^) +
(m-i) ( n ' m e P ' n ^ m ) implies the polynomial identity ('+1) = Q ) + ( ^ J that,
in turn, leads to the identity

(1.1)

(As usual, we assume that (£) = 1, and (£) = 0 if k is a negative integer.)

It is well-known (see, for example, [7, Proposition 2.1.3]) that any numerical poly-
nomial f(t) of degree d (d € N) can be represented as

i=0
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where ao,a\,... ,ad are integers uniquely defined by the polynomial. The coefficient
ad is called the leading coefficient of the polynomial f(t), it is denoted by ad(f). The
following statement (see [1, Proposition 3.1]) gives another representation of a numerical
polynomial.

PROPOSITION 1 . 1 . Let f(t) be a numerical polynomial in one variable t and
let d e g / = d. Then the polynomial f(t) can be represented in the form

where mo ,mi , . . . ,md are integers uniquely defined by f(t). Furthermore, the coeffi-
cients Oj in representation (1.2) of the polynomial f(t) can be expressed in terms of
mo, mi,..., md as follows: ad = rnd

for i = 0 , . . . , d - 1.

Let A; be a field. By a standard graded k-algebra we mean a commutative k-
algebra A with identity together with a family of its vector &-subspaces {j4r}r6N such
that A = 0 Ar, Ao = k, ATAS C Ar+S for any r,s € N , and A is generated (as a

r€N

fc-algebra) by a finite family {xi,.. - ,xn} of elements of Ai (so that A = k[xi,... ,£„]).

The following classical result is due to Hilbert [3].

THEOREM 1 . 1 . With the above notation, there exists a numerical polynomial
<j>A(t) in one variable t such that <j>A(r) = dim/t Ar for all sufficiently large r € N and
deg 4>A < n - 1.

The polynomial 4>A(t) whose existence is established by Theorem 1.1 is called the
Hilbert polynomial of the standard A;-algebra A. In what follows, the set of all Hilbert
polynomials of standard graded algebras is denoted by % and elements of this set are
called Hilbert polynomials. (Thus, f(t) € H if and only if there exists a standard graded
algebra A over a field such that f(t) — <j>A(t)-)

2. ALTERNATIVE DESCRIPTIONS AND PROPERTIES OF THE SET OF

HILBERT POLYNOMIALS

In this section we give several alternative characterisations of the set of Hilbert
polynomials of standard graded algebras. First of all note (see, for example, [12, Chap-
ter 7, Section 2, Lemma 1]) that any such polynomial can be treated as a Hilbert
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polynomial of a graded algebra A = k[Xi,..., Xn]/I where k[Xi,..., Xn] is a poly-
nomial ring in indeterminates X\,..., Xn over a field k and / is a homogeneous ideal
of this ring. Furthermore, by [2, Chapter 9, Theorem 12], the set 7i coincides with
the set of all affine Hilbert polynomials in the sense of the following statement (see [2,
Chapter 9, Propositions 3 and 4]).

THEOREM 2 . 1 . Let J be an ideal of a polynomial ring k[X\,..., Xn) over a
field k and for any s € N , Vet k[Xi,..., Xn]^s denote the set of all polynomials whose
total degree does not exceed s. Then there exists a numerical polynomial a<t>{t) (called
the affine Hilbert polynomial of J ) such that

a4>{s) = dim* (k[Xu..., Xn)^3/J n k[Xu ..., Xnks)

for all sufficiently large s € N and deg° </> ^ n .

In what follows we consider numerical polynomials associated with subsets of N n

where n is a positive integer. (As usual, elements of such subsets are called n-tuples.)
The set N " will be treated as a partially ordered set relative to the product order
^P such that ( a i , . . . , a n ) ^ p (bi,.. .,bn) if and only if aj ^ bi for i = l,...,n
( ^ denotes the natural order on N ) . If A C N " and r € N , then A(r) will denote

n
the set of all n-tuples (e\,...,en) € A such that J2ei ^ r- Furthermore, VA will

i= l

denote the set of all n-tuples v = (vi,..., vn) € N n that are not greater than or equal
to any n-tuple from A with respect to the product order ^p. (Clearly, an element
v = (vi,..., vn) € N n belongs to VA if and only if for any element ( a i , . . . , an) € A
there exists i€EN, l ^ i < n , such that a^ > Vi.)

The next result is due to Kolchin (see [6, Chapter 0, Lemma 16]).

THEOREM 2 . 2 . Let A be a subset of N n (n € P). Then there exists a numer-
ical polynomial uJA(t) with the following properties.

(i) Wyi(r) = Card y^(r) for all sufficiently large r e N . (In accordance with
our notation, VA{r) = {(xlt... ,xn) € VA\xi + h xn ^ r}.)

(ii) degUM ^ n.

(iii) degw^ = n if and only if A = %. In this case uA{t) = ('^") •
(iv) uA = 0 if and only if ( 0 , . . . , 0) € A.

The polynomial u>A{t), whose existence is established by Theorem 2.2, is called the
Kolchin polynomial of the set A C N n .

As we have mentioned, a Hilbert polynomial of a standard graded algebra is an
affine Hilbert polynomial of an ideal of a polynomial ring, and every affine Hilbert
polynomial can be treated as a Hilbert polynomial of a standard graded algebra. Fur-
thermore (see [2, Chapter 9, Propositions 3 and 4]), any polynomial f(t) from the set 71
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can be considered as an affine Hilbert polynomial of some finitely generated monomial

ideal J = {Xl11 ... X « m , . . . , X j " 1 . . . Xlpn) of a polynomial ring k{Xu ...,Xn] over a

field k (p € P,ef, € N for i = l,...,p\j = l,...,n). More precisely, for all r € N ,
n

/ ( r ) is equal to the number of monomials M = Xj1 . . . X%* such that ^Z iv ^ r a n d M
v=\

is not divisible by any X[il ... Xnin , 1 ^ i ^ P (the canonical images of such monomials
M form a basis of the vector fc-space k[Xi,... ,Xn]^r/Jnk[Xi,... ,Xn]^r). Thus, if E
denotes the finite subset { (en , . . . , e i n ) , . . . , (e p i , . . . ,ep n)} of N n , then f(t) = WE(£)
where UB(<) is the Kolchin polynomial of the set E. It follows that ~H can be treated
as the set of all Kolchin polynomials of subsets of N n (for all n = 1,2,. . .) .

The following two theorems characterise numerical polynomials that belong to the
set %. The first of these results is due to Macaulay [10], it describes numerical polyno-
mials that are Hilbert polynomials of standard graded algebras over fields. The second
theorem (see [7, Chapter II, Corollary 2.4.8]) was obtained as a characterisation of the
set of all Kolchin polynomials of families of n-tuples (for n = 1, 2 , . . . ) . As we have
seen, both statements concerned with the same set H.

THEOREM 2 . 3 . Let a numerical polynomial f(t) in one variable t be represented
in the form (1.3) where d = deg f(t). Then f(t) € % if and only if TTIQ ^ m\ ^ . . . ^
nid ^ 0.

THEOREM 2 . 4 . Let f(t) be a numerical polynomial in one variable t, d =
deg f(t), and ad the leading coefficient of the polynomial f(t). Then f(t) e 7i if and
only if ad > 0 and the polynomial

belongs to "H. (It is easy to see that degf*(t) < d.)

The next result shows the the set 7i is closed under some fundamental operations
on polynomials and gives some examples of Hilbert polynomials.

THEOREM 2 . 5 . Let f(t) and g(t) be Hilbert polynomials in one variable t, let

m, k € N , k > 0, and let c i , . . . , c* be positive integers. Then the following are Hilbert

polynomials:

(ii) f(t)9(t);
(iii) f{kt + m) ;
(iv) kf(t) + m ;

(v)
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P R O O F : Statements (i)-(v) are independently proven in [1, Theorem 3.5] (where
elements of % are treated as Hilbert polynomials of standard graded algebras) and [7,
Section 2.4] (where the results are formulated for Kolchin polynomials). Statements (vi)
and (vii) follow from the facts that ( '^") is the Kolchin polynomial of the empty subset
of N m and ('•£") - (t+Z~k) i s t h e Kolchin polynomial of the set {(k, 0 , . . . , 0)} C N m .
The last statement is obtained in [7] as a property of the set of Kolchin polynomials
(see [7, Lemma 2.4.19]). D

REMARK. There are several other descriptions of the set % that come from differential
and difference algebra. In [5] Kolchin introduced a concept of differential dimension
polynomial associated with a finitely generated differential field extension. Since then
differential dimensional polynomials have played the main role in the dimension theory
of differential rings and systems of algebraic differential equations. As shown in [6,
Chapter 2, Theorem 6], any differential dimension polynomial can be represented as
a finite sum of Kolchin polynomials. This result, together with the first statement
of Theorem 2.5, implies that ~H coincides with the set of all differential dimension
polynomials of finitely generated differential field extensions. Furthermore, as shown in
[4], the same set can be considered as the set of all dimension polynomials of finitely
generated differential modules over differential fields.

The development of the theory of difference and inversive difference algebraic struc-
tures (that is, algebraic structures with the action of sets of injective endomorphisms or
automorphisms, respectively) has led to the study of dimension polynomials of difference
and inversive difference field extensions. The existence theorems for such polynomials
are proven in [8, 9] and many interesting properties and applications of difference di-
mension polynomials can be found in [7, Chapters 6-8]. As follows from [7, Proposition
2.5.17, Theorems 6.4.1 and 6.4.8], the set % can be treated as the set of all dimension
polynomials of finitely generated difference field extensions, as well as the set of all
characteristic polynomials of finitely generated extensions of inversive difference fields.

3. P R O O F S OF SOME CONJECTURES ON HILBERT POLYNOMIALS

In this section we present solutions of some open problems on Hilbert polynomials
formulated in [1]. The following two theorems give the main tools for the solutions.

THEOREM 3 . 1 . Suppose that a numerical polynomial f(t) of degree d can be
written as
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where p, q, Cj, a*, bj, P}i € P (1 ^ i ^ p, 1 ^ j ^ g). furthermore, assume that

(3.2) ad^38,
p 9

(3.3) y*jT,cia.i>'YjbjPj,
i=\ j=l

(3.4) r̂nax

and

(3.5)

P 9

where a^ — ad(/) is the leading coefficient of f(t) (clearly, ad = ^Z c« ~ S ^i)-

Then

is a numerical polynomial of degree d — \ that can be written as

(3.6, £ ( ; _ \ )
^ j=

where p', q', d{, aj, 6J, 0J € P fl ^ * < p', 1 ̂  j s$ q') and

(3.7) a d _ ! ( r ) ^ 38,

(3.8)

(3.9) max

(3.10)
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p i
PROOF: Let C = £ c< and 5 = £ 6,- . Then ad = C - B and

t=i j=i

< v )
_ /i + d + 1 + ad\

V d+1 /

{ d

\} _ [y^b ft + d + ad + Pj\ _g/t + d + adY\

so that f*(t) can be written as

^ (l + d - 1 + ad

Thus, the polynomial /*(£) can be represented in the form (3.6) and

/ /

i=i j=\ t=i fc=i •

(we apply the notation of formula (3.6) to (3.11)). It follows that

(3.12) ad - i (D =

whence ad_i(/*) > (ad{ad - l)/2) > ad ^ 38.
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Treating (3.11) as an expression of the form (3.6) we obtain

t=l i = l

p a{ ad ad-k

t=l M=l *=1 v=\ j=l A=l

fc=lT=fc+l

i f p p 9 '

o E c « Q ?+E C<Q« - E 6 ^l - E h

whence

iQi - E ^ = (a*+\) ( E c ^ - E
i=i v y vi=i j=i

Li=l j = l

Now conditions (3.2)-(3.5) imply inequality (3.8) for representation (3.11):

h*-hfi > -iZM+^r* >-K

if ad ^ 38.

Still considering (3.11) as an expression of /*(<) in the form (3.6) we obtain

(3.14) max /Jj — ad + max /3j .

and

(3.15)
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Now the inequality a d _ i ( /*) > (ad(ad - l ) ) / 2 , together with (3.14), (3.4) and

the fact that ZJad(ad - l ) / 2 > ad + 3^/52 if ad ^ 38, implies that max /?'• ^

3y/ad-i(f*). Furthermore, equality (3.15) and inequalities (3.4), (3.5) show that

(max
1

Since 2ad-\{f*) > ad(ad - 1) > Qady/ad. if ad ~£ 38, we arrive at inequality (3.10). D

As a consequence of Theorem 3.1 we obtain the following statement.

THEOREM 3 . 2 . Suppose that a numerical polynomial f(t) of degree d can be
written in the form (3.1) such that p,q,a,ai,bj,Pj € P (1 < i ^ p, 1 ̂  3^ q) and
conditions (3.2)-(3.5) hold. Then f{t) € H.

PROOF: We proceed by induction on d. If d = 0, f(t) = ad > 0, so the statement
is obvious.

Let d > 0 and let the polynomial f(t) be written in the form (3.1) such that
p,q,Ci,ai,bj,Pj e P (1 ^ i ^ p, 1 ̂  j =* g) a n d conditions (3.2)-(3.5) hold. By The-
orem 3.1, inequalities (3.2)-(3.5) imply that the polynomial f*(t) can be written in
the form (3.6) and the corresponding inequalities (3.7)-(3.10) hold. By the induction
hypothesis, f*(t) e H whence f{t) 6 U (see Theorem 2.4). D

Theorem 3.2 leads to the following result that solves two conjectures on Hilbert
polynomials (see [1, Conjectures 5.3 and 5.4]). In accordance with the notation of [1],
for any d € N , (t)d will denote the polynomial t(t — 1 ) . . . (t — d + 1) in one variable t
(in other words, (t)d = d\ Q) ).

THEOREM 3 . 3 . Let d be a positive integer. Then

(i) SdQen.
(ii) Ifd^A, then {t)d€H.

PROOF: Since d\ is a multiple of 3d for any d € N,rf ^ 4, statement (ii) is
a consequence of (i) and Theorem 2.5 (iv). Thus, one needs to prove just the first
statement of the theorem.

Let us set fd(t) = 3d(d) and notice that fi(t) € % for i — 1,2,3, so it is sufficient
to prove statement (i) for all d € N ,d ̂  4. Indeed, by Theorem 2.5(vii),

(it is the Kolchin polynomial of the set {(3,0)} C N 2 ) . Furthermore, applying formula
(2.1) and Theorem 2.5(i, iv, vi) we obtain
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and

whence f2(t) £ ft and /3(*) € ft.

Let d £ N and d ^ 4. Since the leading coefficient of /d(t) is 3c!,

Applying identity (1.1) we obtain

Using identity (1.1) once again we can write the polynomial f^(t) as

or

The last expression can be treated as a representation of the polynomial f£(t) of
degree d - 1 in the form (3.1) where p = 2d, C{ — 3d, aj = i, q = 3d, bj = 3d - j + 1,
and /3, = j (1 ^ i ^ 2d, 1 ^ j ^ 3d), so that

t=i i=i t=i j=i

max Bj = max j = 3d,
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and

It is easy to see that representation (3.16) of the polynomial /£(t) does not satisfy
conditions (3.2)-(3.5) for all d ^ 4 (for example, if d = 4, then ad_i(/^) = 18 < 38).
However, the proof of Theorem 3.1 shows that the polynomial / " = (/,J)* of degree
d - 2 can be written as

0<i-2

(p',q', ^i,a'i, b'j, fy] e P for i = 1 , . . . ,p'; j = 1...,q') where the parameters a d _ 2 ( /* ' ) ,

and £3 ^ a r e determined by formulas (3.12)-(3.15):

+ 1^3d(^_2))3_3d(^_l)j

- 9d4 - 4d3 - 9d2 - 9d - 2)
8 :

-!- + 3d =

and
3d
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P j
Now it is easy to check that if d > 4, then a d _ 2 ( / " ) ^ 38, £ c ^ - £ b'jP'j >

i 1 i l

q
0, max # < 3v^I^CP) and £6$ < 2od_2(/"). By Theorem 3.2, f"(t) e W.

i<i^g' i=i
Applying Theorem 2.4, we arrive at the desired inclusion fd{t) — 3d(rf) € ti. D

Theorem 3.2 allows us to characterise some other numerical polynomials as Hilbert
polynomials of standard graded algebras. The following statement solves two more
problems of this type.

THEOREM 3 . 4 . Let p e N , p ^ 2. Then

0) C

PROOF: Note first that it is sufficient to prove (i) and (ii) for p ^ 4, since the
inclusion in cases p = 2 and p = 3 can be verified directly: setting /p(£) = (t+p+2) -

C ^ f ) , ffp(0 = ('+") + (t+P
p
+1) - {t+

p
P-?) a n d applying Theorem 2.5(viii) we obtain

that

and

M t ) = { s ) - { 1 J = ( 3 j + 2 ( 2 J + 2 ( 1 j + ( o )
Furthermore, it is easy to check that </3(t) can be written in the form (1.3) as follows:

Now, Theorem 2.3 shows that gz(t) G ~H (with the notation of Theorem 2.3, we have
d — 3 and m0 = 32 > mi = 9 > m2 = 4 > m3 = 2 > 0).

Let p ^ 4 and let F0(t) = fp(t) and Fk(t) - F^t) for jfc = 1,2,... . By Theorem
2.4, if Fk(t) € H for at least one k € N , then /p(t) € H. Direct calculations (with the
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use of formulas (2.1) and (1.1)) show that

fr{\ P 4 / V P - 4 ) V p -

P - 4

+ p - 4 + 30\ / i + p - 4 + 31\ ft + p - 4 + 32
P - 4 )+3{ p-4 ) - { p-4

t+p-4 + 33\ ft+p-4 + 34\ ft+p-4
p-4 ) - \ p-4 )-2{ p-4

_ ft + p - 4 + 36\
V P - 4 ) '

Considering the last equality as a representation of F^t) in the form (3.1) (with d =
p — 4), we see that this representation satisfies conditions (3.2)-(3.5). Indeed, with the
notation of Theorem 3.1, we find that

ap_4(F4) = 372 ^ 38, YlCiCti ~^2bJ^J = 7 1 3 4 > °<

max Pj = 36 < 3\/aD_4(F4) = 3\/372,
j V

and J2bj = 10 < 2ap_4(/i4). By Theorem 3.2, F4(t) € % whence fp(t) € H.

Setting Go(£) = 9P{t) and Gfc(£) = GJ_x(t) for A: = 1,2,... , we obtain (after a
series of routine manipulations with binomial coefficients) that

) \ P - 4 / \ P - 4 / V P - 4

+ l7f
t + p+ ) + 1 3 r + p + 5 ] + 8 [ i + p + ) + 3 r + P 4

\ p - 4 / \ p—4 j \ p-4 ) \ p-

— I I — 3 ( I — 3 1 ) - 2 | P

\ p — 4 / \ p — 4 / \ p — 4 / \ p — 4

_ ft + p + 32\
V P - 4 /

Since the parameters of the polynomial G4(t) satisfy conditions (3.2)-(3.5) (with the
notation of Theorem 3.1, d = p - 4, ad(F4) = 372, £c ia< = 7473, X>j#j =

» 3

339, max/3,- = 36, and Yfi, = 10), G4(t) € U whence gp(t) is a Hilbert polyno-

mial. 3 D
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We conclude with the proof of a conjecture on chromatic polynomials of graphs.

Let G = (V,E) be a graph without loops and multiple edges (V and E denote
the set of vertices and the set of edges of the graph G, respectively.) Recall that a
colouring of a graph is an assignment of a colour to each of the vertices of G in such
a way that adjacent vertices have different colours. If the set of all possible colours
consists of k elements (k S P ) , the colouring is called a A;-colouring. Thus, one can
treat a k-colouring as a mapping p : V -» { 1 , . . . ,k} such that p(x) ^ p(y) if the
vertices x and y are adjacent.

It is well-known (see, for example, [11, Section 3]) that the number of different
k -colourings of a graph G is a polynomial function of k with rational coefficients. The
corresponding polynomial is denoted by PG{1) a n d called the chromatic polynomial of
the graph G. (Thus, the chromatic polynomial of a graph G is a polynomial PG(*) in
one variable t with rational coefficients such that for any positive integer k, P G ( ^ ) is
the number of k -colourings of the graph G.)

It is easy to see that the chromatic polynomial of a complete graph Kn is (t)n —
t(t — 1 ) . . . (t — n + 1). Furthermore, as it follows from [11, Theorem 1], a chromatic
polynomial of a graph can be represented as a sum of polynomials of the form (t)n. This
fact, together with Theorem 3.3(ii) and Theorem 2.5(i), implies the following result that
solves the conjecture on chromatic polynomials formulated in [1] (see [1, Conjecture
5.2]).

THEOREM 3 . 5 . Let G be a graph on at ieasfc four vertices (without loops and
multiple edges), and let PG(*) be the chromatic polynomial of the graph G. Then
PG(*) is a Hilbert polynomial.
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