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ERGODIC ACTIONS OF COMPACT GROUPS ON 
OPERATOR ALGEBRAS II: CLASSIFICATION OF 

FULL MULTIPLICITY ERGODIC ACTIONS 

ANTONY WASSERMANN 

Introduction. In the first paper of this series [17], we set up some gen
eral machinery for studying ergodic actions of compact groups on 
von Neumann algebras, namely, those actions a:G —» Aut Jt for which 
Jt = C. In particular we obtained a characterisation of the full 
multiplicity ergodic actions: 

THEOREM A. If a is an ergodic action of G on Jt, then the following 
conditions are equivalent: 

(1) Each spectral subspace Jtm has multiplicity dim TT for IT in G. 
(2) Each IT in G admits a unitary eigenmatrix in Jt. 
(3) The W* crossed product is a (Type I) factor. 
(4) The C* crossed product of the C* algebra of norm continuity is 

isomorphic to the algebra of compact operators on a Hilbert space. 

This is a slightly simplified formulation of Theorem 15 in [17], to which 
we refer for further details. Our aim in the present paper is to obtain a 
classification of such actions, in direct analogy to that given in the case of 
compact Abelian groups in [1] and subsequently in [13]. As will become 
apparent below, our results can be regarded as classifying coactions of 
compact groups on Type I factors. Adrian Ocneanu (in unpublished work) 
has initiated the study of such coactions on the hyperfinite Type II 
factors. 

Briefly our programme is as follows: 
1. to define cocycles for the dual of a compact group. 
2. to define cocycle representations for the group dual. 
3. to show that the usual formalism applies for the crossed product by a 

cocycle representation. 
4. to classify full multiplicity ergodic actions in terms of cocycles. 
5. to show that any coaction of a compact group on a Type I factor is 

implemented by a cocycle representation of the group dual. 
6. to show how cocycles and cocycle representations may be normalised 

to facilitate subsequent definitions. 
7. to introduce a C* algebra for each dual cocycle co which is universal 

(in an appropriate sense) for co-representations of the group dual. (Thus 
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these algebras may be regarded as generalisations of the irrational rotation 
algebras, if they exist.) This algebra may be identified with the C* algebra 
of norm continuity (generated by the spectral subspaces) for the 
corresponding ergodic actions (or equivalently on a simple C* algebra). 

8. to associate to each dual cocycle a pair consisting of a dual 
bicharacter and a perturbed comultiplication. The cocycle is essentially 
determined up to equivalence by the pair and a non-degeneracy criterion 
is given in terms of the bicharacter for the corresponding action to be 
on a factor. 

Finally we mention some open problems concerning ergodic actions 
arising from the present paper. 

A. Compute H (G), the set of equivalence classes of dual cocycles, for 
an arbitrary non-Abelian compact group G and in particular find the 
non-degenerate cocycles. This computation is made in [18] for the groups 
SU{2) and SO(3); and we have been able to extend the techniques 
introduced there to show that all full multiplicity ergodic actions of the 
groups SU(2) X T, SU(2) X ££7(2) and SU(3) are induced from actions 
of the maximal torus (see [19] ). Furthermore it is known (as an off-shoot 
of the classification of finite groups) that a finite group has a 
non-degenerate dual cocycle only if it is solvable: such groups are said to 
be of "central type"; see [8]. 

B. Extend the full multiplicity classification to general ergodic actions 
starting from the foundations laid in [17]. 

A preliminary version of the first seven sections of this paper originally 
formed part of the second chapter of my doctoral dissertation [16]. I 
would like to thank my advisor Jonathan Rosenberg for his encourage
ment then, as well as Vaughan Jones, who instigated this research. Section 
8 was inspired by Section 10 of V. G. Drinfeld's report [5], which was 
kindly made available by Pierre Cartier. I would also like to acknowledge 
the support during the final stages of this work of George Elliott, 
University of Toronto, and the Miller Institute, University of California, 
Berkeley. I would finally like to point out that Magnus Landstad [11] 
simultaneously developed similar ideas to some of those in this paper: he 
was kind enough to show me unpublished notes as well as mentioning the 
statement of Lemma 24 to me. 

1. Cocycles. Let G be a compact group and p:G —> &(L2(G) ) the right 
regular representation of ^(G) , generating the (right) von Neumann 
algebra 3%(G) = p(G)" of G. On G we have a canonical comultiplication 

8G:&(G) -> 31(G) ® &(G\ 

namely the *-isomorphism extending 8G(p(g) ) = p(g) ® p(g). (If Jt and 
Jf are von Neumann algebras, their von Neumann tensor product will be 
denoted by Ji ® Jf.) 
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A cocycle of G (or multiplier) is a unitary co in &(G) ® &(G) satisfying 
the cocycle identity: 

(8G ® i(<o) )(co ® / ) = (i ® 8G(œ) )(/ ® (o). 

(Note that when G is Abelian, this reduces to the usual definition of 
Z (G, T), since the Fourier transform furnishes an isomorphism between 
&(G) and /°°(G).) Two cocycles to, a/ are called cohomologous or equivalent 
if and only if we can find a unitary v in &{G) such that 

<y = SG(v*)<o(v ® v) 

and the set of equivalence classes is denoted by H (G). Given a cocycle to, 
we may construct another cocycle <o via 

co = a • (a ® a)<o* 

where a is the "flip" on &(G) ® ^ (G) (i.e., o(x ® y) = y ® x) and a is the 
involutive *-antiautomorphism of &(G) induced by a(p(g) ) = p(g~l) for 
g G G. As we shall see in Section 6 (Lemma 13), <o is always cohomologous 
to 6j. Our work on normalisation there will also have as a consequence the 
fact that any cocycle is equivalent to a cocycle to for which co = to. 

2. Representations and coactions. We start by recalling some elemen
tary definitions and properties of coactions from [12]. By a coaction of 
G on the von Neumann algebra Jt, we mean a *-isomorphism 8 of Jt into 
Jt ® &(G) satisfying the comultiplication identity 

(i ® SG)S = (8 ® L)8. 

The crossed product of Jt by G with respect to ô is the von Neumann 
algebra generated by 8(Jt) and C ® L°°(G) in Jt ®J8{L2(G) ): we denote 
it by Jt Xl5 G. The dwa/ acto/7 of G on ~# Xlô G is defined to be the 
restriction of i ® Ad X where X is the left regular representation of G on 
L2(G). We write 8g for * ® Ad X(g) \jf^ In this realisation of the crossed 
product, the fixed point algebra of the dual action is equal to 8(Jt) (cf. 
Theorem B (2) ). We shall say that a coaction 8 is implemented if there is a 
unitary W in Jt ® ^ (G) for which 

(*) 8{x) = W(x ® I)W* 

for all x in Jt. 

LEMMA 1.(1) Let Jt be a factor. Then the equation (*) defines a coaction 
on Jt if and only iff(W) lies in &(G) ® ^(G) , where 

f(W) = L ® 8G(W*)(W ® I)t ® o(W ® / ) . 

(2) For any algebra Jt, iff(W) lies in ât(G) ® 9t{G\ thenf(W) = I ® œ 
where co is a cocycle of G. 
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Proof. (*) defines a coaction if and only if 

(8 0 L)8(X) = (L ® 8G)8(x) 

for all x in ^#. We now compute both sides of this equation: 

(8 ® t)8(x) = Ad[ (W ® / > ® a(JP ® / ) ](JC ® / ® / ) 

(L ® SC)8(JC) = Ad[* ® 8G(W) ](x ® / 0 / ) . 

Thus equality holds if and only if f(W) lies in the relative commutant of 
Jt, that is ^ (G) ® #(G). 

Let us check that if / ® co = f(W), then co satisfies the cocycle 
condition. We define automorphisms of @(G) ® âl(G) ® #(G) by 

' a12(fl ® Z> ® c) = b ® a® c 

ou(a ® b ® c) = c ® b® a 

a123(<2 ® 6 ® c ) = c ® t f ® 6 . 

Then we have on the one hand 

I®(8G® *(co)co ® I) 

= L® 8G® L{L® 8G(W*)(W ® i > ® a(W ® / ) }I ® co ® / 

= [i ® (8G ® i)8GW*][i ® 8G(W) ® I][I ® co ® / ] 

X [t® ol3(W® I® I)] 

= [L®(L® 8G)8GW*] 

X (W® I® I)i® ou(W ® I® I)t® ol3(W ® I® I) 

since i ® ol3(W ® I ® I) and I ® u ® I commute and 8G is a coaction, 
while on the other hand 

/ ® (i ® 8G(o))I ® co) 

= i ® i ® 8G{i ® ÔG(PF<)(^ ® i > ® a( W ® / ) } / ® / ® co 

= [i ® (i ® 8G)8GW*][W ® / ® / ] 

X [i ® a123(i ® 8G(W) ® I) ]I ® / ® co 

= [l ® (4 ® ÔG)ÔG^*][^ ® / ® / ] 

X [i ® a123( JF® / ® /(t ® a(PT® / ) ® I ) / ® co* ® / ) ] / ® / ® co 

= [i ® 0 ® 8G)8GW*][W ® / ® / ] 

X [i ® a 1 2 ( ^ ® / ® / ) ][L ® on(W ® I ® I) ] 

where we have used the identity (i ® 8G)o(a ® b) = ol3(8G(a) ® b). 
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We shall refer to W as an co-representation of the group dual G in Jt, or 
on 3tf in case Jt = agffl). (We note incidentally that if W is an 
co-representation onJf giving the coaction 8(x) = W(x ® I)W*9 then the 
other co-representations of G on J f correspond exactly to the unitary 
cocycles for 8 on ^?pf ) as defined on page 89 of [12].) If furthermore there 
is an action aQ of G on Jt, then we shall say that W is an equivariant 
co-representation of G provided that for all g in G 

ag® t(W) = (I® p(gy
l)W. 

Conversely, given a cocycle co we may define the regular co-representation 
W„ in L2(G) via 

Wa=WG- oco, 

where WG is defined by 

(WGf)(s, t) = f(s, ts) (f G L\G X G) ). 

We recall that 8G(x) = W£(x ® I)WG for x in 9t(G\ together with 
the identities 

i 0 8G(WG) = (WG® I)t ® o(WG ® I) 

= L ® o(WG ® I)(WG ® I) 

which may be found on page 19 of [12]. We must verify that W^ is indeed 
an co-representation: for this we need a preliminary result. 

LEMMA 2. If CO is a cocycle, then so is oco. (We shall call oco the inverse 
cocycle to co.) 

Proof. In fact 

8G ® i(aco) = a13(i ® 8G(co) ) 

i ® 8G(oco) = o]3(8G ® i(co) ) 

oco ® I = ol3(I ® co) 

I ® oco = a13(co ® / ) 

so the cocycle identity for oco follows by applying a13 to the identity 
for co. 

LEMMA 3. W^ is an co-representation and is equivariant with respect to the 
action g H A d X(g) of G on @(L2(G) ) . 

Proof. Letting W = W^ we have 

i ® 8G(W*)(W® I)t ® o(W® I) 

= i ® 8G(oco*Wg)(WG ® I)(oco ® I)i ® o(WG ® I)i ® o(oco ® I) 

= i ® 8G(oco*)i ® o(Wg ® I)(oco ® I)i ® o(WG® I)L ® o(oco ® I) 
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= i 0 8G(oa*)i 0 o{ (Wg 0 I)(L 0 a(aco 0 / ) )(WG 0 / ) } 

i 0 a(aco 0 / ) 

= i 0 8G(a<o*)i 0 o(8G 0 <aw)aw 0 7) ) 

= i 0 8G(aco*)i 0 O(L 0 SG(oco)I 0 aw) (by Lemma 2) 

- i 0 8G(aw*)i 0 ôG(aco)(7 0 co) (since a • ÔG = 8C) 

= / 0 ( o 

as claimed. 
To establish the equivariance of Wu, we must show that for all g 

(*) Ad X(g) 0 t(WJ = (I 0 p ( g ) " 1 ) ^ . 

Substituting in the expression for W^ and cancelling oco from both sides, 
we see that we are reduced to verifying that (*) holds when co equals I and 
W^ = WG. This of course may be verified directly, but we prefer to give a 
more conceptual proof. In fact WG lies in L°°(G) 0 &(G) so may be 
regarded as a bounded function from G to &(G); it corresponds to the 
function WG(x) = p(x). Moreover the restriction of Ad X(g) to L°°(G) 
gives the action of G by left translation. Hence 

(Ad\(g))WG(x) = WG(g-lx) = p(g)-]WG(x) 

which clearly implies (*) for the case co = I. 

3. Crossed products by implemented coactions. Although we shall 
construct a C* algebra later which is universal for co-representations of G, 
it is possible to define such notions as commutant, enveloping von 
Neumann algebra, equivalence, quasi-equivalence, intertwining operators, 
etc. in a fairly straightforward manner without referring to the C* algebra. 
For example, we define the commutant and bicommutant of an 
co-representation WonJffby 

(Wy = {x G âS(3V) : W(x 0 I)W* = x 0 / } 

(wy = awyy 
respectively. The first definition should be compared with the definition of 
the fixed point algebra of a coaction S of G on Ji, namely 

Jtb = {x ^ Jt \ Ô(JC) = x 0 / } . 

We shall suggestively denote the bicommutant of the regular oo-
representation by 7rw(G)" in accordance with the customary notation in the 
Abelian case. The following theorem is a direct analogue of the well-
known Abelian result. 
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THEOREM 1. Let 8 be a coaction of G on Jt, which is implemented by an 
^-representation of G in Jt. Then 

Jty\G = Jt® <noœ(ày. 

Under this isomorphism the action of the group is given by 8 = t 0 
Ad X(g) and has fixed point algebra Jt. 

Proof. Let 

S(x) = W(x 0 I)W* (x e Jt) 
A A 

with W an co-representation of G in Jt. Thus Jt XI G is generated by 
8(Jt)C 0 L°°(G). Thus Jt 0 C and W*(C 0 L°°(G))W generate an 
algebra isomorphic to Jt XI G. Let 

JF = 3#[® L2(G), where Jt ç # ( j ^ ) . 

We compute commutants in ^(Jf7): <̂> denotes "commutes with." Firstly 
we note that 

(C ® L°°(G) y = {x e # ( j f ) : x 0 / <-> / ® WG) 

since L°°(G) = {y <= @(L2(G) ) \ y ® I ^ WG). 
So 

( r (c®L°°(G)) i fy 

= {JCG <^pT) : x 0 / <-> (W* 0 / ) ( / 0 WG)(W 0 / ) }. 

Hence 

(Jt V (JT*(C 0 L°°(G) )W) y 

= (Jt 0 cy n (w*(c 0 L°°(G) )wy 

= Jtf 0 J*(X2(G) ) n (»F*(C 0 L°°(G) )W)\ 

But if j^ €= .# ' 0^(L 2 (G)) , 

j ; 0 / ^ ( ^ * 0 / ) ( / 0 ^ ) ( ^ 0 / ) = ( / 0 % ) ( t ® a ( F ® / ) ) 

if and only if 

y 0 / <-> / 0 P ĉo - / 0 Waoi 

if and only if 

y ^Jt'® 7Taœ(Ôy. 

Therefore 

^ V (PT*(C 0 L°°(G) )W) = (Jt' 0 9row(G)')' = ^ 0 *•«(<?)"-

Thus the automorphism O H W*aW of Jt ® @(L2(G) ) takes 8(Jt) to 
Jt, Jt y* G io Jt ® irau(G)", and fixes / 0 A(g), so all the assertions 
of the theorem follow. 
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4. Classification of full multiplicity ergodic actions. Our purpose here is 
to establish a bijection between (equivalence classes of) full multiplicity 
ergodic actions of a compact group G and H2(G). Before doing so we recall 
some standard duality results on coactions. 

THEOREM B. (see pases 9, 12 and 25 of [12] ) Let 8 be a coaction of G 
on Jt, with dual action 8 of G on JtXI G Then we have 

(1) (JlXLB of = 8(Jt). 

(2) (Jt XI G) X] G = Jt ® @(L2(G) ) . 

Conversely, an action a of G on Jt arises as the dual of a coaction if and 
only if one of the following equivalent conditions is satisfied. 

(a) There is an equivariant *-isomorphism of L°°(G) into Jt. 
(b) There is an ordinary equivariant representation V of G in Jt. 

In this case the action a is dual to the coaction on Jta defined by 

8(x) = F*(JC ® I)V. 

(By an ordinary representation, we mean of course a trivial-cocycle 
representation.) 

We are now in a position to state our principal result. 

THEOREM 2. For each cocycle o of G, a = Ad X(g) defines a full 
multiplicity ergodic action of G on 77W(G,),/. Moreover every full multiplicity 
ergodic action arises in this way and the cocycle to is uniquely determined 
up to equivalence by the existence of an equivariant ^-representation in 
the algebra. 

Thus there is a natural bijection between equivalence classes of full 
multiplicity ergodic actions and H (G). 

i A 

In Section 7, once we have introduced the G-algebra LJ^G) and 
established some of its elementary properties, we will be able to give the 
outline of a different (but equivalent) proof of Theorem 2 in terms of 
quasi-equivalence of equivariant representations of L\(G) and the GNS 
construction. The present proof, however, uses the minimum of machinery 
and also has as spin-off the implementation theorem of the next section. 
We shall need three lemmas for the proof of Theorem 2. 

LEMMA 4. g I—> Ad X(g) defines a full multiplicity ergodic action on 
77C0(G)/r and Wœ dejines an equivariant co-representation in irjfi)"'. 

Proof. Let us take a cocycle co and consider the regular co-representation 
of G on L2(G). Thus we obtain a coaction of G on &(L2(G) ) with crossed 
product &(L2(G) ) 0 irJfiY by Theorem 1. In this realisation, the dual 
action of G is given by i ® Ad X(g) and has fixed point algebra &(L2(G) ), 
so leaves TTJGY' invariant and acts ergodically on it. To check that the 
restriction of the action of G to TT^G)" is of full multiplicity, it suffices to 
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check that the crossed product by this action is a factor by Theorem 15 of 
[171; but this is immediate from Theorem B (2). Finally we already verified 

A 

in Lemma 3 that Wœ was an equivariant co-representation in ^ (G)" . 
We note that the invariance of nJjG)" under Ad X(g) also follows 

straight from the equivariance of W^. For the definition of the commutant 
(Wuy and the equivariance of Wœ together show that the commutant is 
invariant under Ad X(g), and hence so is the bicommutant 77W(G)". 

LEMMA 5. If a: G —> Aui(Jt) is any full multiplicity ergodic action of G, 
then there is an equivariant co-representation of G in Jt for some cocycle to of 
G, unique up to equivalence. 

Proof. By Theorem 15 of [17], we know that for each IT in G there is a 
unitary eigenmatrix M^ in Jt ® End V^ such that a (M„) = M^irig). 
Bearing in mind the Plancherel decomposition 

we may 'patch' the eigenmatrices Mm together to form a unitary M = (M^) 
mJt® @(G) such that 

ag(M) = Mp(g). 

If we now let U = M*, it is easily verified that i ® 8G({/*)( U ® I)i ® 
a(U ® / ) is fixed by a so lies in ât(G) ® ât(G). It now follows from 
Lemma 1 (2) that U is the required equivariant cocycle representation. 

To establish the uniqueness of to, we observe that a unitary U in 
Jt ® &(G) satisfying ocg(U) = p(g)~lU is unique up to right 
multiplication by a unitary v in &(G); and on taking Uv in place of U, co is 
replaced by Sc(v*)co(v ® v). 

LEMMA 6. Suppose that a:G —> Aut(Jt) is an ergodic action and that the 
action ag® t on Jt ® 8l(3V) is dual. Then 

(1) the action a ® i is dual to a coaction on @(Jf) implemented by a 
aco-representation for some cocycle LO of G. 

(2) Jt = ww(G)" as a G-algebra. 

Proof. Since the action on Jt is ergodic and stably dual, it follows from 
Theorem 15 of [17] that it is of full multiplicity. So by Lemma 5 we can 
find an equivariant co-representation U of G in Jt where <o is unique up to 
equivalence. Since a ® i is dual, Theorem B (b) implies that there is an 
ordinary equivariant representation V of G in Jt and the coaction 8 on 
®W) is implemented by V*, 

8(x) = V*(x® I)V. 

But then W = V*U is fixed by a and therefore lies in â8(3f) ® 01(G). Thus 
V = UW* where U and W are cocycle representations in the commuting 
algebras Jt and &(3{f) respectively. Hence if x e &(Jf), we have 
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8(x) = V*(x 0 I)V = WU*(x 0 I)UW* = W(x 0 I)W* 

so that 8 is implemented by W. Moreover since V is an ordinary 
representation of G and U is an ^-representation, we have the relations 

i 0 SG(V) = (V 0 I)i 0 a(K 0 / ) , 

i 0 SG(U*)(U 0 i > 0 a(f/ 0 / ) = / 0 co. 

Substituting V = UW* in the first relation, we obtain 

L 0 8G(U)t 0 8G(W*) = (U®I)L 0 o(U®I)t 0 o(W* 0 /)(*F* 0 / ) 

and the second relation shows that 

i 0 8G(W*)(W 0 I)i 0 a(W 0 / ) = / 0 aco 

as required. 

Proof of Theorem 2. The first assertion is an immediate consequence 
of Lemma 4, while the second follows from Lemmas 5 and 6, bearing in 
mind that a full multiplicity ergodic action is stably dual by Theorem 15 
of [17]. 

We remark that stable duality in Lemma 6 could be checked directly in 
Theorem 2 without appealing to Theorem 15 of [17]. Indeed taking the 
action a 0 i on Jt 0 &(L2(G) ) we see that the product UW*^ (formed in 
the obvious way) defines an equivariant ordinary representation of G 
mJt® &(L2(G) ). Finally we note the following interesting consequence 
of Theorem 2, which begs an obvious question. 

COROLLARY OF THEOREM 2. For any cocycle co, the von Neumann algebra 
generated by iru(G)" and X(G) is &{L (G) ). Furthermore the von Neumann 
algebra generated by vjfj)' and X(G) is &{L (G) ) and Ad X defines an 
ergodic action on irJ^G)''. 

Proof Let J£?(G) = A(G)" be the von Neumann algebra generated by the 
left regular representation of G in @(L2(G) ). Thus ££{G) and 9t{G) are 
each other's commutants in &(L (G) ). Since Ad X implements the action 
of G on 77-JG)", the von Neumann algebra Jt = ^ ( G ) " V J^(G) is a 
homomorphic image of the crossed product vJ^G)" XI G and therefore 
is a Type I factor. So its commutant Jt' = ^ ( G ) ' Pi ^ (G) is also a 
Type I factor. But 

«(G) S ®peê End(Kw), 

so that dim(y#') ^ (dim 7r) for all m e G. In particular taking the trivial 
representation of G we conclude that Jtf = C. Thus Jt = &(L2(G) ) as 
required. We note that the invariance of vjjj)" under Ad X forces the 
invariance of its commutant; but then 

K,(G)')AdX = ^(àï n «(G) = C, 

https://doi.org/10.4153/CJM-1988-068-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-068-4


1492 ANTONY WASSERMANN 

so that the action is indeed ergodic. Finally 

{irJG)'V 2{G)y = irJG)" n « (G) = C 

so that iru(G)V&(G) = â8(Û(G) ) as required. 

Since ww(G)" reduces to L°°(G) when <o is trivial, the first statement 
above may be regarded as a generalisation of the Stone-von Neumann 
Theorem. The corollary implies some kind of symmetry between TTJ^G)" 

and its commutant: this will be fully explained by the duality theorem 
(Theorem 9) of Section 7 which identifies the commutant of Trjfi)" with 
TTaJiGy. In order to prove this result we will need the L algebras of 
Section 7 combined with the theory of Hilbert algebras [3]. (Even in the 
case of the trivial cocycle where one has to establish the self-commutation 
property L°°(G)' = L°°(G), one still needs an application, albeit simple, of 
this theory.) 

5. The implementation theorem. The circle of ideas encountered in the 
above proof can be recycled to give a proof of the following result. 

THEOREM 3. Any coaction of a compact group on a Type I factor is 
implemented by a cocycle representation of the group dual. 

Proof Let Jfx = ^(Jf) X\8 G with dual action 8 and let J( be the 
relative commutant of 8(@(Jf) ) in Jtv Thus Jtx = Ji ® 8(@(3f) ) and, 
since the fixed point algebra of 8 is precisely 8(&(Jf?) ), a = 8\^ is an 
ergodic action on Jt and 8 = a ® i. Thus the hypotheses of Lemma 6 are 
fulfilled and the proof of Theorem 3 follows. 

We observe that if the factor in the statement of Theorem 3 is Type \n 

with n finite, then the result is true for more trivial reasons since we may 
use the Plancherel decomposition 

«(G) = e ^ E n c O T 

to break up a coaction 8:Mn(C) —> Mn(C) 0 St{G) into unital 
*-isomorphisms 

$,:M„(C)->En<TO, 

each of which is evidently unitarily implemented. 

6. Normalisation of cocycles and cocycle representations. In preparation 
for the subsequent sections it will be necessary to do some preliminary 
work on the normalisation of cocycles and cocycle representations. We 
shall start by briefly reminding the reader of what this amounts to in the 
Abelian case. If G is Abelian, then a cocycle œ is said to be normalised 
provided that 

<o(£ Cl) = 1 for all £ e G 
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and an ^-representation U^ is said to be normalised provided that 

U£l = ur\ for all f G G and Ul = I. 

It is a straightforward exercise to show that any cocycle is cohomologous 
to a normalised cocycle and that a cocycle is normalised if and only 
if its regular representation is normalised, or equivalently any represen
tation corresponding to that cocycle is normalised. Such a representa
tion satisfies 

U^ = U^d i,) 

so that we have the relations 

(*) co(l, l M f 1 , Q = Ur\Uç and co(l, 1)/ = Ux. 

Now it follows trivially from the cocycle identity that for all £ one has 

«té, i) = «(1, i) = (0(1, o , (o«, r 1 ) = « ( r 1 , & 

Thus when co is normalised the constant (o(l, 1) is equal to 1. Another 
consequence of normalisation is that co is alternating in that 

We finally remark that it is almost invariably easier to understand 
conditions on cocycles by passing from their inhomogeneous form to the 
corresponding homogeneous cocycle 

f(a,b, c) = u(a~]b,b~lc). 

The normalisation conditions simply say that if a and c are equal, then / 
takes the value 1. 

In the general non-commutative case, there is no immediate way of 
defining an analogue of "co(£, £ - 1 ) , " since there is no homomorphism 
of &(G) 0 &(G) into &(G) corresponding to evaluation on the diagonal 
in the Abelian case. There are, however, two ways out of this difficulty: 
the first is to use the analogue of equation (*) to give the definition; the 
second is to use left multiplication by the projection SG(e]) (where ex is 
the central projection in &(G) corresponding to the trivial representation) 
as a substitute for evaluating (o at (£, £ - 1 ) . In fact we shall resort to both 
these devices in our discussion below, which is unfortunately not nearly as 
straightforward as in the Abelian case. 

After this preliminary discussion, we are ready to make our basic 
definitions. A cocycle (o is said to be normalised if and only if 8G(e])o) = 
8G(e{) and an co-representation W is said to be normalised if and only if 

a®i(W)=W* and W(I 0 ex) = I 0 ev 

It is a trivial exercise to verify that the regular (ordinary) representation 
WG is normalised and it is also easily verified that if co is normalised then it 
commutes with SG(e{). 
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THEOREM 4. If to is a cocycle, then the following conditions are 
equivalent: 

(1) co is normalised 
(2) W^ is normalised 
(3) any (and hence every) co-representation is normalised. 

The proof of Theorem 4 will be accomplished through a series of 
lemmas. 

LEMMA 7. Let e] G 3$(G) be the central projection corresponding to the 
trivial representation of G, and let co be a cocycle. Then 

(I ® ex)oo = X(I 0 ex\ (ex ® I)u = \(ex ® / ) 

for some complex number X = X(co) of modulus 1. 

Proof Since ex is minimal and central in 0t(G), we have co(I ® ex) = 
Vj ® ej for a unitary Vj in &(G). We multiply the cocycle identity 

(8G ® <(co) )(<o ® / ) = (i ® ôG(co) )(/ ® co) 

by I ® e} ® ex and after a little manipulation obtain 

(ÔG ® i(v, ® q ) )(v, ® e, ® *?,) = (i® ôc(v! ® e,) )(/ 0 ^v , 0 e,) 

so that (on cancelling Vj ® I ® I and recalling that 8G(x)(I ® ex) = 
x ® ex) we obtain 

v, ® ex = SG(vx)(I ® ex) = I ® (vxex). 

From this we deduce that oo(I ® ex) has the stated form. A similar 
argument can be applied to co(ex ® I), or one can simply apply o to the 
corresponding relation for oco. Thus we have 

a,(/ 0 ex) = X(I ® ex\ oo(ex ® I) = \'(EX ® J)-

Multiplying both these expressions by ex 0 ex, we find that X = X' as 
desired. 

So far we have two "normalisable" quantities associated with oo, namely 
X(co) and x(co) = 8G(ex)co. We next introduce a third quantity u(co) such 
that the pair (u, X) determines and is determined by x. 

LEMMA 8. Let to be any cocycle. Then 

where u = u(u>) is an a-invariant unitary in &(G), and 

WJI®e]) = X(<o)®e,. 

Proof. We recall that WG lies in L^iG) ® ®(G) and satisfies 

Pg(WG) = I®p(g)-{WG 
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where /} denotes the action by left translation on L°°(G), implemented by 
Ad X(g) 0 i where X is the left regular representation of G on L (G). From 
this relation we obtain 

Let us now consider t 0 a(WJWœ. This is a unitary in @(L2(G) ) 0 @(G) 
fixed by the action fi. On the other hand we know from Theorem 2 
that Wu9 and hence this unitary, lies in the algebra Jt 0 &(G) where 
Jt = vJG)". Moreover /? restricts to an ergodic action on Jt. Hence 
i 0 aiWJW^ lies in C 0 31(G): 

i®a(WJW„ = I®u 

where u is a unitary in &(G). The defining equation for u immediately 
implies that au = u. The last assertion of Lemma 8 follows from Lemma 7 
and the easily verified identity WG(I 0 ex) = I 0 ex. 

Our next task is to find equations relating x(co), A(co), and u(co). Prior 
to doing so, we state some properties of the map a H-> 8G(ex)a on 
&(G) 0 &(G). To prove these, we shall need to use some properties of 
the Fourier algebra of G which can be found in [12]. For the benefit 
of the reader we include a brief outline in our special case. By defini
tion the Fourier algebra A(G) of G is the unital Banach *-algebra whose 
underlying Banach space is the predual .^(G)* of ^ (G) with multiplication 
given by 

(<t> o ^ x) = (<j> 0 ^ SG(x) > 

and involution given by <$~ = a<j>*. (If Jt is a von Neumann algebra, the 
notations Jt*, Jtu, and Jt ' will be used to denote the predual, unitary 
group and centre of Jt respectively. We recall that Jt* is naturally a 
bimodule for Jt, with the bimodule structure specified by (a • <j> • b, x) = 
(<J>, bxa) for a, b, x ^ Jt and <£ e .#*.) There is a faithful *-isomorphism 
of A(G) into the Abelian C* algebra C(G) given by <|> H^ <£ where 
<Kg) = <Kp(g) )• Under this identification, it is clear that 

<KeY) = J $(g)dg 

and hence we obtain the formula 

<j> o iK*i) = <4> 0 ^ SG(ex) > = J $(g)Mg)dg. 

(We shall give a generalisation of this formula in the next section.) Finally 
we note that, by Theorem A.l (b) of [12] or Theorem 8 in the next section, 

A 

ordinary representations W of G correspond to ^representations IT of 
A(G) via the formula 

ir(<f>) = (id ®<j>)W. 
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LEMMA 9. 

(1) SG(ei)(I ® x) = SG(eO(ax ® I). 

(2) 5c(e,)(7 ® x) = 0 if and only if x = 0. 

Thus for each a in &(G) ® &(G) there is a unique x in 3ft(G) such that 

8G(ex)a = 8G(ex)(I ® x). 

Proof. Since 8G(ex) = 8G(exg) = 8G(ex)p(g) 0 p(g), we find that the 
identity in (1) is satisfied when x = p(g). It follows in general by linearity 
and continuity. 

To prove (2), we note that if 8G(ex)(I 0 x) = 0, then for all 0, \p in 
^(G)*, we have 

(8G(ex)(I ® x), <j> ® ^) = 0. 

Thus 

/ <Kg)(x • V(g)dg = 0. 

Hence x • \p = 0, and hence x = 0 as required. 

LEMMA 10. 

(1) x(«)(7 0 e,) = ^co)^ 0 ^ . 

(2) «<;(*,)(/®w(a>)) = A(co)x(co). 

77ZWS the pair (t/(co), A(o>) ) uniquely determines and is uniquely determined by 
x(co), and co is normalised if and only if u(co) = I and A(co) = 1. 

Proof (1) follows immediately from Lemma 7 and the identity 
8G(el)(I 0 ex) = ex 0 e^ To prove (2), we note that 

i 0 a(J*k<o)»k = (/ 0 u)u* 

so that multiplying both sides on the right by 8G(ex) = W£{ex 0 I)WG, 
we obtain 

* 0 a(WGù))(ex 0 I)WG = (I 0 M)JC(CO)*. 

So using Lemma 7 and the fact that WG is normalised, we may rewrite this 
equation as 

\(cù)Wg(ex 0 I)WG = (I® w)x(co)*, 

which clearly implies (2). 

In order to extend Lemma 8 to any co-representation, we shall use a 
generalisation to the non-Abelian setting of a well-known cohomological 
device (cf. [10] ). In the Abelian case one knows that if 77 is the regular 

A 

representation of G, ?7W the regular co-representation, and /x any other 
co-representation of G, then 
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(*) jit ® 77- = d i m /i • 77w. 

We now describe how to define the tensor product of an ordinary 
A A 

representation U of G and an co-representation W of G; cf. pages 132-134 
of [12]. In fact if U e Jtx ® &(G) and JT <= ^ 2 ® tf, then, with an 
obvious notation, 

is an co-representation of G in ^ ® ^#2 which we shall denote by U ® W. 
(Note that already in the proof of Theorem 2 we used a somewhat related 
construction; namely that if Wx was an co-representation and W2 a 
aco-representation, then V — Wx © W2 was an ordinary representation of 
G.) Likewise we can define W® U in an obvious way. The following result 
is a non-commutative analogue of (*). 

LEMMA 11. If W is an ^-representation on J^ and WG is the regular 
representation on L (G), then 

WG ® W = W^® U0, 

where UQ = I is the trivial representation on J£ 

Proof To prove that the two representations are unitarily equivalent, we 
must produce a unitary y in &(L2(G) ) ® &(Jf) such that 

(y ® I){WG)X3W23 = (WG)l3u3l(y ® / ) . 

In fact we claim that 

y = W* G @(G) ® âS(3f) Q @(L2(G) ) ® â8(3V) 

does the trick. This is an immediate consequence of the equation 

i ® 8G(W*)(W ® I)i ® o(W® I) = I ® co 

and the fact that SG(x) = Wg(x ® I)WG. 

LEMMA 12. If W is an ^-representation of G, then 

L ® a(W)W = I ® w(co) and W(I ® ex) = X(co) ® ex. 

Proof. Let W be an co-representation of G and consider F = WG® W = 
(WG)X3W23. Then since J ^ is normalised, we obtain 

i ® a(V)V = i ® a(W23)t ® a( TO,3)TOl3^23 = •' 0
 OL(W23)W23 

and 

K(J ® ^ ) = (Wfc)13(/ ® *i)»k(J ® *i) = ^ ( 7 ® *i>-

On the other hand we know from Lemma 11 that 

V = (y ® I)(WJu(y* ® J) with y = W?x. 
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This expression for V leads to 

i 0 a(V)V = (y® /)(i 0 a(WJl3(WJl3)(y* 0 / ) 

= (y 0 / ) ( / ® w(co) )( j * ® I) = I ® I ® w(w) 

and 

K(7 0 e,) = (^ ® / ) ( ^ ) 1 3 ( / 0 e,)(^* ® / ) 

= (y 0 7)(A(co) 0 *?,)(>>* ® / ) = X(w) 0 ev 

Thus we obtain i 0 a ( W ) ^ = 7 0 w(w) and W(I 0 e,) - A(co) 0 e, 
as required. 

In particular this lemma implies that any ordinary representation is 
normalised. This is also a consequence of Theorem A.l (b) of [12]; for if W 

A 

is an ordinary representation of G, then they show that <p H-» (id 0 <j>)W 
defines a ^representation of the Fourier algebra ^ (G) + . Since the 
involution on the Fourier algebra is prescribed by <J> H-> «<f>*, this implies 
that t® a(W) = W*. 

Proof of Theorem 4. The equivalence of conditions (1), (2) and (3) 
follows immediately from Lemmas 8, 10 and 12. 

We already know that given a cocycle <o, oco is also a cocycle; moreover, 
since o2 = i, co M> oco is an involution. Now if a is the *-antiautomorphism 
of 0t{G) extending inversion on G, we shall write a instead of a 0 . . . 0 a 
on &(G) 0 . . . 0 &(G). Using a we can define another involution on 
cocycles, namely to i—> aco*. It is an easy exercise to check that aco* does 
indeed satisfy the cocycle identity; this also follows from the following 
stronger result. 

LEMMA 13. aoco* = 8G(v*)w(v 0 v) where v = w(co)*. 

Proof We have with W = W^ 

I 0 to = t® 8G(W*)(W® I)i 0 o(W 0 / ) 

so that i 0 8G(W)I 0 co = WnWxy Applying i ® oa io both sides yields 

(/ 0 ao(S)i 0 8G(i 0 a(W) ) = i 0 «(H^3^J2) 

- i ® a(Wn)i ® a(Wn). 

(Note that the order need only be reversed on the left hand side.) But 

i 0 a(W) = (7 0 u)W*, 

so we get 

(/ 0 aoto)(I 0 8G(u) )(i ®8G(W)) = (I®u® u)W$W?2. 

So finally aoco* = 8c(w)a>(w* 0 w*) as required. 
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We are now in a position to state the remaining results to be proved on 
normalisation of cocycles. Prior to this we introduce the notation tov as a 
shorthand for 8G(v*)co(v ® V). 

THEOREM 5. Every cocycle is equivalent to a normalised cocycle. 

THEOREM 6. Let co be a normalised cocycle. Then 
(1) oco = aco*. 
(2) <o(é?, ® / ) = ex ® /, oo(I ® e,) = J ® ev 

(3) cov is normalised if and only if v satisfies av = v* and vex = ex\ such a 
v G &(G) will be called normalised. 

The proofs of both these theorems hinge on the following simple 
lemma. 

LEMMA 14. Let Xo denote the trivial character of G extended to &(G), so 
that aex = Xo(a)e\- Then if co is a cocycle of G, we have 

(i) x(oov) = 3fcÔÔ*(«)(v ® v). 

(ii) Wuv = (v* ® I)WJy ® v). 

(hi) u(cov) = (av)u(co)v. 

(iv) X(cov) = Xo(v)Mw). 

Proof 

(i) x(oo) = 8G(e^)oo(v ® v) = Xo(v*M<")(v ® v). 

(ii) W„v = Wk8c(v*)<o(v ® v) = (v* ® /)W^w(v ® v) 

= (v* ® I)WJy ® v). 

(iii) / ® u(cov) = i®a(WJW(t3 

= t ® a( (v* ® 7)W£,(v ® v) )(v* ® /)W£(v ® v) 

= (v* ® av)(i ® a(WJWJ(v ® v) = / ® (av)w(<o)v. 

(iv) A(cov) ® ^ = (/ ® e,)8c(v*)(o(v ® v) = (v* ® / ) ( / ® ex)œ(y ® v) 

= \(co)® Xo(v)e,. 

Proof of Theorem 5. To produce the normalisation of co we shall first 
arrange that X becomes 1, and then that u becomes /. Indeed by Lemma 
14, if f = X(co) then X(or) = 1. Now we choose v with Xo(v) = 1, av = v 
such that v = t/(cos). This is possible provided that Xo(M(w ) ) = *> since 
we can always take a unitary square root in &(G)a and then adjust on the 
ex component to arrange that Xo(v) = *• But from Lemma 14 applied 
to co , we have 

8G(e])(I®u(J)) = x(J), 

so that on multiplying both sides by I ® ex, we obtain 
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ex ®Xo(u((^))el = ex ® ex. 

Thus XQ(U(^) ) = 1 as required. 
It is now easy to see that cov' is normalised where vx is the «-invariant 

unitary vf. 

Proof of Theorem 6. (1), (2) and (3) follow from Lemmas 13, 7 and 14 
respectively. 

In our future discussion we shall restrict our attention to normalised 
cocycles and cocycle representations. We define the centraliser of a 
normalised cocycle by 

C(co) = {u e @(G)U : <o" = co}. 

Note that by (iii) of Theorem 6, C(u) is a subgroup of 

9 = {u e @(Gf : Xo(u) = hau = w*}, 

a group containing p(G). In fact the group ^ is quite large. For example 
if h is self-adjoint with ah = — h9 then exp(zVz) is in ^. Also one has a sort 
of "polar decomposition". Let u be any unitary in « (G) with Xo(w) = 1-
Pick an «-invariant unitary square root of (au)u with Xo(v) = 1> anc^ s e t 

w = MV . Then it is easily verified that u = vw with w in ^ and v 
normalised. In Section 8 we will obtain another interpretation of the 
centraliser in terms of one-dimensional representations of a certain 
algebra associated with <o. 

7. The L and C* algebras for co-representations of G. Just as in the 
Abelian case C*(G) is defined as the enveloping algebra of Lœ(G), the al
gebra of integrable functions on G with multiplication given by 
convolution "twisted" by the cocycle <o, so in the general case C*(G) can 
be defined as the enveloping C* algebra of the Fourier algebra «(G )* with 
multiplication perturbed by co. (We have already discussed the case of the 
trivial cocycle in the last section where we obtained a correspondence 
between ordinary representations and *-representations of the Fourier 
algebra A(G).) 

We are now ready for our basic definitions. We define Lj^G) to be 
«(G)*, the predual of «(G) , with its usual Banach space structure but with 
multiplication given by 

(4> o ^ x) = (<j> ® ^ 8G(X)G>) (<£, xp e «(G)*, x G « (G) ) 

and its usual (Fourier algebra) involution <£+ = a<j>*. 

THEOREM 7. LJ^G) is a unital Banach *-algebra. 

r 1 A 

Proof, (a) LW(G) is an algebra. The only non-trivial thing to check 
here is associativity. In fact, say <f>, \p, 0 e LxJjG). Then we have for 
x <= «(G) 
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< (<J> O l//) O 0, Jt> = < (<j> O l//) ® 0, SG(X)0)) 

= <<f> ® i// ® 0, (8C ® i(SG(x)œ) )(w ® / ) > 

- <<j> ® *// ® 0, (8C ® I ) ( 8 C ( J C ) )(8G ® i(co) )(<o ® / ) > 

= <<f> ® i// ® 0, ( i ® 8 C ) ( 8 C ( J C ) ) ( i ® ôG(œ) )(I ® <o) > 

= (<j>®tto0l8G(x)u) 

= << f>o ( i / / o0 ) , j e> . 

(b) Ll(G) is a Banach algebra. We must check that the norm is 
sub-multiplicative, that is 

ll^o^l ^ \M\ U\\ for*,* G 4(G). 

But 

\\<j>oxP\\= sup | < * o ^ , x > | = sup I <* ® ^, 8c(x)co> I 

^ sup ||4>®*|| ||8C(JC)«II = ||*|| IMI 
lUll^i 

since Sr is a *-isomorphism and co is a unitary. 
(c) <j) M> <f> is an involution on the algebra LJfi). It suffices to verify 

that 

(<j) O \p) = \p O <j> . 

But from the definitions we have on the one hand 

( (<t> o ,/,)+, x) = (<t> 0 ^, ôG(ax*)co> 

while on the other hand 

Since to is normalised, Theorem 6 (1) implies that aa<o* = co, so we 
obtain 

( ( < i > o ^ ) + , x > = <^ + o< f> + , x> 

as claimed. 
(d) The unit € of the Fourier algebra is a unit for LX

U(G) too. In fact, the 
unit € of A(G) is specified by 

xex = (c, x>e, (JC e ^ ( G ) ) 

so that in the notation of the preceding section e = Xo- But t n e n ^ 
x G ^(G) , we have 

<c o <fc x> = <€ ® <fc 8c(x)co> 

= (c ® <J>, 8c(jc)co(6, 0 / ) > 
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= <c 0 *, 8G(x)(el 0 / ) > 

- (e 0 <J>, e, 0 JC> 

= < * , * > 

where we have used Theorem 6 (2). Hence € is a self-adjoint left unit and 
hence a unit. 

It should be remarked that if cov is a normalised cocycle cohomologous 
to co, then the map <#> \—» v*<|> defines an isometric *-isomorphism of 
Lj,(G) into L^v(G). We define C*(G) to be the enveloping C* algebra 
of L^(G) in the sense of Dixmier [4]. Before establishing that C*(G) has the 
usual properties well-known in the Abelian case (see [10] and [6] ), we 
must study the link between ^representations of LJfi) and co-represen
tations of G. 

THEOREM 8. If co is a normalised cocycle of G, then the formula 

(*) (ir(<t>), 0 = (W, £ 0 <J>> (4> e Ll(G), £ e <m&\) 

establishes a one-one correspondence between unital *-representations of 
Ljfj) and {normalised) co-representations of G in J^ 

The proof of this theorem will be achieved in three steps. In the first, we 
show in a straightforward manner how a ^representation of L^JjG) is de
termined by an co-representation of G. The second step establishes some 
general facts about the action of G on L^G) and the link (via the GNS 
construction) between the regular co-representation and the canonical 
trace on LJfi). Finally we use this information to show that every unital 
^-representation of Ll(G) arises from an co-representation of G as in (*). 
The last part of this programme is inspired by the proof given in [12], 
pages 130-131, but afterwards we indicate how an alternative proof can be 
given on slightly more traditional element-by-element lines using unitary 
eigenmatrices. 

A 

Proof. Step I. Suppose that W is a normalised co-representation of G in 
•J^Then £ h-> < UK, £ 0 <f>) is in (^(J>f )*)* = â8(3V). Thus we have a unique 
77(<J>) for which (*) holds. Moreover the relation (*) immediately implies 
that \\ir(<j>) II = \\<t>\\ and that 77 is linear. So it remains to verify that 

77(0 o \p) = 77-(<J>)77-(i//), ir((j)+) = ir(<j>)* and 77(e) = /. 

( i ) 77(4> 01//) = 77(4>)77(;//). 

(77(^0^), 0 = (W^®(<t>ox^)) 

= (L 0 SG(W)(I 0 co), £ 0 <t> 0 xP) 

= ((WQ I)(i 0 o(W 0 / ) ), £ 0 <f> 0 ^> 
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= (W®I, ( t ® a(W® I)){£®$® 4/)) 

= <>(4>) ® I, W{H ® i/>) > 

= (W, (£T7(4>)®<«> 

= < * « , ) , £77(4.) ) 

( i i ) 77(<f>+) = 77(4.)*. 

(^+), 0 = (W,i ® <t>+) = (W, I 0 «<J>*> 

= <t® a(IF*), £* ® <f>> 

i^r, 0 = <77(<#,), r> = <w, 1* ® *> 

= (t ® a(W*), £* ® <f>> 

(iii) 77(c) = 7. We have W(7 ® e,) = (7 ® 7) by Theorem 4 (3), since « is 
normalised. Therefore 

(77(f), 0 = (W, £ ® £> = <W(/ ® e,), £ ® £> 

= ( / ® ex, i ® e) = |(7). 

So 7r(t) = 7 as asserted. 

TVoo/! Sïep II. We start by defining an action of G on ^ (G)* by 
«e(<?>) = $ ' p(g) • Thus the action of G is specified by 

(*) (ag(<j>), x) = (4>, p(g-')x> (x e <*(<?) ) 

and therefore corresponds to left translation on G in the realisation of 
&(G)* as the Fourier algebra, that is as continuous functions on G, 

ag@)(x) = $(g~lx). 

This makes it clear that the only elements of &(G)* fixed by G are scalar 
multiples of c. Furthermore, it is immediate from (*) that aQ defines an 

r> 1 A 

isomorphism of G into the group of *-automorphisms of LJ(G), en
dowed with the topology of pointwise norm convergence, and this action 
is ergodic. Thus there is a unique G-invariant state on L\{G). Of course 
much more is true, as we now verify directly. 

LEMMA 15. The unique G-invariant state on LJG) is given by 

Trfo) = (<t>,et) = J&g)dg. 

Moreover the expressions Tr(<£ o \p) and Tr(<j> o t//) are independent of to and 
are given by the formulas 

Tr(<j> o +) = I $(gÏÏ(g)dg 
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Tr(<f>+ o f) = / 4(g)Mg)dg-

In particular Tr is a faithful trace on Lj(G). 

Proof. The unique G-invariant state on L\(G) is specified by 

Tr(4>)6 = / ag(<t>)dg 

so that using the realisation of ^ (G)* as functions on G and evaluating at 
1, we find 

Tr($) = J <Kg ])dg = J <t>(g)dg = <*, ex). 

Since co is normalised, SG(e])cû = ô(7(^1). Thus for <f>, ^ e 31(G)* we 
have 

Tr(</>o *//) = (<f> o i//, *?,) 

= <4>®*Mc;(^> 
= (* ® ^, 8c(e,) > 

and similarly 

Tr(<f>+ o +) = <</>+ 0 +, 8G(e{) >. 

The two expressions on the left hand side are thus independent of to and 
can therefore be computed in A(G) to give the desired results. 

Our present aim is to relate the G-algebras LJ(G) and ^ ( G ) " . To do so 
we need to set up part of the dictionary translating properties of 
co-representations into properties of the corresponding representations 
of LJ(G). We first state three lemmas, the proofs of which are almost 
immediate consequences of the defining equation (*) in the statement of 
Theorem 8. 

LEMMA 16 (Intertwining Operators). Let Wt e âS(3%) 0 ât(G) (i = 1, 2) 
be two (^-representations of G with corresponding representations rnl of 
LJ(G) in 38(3%). Then the set of maps intertwining tir] and TT2 is equal to the 
set of maps intertwining Wx and W2, that is 

{x <E ^ ( ^ , ^ 2 ) : 772(4>)x = JC7T,(^) } = {x G SS(^3^ : W2(x 0 / ) 

= (x 0 I)WX). 

In particular, taking Wx = W2, we have the following correspondence. 

LEMMA 17 (Commutants and Bicommutants). Let W be an co-
representation of G on J^ with IT the corresponding representation of 
L\(G). Then 

(W)' = v(Ll(Ô)Y and (W)" = ^Ll
0(G) )". 

https://doi.org/10.4153/CJM-1988-068-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-068-4


ERGODIC ACTIONS 1505 

LEMMA 18 (Equivariance). Let W be an ^-representation of G in Jt and 
let 77 be the corresponding representation of LJfi). Suppose furthermore 
that G acts on JÏ. Then IT is an equivariant representation of LJfi) if and 
only if W is equivariant. 

We next investigate the regular co-representation and its relation to the 
canonical trace on Lœ(G). Let TT^ be the representation of LJ^G) obtained 
by applying the GNS construction to the canonical trace. By Lemma 15, 
we see that, using the map 0 M> <J>, the representation 7rw may be realised on 
the Hilbert space L2(G) in a natural way. 

LEMMA 19 (The regular co-representation and the canonical trace). The 
1 A 'j 

representation ir^ oj LJfi) on L (G) corresponds via (*) to the regular 
co-representation of G on L (G) and is equivariant with respect to the 
action Ad X(g) of G on &(L (G)). Moreover the trace Tr is the matrix 
coefficient (or vector state) defined by the constant function 1 in L (G) and 
thus TT^ is faithful on LJ(G). 

Proof. Let IT be the representation of L\(G) on L2(G) corresponding to 
Wu via (*). The assertion of the lemma will clearly follow if we can show 
that for <j> e @{G). 

(**) 7r((j))e = $. 

Let £ G ^ P O * be defined by 

< r , 0 = (Te\f) (Te 3?(L2(G))) 

where / G L2(G). Then e^ = £ and 

(TT^Jelf) = <€, irtf) > 

= <£ 0 <fc WGoa) 

= (ex£ ® <f>, WGoœ) 

= <£ ® <j>, WGoœ(el ® / ) > 

= (è ® *, ^ ( ^ ® /) > 

= <£ ® *, »fc> 
since co is normalised. The right hand side can be computed using the 
regular representation of the Fourier algebra A(G) and yields 

W4>J?\f) = $\f) 
so that (**) follows. 

Before proceeding to the third step in the proof of Theorem 8, we 
indicate how the preceding results may be used to give an alternative proof 
of Theorem 2. In fact we have already seen in Lemma 4 that, given a full 
multiplicity ergodic action of G on Jiy there is a cocycle co, unique up to 
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equivalence, and an equivariant representation 77 of L^G) in Jt. Since 
the unique trace on J( necessarily pulls back to the canonical trace on 
LJ^G), this representation is faithful. The fact that every irreducible 
representation of G has the same multiplicity in both LJ^G) and Jf 
shows that 77(L^(G) ) is ultraweakly dense in Jf. But then Jt may be 
equivariantly identified with ^ ( G ) " using the GNS construction. Another 
way of phrasing these observations is that every equivariant representa
tion of LJfi) is quasi-equivalent to 77w; this is also reflected in the 
fact that 

C*(G) X ( ? = X(L\G) ) 

(cf. Theorem 10). 

Proof. Step III. We now suppose that we have a unital ^representation 
77 of Ll(G) on J£ We wish to produce a unitary solution W to (*). 
Since &(G) is isomorphic to a direct sum of matrix algebras, the bilinear 
form on ^ p T ) * X ^ (G)* given by 

(£, <#>) H» <77(4>), 0 

may be represented by an element W of @(JP) ® «(G) = ( « P H * ® 
«(G)*)*, 

(^ , { 0 4>> = <7T(4>), 0 («> G «(G)*, f e #(JT)*)-

The relations 77(0 o <f>) = IT(^)7T(\P), 7r(<f>+) = 77(0)* and 77(e) = / imply 
the formulas 

(* 0 SG(W) )(/ 0 (o) - (W 0 J)i 0 o(W 0 / ) , 

( ® « ( ^ ) = W*, 

W(I® ex) = I®ev 

It only remains to check the unitarity of W. 

LEMMA 20. WW* = W*W = I. 

Proof 1 (cf. pages 130-131, [12] ). Let x, y e J ^ a n d *, 1// e «(G) . We 
shall compute co^j as an element of «(G)*, where 0 and \p are regarded as 
elements of L2(G). Indeed 

<<%& Pig) > = / ï(hg)W)dh 

= / W)^4>(g)dh 

Thus 
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and similarly 

uU = J $(h)a^\r)dh. 
After this preparation, we find 

(W(x ®$)\y®& = (W, uxy ® co^> 

= J (7r(a~l<j>)x\y)^(g)dg. 

Thus (W(x ® <f>) )(g) = 7r(a~l<j))x almost everywhere. Hence we obtain 

(W(x ® $) \W(y ® ?) ) = / ( T K ^ 1 ^ ! ^ - 1 ^ ) * 

= Titf o<f>)(x\y) 

= &$)(x\y). 

Thus W*W = I. Similarly we may use the second formula for co^j to 
show that 

W*(x ® $)(g) = ir(a~ V ) * * 

almost everywhere and hence deduce that WW* = I. 

Proof 2. Let o:G —» End(P^) be an irreducible unitary representation of 
G. We define an element ^ a of 0(G)* ® End( Va) by 

^afe) = o(g) (g e G). 

Thus ag% = or(g)_1^a in 5?(G). Next we observe that in Ll(G) ® 
End(^) , the element ^ ow % is fixed by the action a of G. So it lies in 
End(I^) and its coefficients can therefore be calculated using the trace on 
LXJG). By Lemma 15, the result is independent of <o, so that the 
calculation can be done in A(G) and implies that 

^>+ o ¥ = J 
1 A 

Since LJG) has a faithful trace, it is finite and therefore we see that % 
is unitary. 

On the other hand 
<%, Pig) > = °(g) 

so that, under the isomorphism 

&W) ® 31(G) ~ ©ff€=£ ^ p f ) ® End(J/,), 

we have 

where 
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W(a) = (id ® %){W) = TT(%) 

(a formula which incidentally could have been used as a direct way of 
defining W). Thus the unitarity of W follows from the unitarity of the 
eigenmatrices >Fa. 

The proof of this lemma completes the proof of Theorem 8. 

With the above information on LJ^G) at our disposal, we can now 
answer some of the questions that arose earlier concerning the connection 
between co and its inverse cocycle aco. We start with a simple 
observation. 

LEMMA 21. If <£, \p e ^(G)*, then <f> ow \P = $ oaw <j>. Thus Ll(G) is 
naturally the opposite Banach *-algebra of Looi(G). Moreover the following 
conditions on the cocycle co are equivalent. 

(1) aco = co, that is co is symmetric. 
(2) co is trivial. 
(3) Ll(G) is Abelian. 
(4) 77W(G)" is Abelian. 

(Conditions (1) and (2) are therefore equivalent even for unnormalised 
cocycles of G ) 

Proof The first two assertions follow from the identities 

<<J> O(0 ^ x) = <0 ® ifc 8G(*)*>> = <* ® <£, oG(x)aco> 

These immediately imply the equivalence of (1) and (3). Conditions (3) 
and (4) are equivalent since TTW is faithful by Lemma 19. The equivalence of 
(2) and (4) follows from Theorem 2 and the fact that L°°(G) is the only 
Abelian algebra on which G acts ergodically with full multiplicity. 

A A 

THEOREM 9. (Duality) 7rw(G)" and vrau(G)" are each other's commutant in 
®{L2{G)). 

Proof 1. We shall use the notations and results of [3], pages 69-71. The 
inner product 

(<##) = T r ( / o <p) 
1 A 

makes LJ^G) into a Hilbert algebra, the associated Hilbert space of which 
may be identified with L2(G) by the map <£ i—» <j>. Under this identification 
the map J:^> (—» <f>+ becomes complex conjugation of functions and the left 
regular representation ("application canonique") of LJ^G) is then just ir^. 
On the other hand, we have 

using the first identity of Lemma 21. Thus JTTJ&J = 7rou(^)+), so that 
<|> f—> TTaJ$) is identified with the right regular representation of L^(G). 
Theorem 9 is therefore a consequence of the commutation theorem for 
Hilbert algebras. 

A A 

Proof 2. We first verify directly that TTJ^G)" and fl"CTW(G)" commute with 
each other. This is immediate, however, from the formulas 
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Thus ^ ( G ) " ç irau(G)'. But by the corollary to Theorem 2, G acts 
ergodically on both these algebras via Ad X. Thus the multiplicity of 
77 G G in either of these algebras is no greater than dim IT by [7] or [17]. 
Since the multiplicity bounds are attained in the smaller algebra, the two 
algebras are indeed equal. 

To end this section we gather together some properties of the 
enveloping C* algebra C*(G) of Ll

u(G). 

THEOREM 10. (1) The action of G on LJfi) extends to a strongly 
continuous action on C*(G). It is an ergodic action of full multiplicity. 

(2) The regular representation m^ is faithful on C*(G) and permits C*(G) 
to be identified with the C* algebra of norm continuity of ' njfi)"'. 

(3) C*U{G) Xi G = X 
(4) C*(G) is nuclear. 

Proof (1) It is well known that a strongly continuous action on an 
involutive Banach algebra extends to a strongly continuous action on its 
enveloping C* algebra. Using the conditional expectation 

/ - . 
we see that C*(G)G is just the norm closure of Ll(G)G, SO that the action 
on C*(G) is ergodic. The same reasoning applies to the other spectral 
subspaces, so that this action has full multiplicity. 

(2) The conditional expectation E yields a (unique) G-invariant faithful 
state on C*(G), which necessarily restricts to the canonical trace Tr on 
LJfi). Hence, since Tr is a vector state for TTW, TT^ is faithful on C*(G). 

(3) The assertion here follows from Theorem A (4). 
(4) The nuclearity of C*(G) can either be deduced by the methods 

summarised in [7] or is a consequence of (3) and the following 
(well-known) general result. 

LEMMA 22. Let a:G —» Aut(^4) be a strongly continuous action of a 
compact group on a C* algebra A. Then if the crossed product A X\ G is 
nuclear, so too is A. 

Proof We begin by recalling that the crossed product A XI G is 
isomorphic to 

(A ® J T ( L 2 ( G ) ) ) a 0 A d \ 

Now A is nuclear if and only if for every C* algebra B the surjective 
homomorphism 

0:B®mmA^B®aanA 

is an injection. If we take the trivial action of G on B, then the map 0 is 
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equivariant. Furthermore the map 

0 ® id.B ®max (A ® X(L\G) ))->B ®mm (A ® X(L\G) ) ) 

is equivariant with respect to the action i ® a ® Ad X and has kernel 
ker(0) ® Jf(L2(G) ). Passing to fixed point algebras using the conditional 
expectation associated with this action and recalling our preliminary 
remark on crossed products, we see that ker (8) XI G may be identified with 
the kernel of the natural homomorphism 

B ®max (A x G) -» B ®min {A Xi G). 

Since A >3 G is nuclear, this latter kernel is trivial. Hence ker(#) = (0) and 
A is nuclear. 

This completes the proof of Theorem 10. 

We note that the faithfulness of the regular co-representation can also be 
established using the cohomological device introduced in Lemma 11. Let 
us recall how the proof proceeds in the Abelian case [10]. If TT is the regular 

A A 

representation of G, TTW the regular co-representation of G, and \i and any 
other co-representation, then 
(*) jLt 0 7T = d i m Jit • 77 .̂ 

One also has the direct integral decomposition of the left hand side 

(**) fi® TT = JGiio agdg. 

This implies that for <f> in Z^(G) 

UK*) II ^ sup ||/x(« (* ) ) | | = ||/i ® <*(<$>) II = |k t t«o ||. 
g<EG 

Since the C* norm of L^G) is given by sup ||/x(<J>) ||, it follows that this 
norm is equal to ||7rw(<f>) || and hence that IT^ is faithful on C*(G). 

These arguments will carry over to the general case provided that we 
establish the validity of (**), since (*) is already known by Lemma 11. 

LEMMA 23. Let W be an ^-representation of G in Jt and let /x be the 
corresponding representation of LJ^G). If]l(= [i ® IT) is the representation 
ofÛJfi) in Jt ® L°°(G) corresponding to W 0 WG, then for <j> G LI(G) we 
have 

PWOte) = ti«gl4>) 
where Jt ® L°°(G) has been identified with Jt-valued functions on G. 

Proof Let / e L (G) = L°°(G)*. We shall once again use the fact 
that WG <E L°°(G) ® &(G) is represented by the ^(G)-valued function 
g i—> p(g) (cf. Lemma 3). Then for £ in Jt* we have 

/ <m(g), of(g)dg = (mx è ® fy 
= (W® WG, £® f® <j>) 

= J (W,è®4>- P(g))f(g)dg 
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from which the desired formula follows. 

8. Bicharacters and factoriality. We preface our general discussion by 
briefly recalling what is known in the Abelian case (see [9], [10], [6] and 
[15] ). Firstly there is an isomorphism of //2(G, T) into the group of alter-

A 'j A 

nating bicharacters on G given by [u] i—» /? where w G Z (G, T) and 

P(x,y) = a(x,y)w(y,x) (x, y G G). 

Thus /? satisfies 
ftxy, z) = P(x, z)P(y, z), 

P(x, yz) = P(x, y)0(x, z) (x, y, z G G), 

A 

This bicharacter defines a homomorphism A of G into G via 
A:JC I-> /3(X, - ) . 

In these circumstances it turns out that the following conditions are 
equivalent. 

(1) *a(G)" is a (finite) factor. 
(2) A is injective. 
(3) the image of A is dense in G. 

If either of conditions (2) or (3) is satisfied then we say that co or 8̂ is 
non-degenerate or totally skew. The above conditions are in turn equivalent 
to any of the following C* algebraic conditions. 

(4) C*(G) has a unique trace. 
(5) c{(G) has trivial centre. 
(6) c{(G) is simple. 

These conditions are also equivalent to the same conditions applied to the 
Banach *-algebra L^(G). Below we will show that, suitably interpreted, 
conditions (1) to (6) and the proofs of their equivalence carry over to the 
non-Abelian case. Almost all proofs of (6), however, rely crucially on the 
fact that if <o is non-degenerate, then the action a of G on C*(G) is 
approximately inner; to verify this we note that ag is inner if g e A(G). 
The approximate innerness of the action forces any (non-trivial) ideal / of 
C*(G) to be automatically G-invariant, so that / XI G would provide a 
non-trivial ideal in C*(G) XI G. On the other hand Theorem A implies that 
£*(^) ^ ^ is simple, so C*(G) must itself be simple as required. In order 
to obtain an argument that is applicable even in the non-Abelian case, 
Magnus Landstad realised that instead of relying on the fact that the 
action was approximately inner, one should just use the condition that 
C*(G) was primitive. He observed that some ingenious computations of 
Olesen and Pedersen imply that if a compact group acts on a primitive C* 
algebra, then every non-zero ideal in the algebra contains a non-zero 
invariant ideal. We provide a more conceptual proof of this result in the 
following lemma. 
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LEMMA 24. (Landstad) Ifa:G—> Aut(v4) is a strongly continuous action 
of a compact group on a primitive C* algebra A such that A XI G is simple, 
then the algebra A is simple. 

Proof. Suppose that A is not simple and that / is a non-trivial ideal in A. 
The ideal / corresponds to a closed subset X of the primitive ideal space 
Prim(/1) of A, missing the zero ideal. By a result of Glimm (see [4] ), the 
group G acts continuously on Prim(^4). Since G is compact, it follows that 
the saturation G • X oî the closed set Xis automatically closed. It is also by 
definition invariant and misses the zero ideal. The corresponding ideal J in 
A is non-zero, G-invariant and contained in / . Thus J XI G is a non-trivial 
ideal in A XI G, contradicting the simplicity of the crossed product. 

COROLLARY. If G is a compact group and C*(G) is primitive for some 
co G: H (G), then C*(G) is simple. 

We are now ready to introduce the formalism of bicharacters. This is 
closely related to Drinfeld's use of "triangular Hopf algebras" in studying 
the quantum Yang-Baxter equations (see [5], pages 18-19). For our 
immediate requirements, however, we shall have no need to make this link 
too explicit and thus will avoid using the language of Hopf-von Neumann 
(or Kac) algebras, although it should be clear that the general theory sits 
very naturally within this framework. 

Let co be a normalised cocycle of G. We define the bicharacter fi^ of co to 
be the unitary 

£w = (ou*)co in 31(G) ® 31(G). 

Note that if W <= 38 W) ® 91(G) is an ^-representation of G in 3% then the 
defining equation 

8G(W)(I ® w) = (W® I)i ® o(W® I) 

leads to the identity 

/ ® j8w = (W* ® I)i ® o(W* ® I)(W ® I)t ® o(W® I). 

In order to display the bicharacter nature of /?w, it is necessary to 
introduce a perturbation of the comultiplication 8G of â%(G). We define the 
comultiplication 5W of <o on 0t(G) by 

8U:@(G) -» 31(G) ® 3t(G), SW(JC) = co*8G(x)a>. 

LEMMA 25. 8W is a comultiplication on &(G) satisfying a • 5W • a = 08^ and 
induces the structure of a unital Banach *-algebra on the predual &(G)*. 

Proof (i) Plainly Su is a ^isomorphism of 31(G) into 31(G) ® 31(G), by 
definition. We must check that 8^ is coassociative, that is 

(*) (i ® 8J8„ = (8tt ® i)8w. 

Let x G 3?(G). Then we have 

(t ® SJdJx) = 1 0 5>*f i c (* ) u ) 

= Ad[ (/ ® w*)t ® Sc(w*) ](t ® SG)5G(x) 
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and 

(Stt 0 L)8„(X) = i 0 8„(o>*8G(x)o>) 

= Ad[ (co* 0 I)8G 0 i(<o*) ](8G 0 t)8G(x). 

So the cocycle identity for co and the coassociativity of 8G imply the 
validity of (*). 

(ii) To verify the relation a • 8U • a = oS^, we need only check it on the 
elements p(g) of ^ (G) , for the result then follows by linearity and 
continuity. 

In fact, 

« ' «w • «(P(g) ) = <*0*(P(g)* ® P(g)*)") 

= «^(P(g) ® P(g) )«ci* 

= <™*(p(g) ® p(g) )<™ 

= a«tt(p(g)) 

since the fact that co is normalised implies that aco = aco* by Theorem 
6(1). 

(iii) The comultiplication on &(G) is specified by 

(<j> * ^ x> = (cf) 0 ^, 8tt(*) >. 

It is immediate from (*) that this multiplication is associative. The 
submultiplicativity of the norm and the fact that e is a unit follow by 
similar reasoning to that used in the proof of Theorem 7. It only remains 
to check that the involution <j> h-> <f>+ still satisfies (<f> * ^ ) + = i//+ * <j>+. 
In fact, 

= (<j> 0 +, ao8„(x*) > 

= < * + ® * + , «„(*)> 

= < ^ + * <f>+, * > 

using (ii). 

We shall denote ^(G)* by AJfi) when it has this structure as a Banach 
*-algebra; and when the dependence on u is clear, we shall simply write 
(/?, 8) for (j8w, 8W). We make some preliminary observations about the 
algebra AJfi). Firstly, we shall see below that the condition 08 = 8 is no 
longer necessarily satisfied when G is non-Abelian, so that AJfi) need not 
in general be commutative. Later we will construct a *-homomorphism A 
of AJ^G) into the generally non-commutative von Neumann algebra ^ (G) ; 
each finite-dimensional irreducible representation of G, and hence of 
^ (G) , will then give rise to a finite-dimensional representation of AJfi). It 
is easy to see that in general there is a natural correspondence between 
such representations and certain matrices with coefficients in @(G). In 
particular the centraliser of w 

C(u) = {x : 8G(x*)w(jc 0 x) = <o} 
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is given by the set {JC : S^x) = x ® x} and these correspond to one 
dimensional representations of AJfi). In fact, such an x defines a 
character according to the formula § I—> <j>(x). More generally the 
representations of AJfi) in Mn(C) correspond to unitaries (xtj) in 
Mn(@(G)) such that 

8JxtJ) = 2 xik ® xkj 
k 

with the representation given by <j> i—> (</>(*//) ). In a similar vein, we 
note that 

*«(*) = **&(* ® Waco 
for x in &(G), so that the subalgebra {x : 8W(JC) = x ® 7} may be 
identified with iraJG)' n ^ (G) , and is therefore trivial by the corollary to 
Theorem 2. 

The following lemma gathers together the characteristic properties of 
the pair (0, 8). 

LEMMA 26. 

(i) a(8(x) ) = 0a(x)j8* 

(ii) ft* = ofr a/3 = frt® a(/3) = /3* = a ® t(/3) 

(iii) (^ ® I)/3 = ^ ® / , (/ ® e^iS = / ® ^i, «(*i)i8 = 5 ^ ) = ôG(é>,) 

(iv) (cocycle relations) 

08 ® 7)5 ® i(j8) = (7 ® p)i ® 5(0) 

(v) {bicharacter relations) 

8 ® *(/?) = a ® <(/ ® P)(I ® /3) = /313iS23, 

£ ® 8(/3) = L®O(/3® I)(/3 ® / ) = j813j812 

(vi) (quantum Yang-Baxter equation) 

^23^13^12 = ^12^13^23-

Proof, (i), (ii) and (iii) are for the most part clear from the definitions 
and the normalisation conditions on co. To prove the last equations in (ii), 
one just applies t ® a ® t to the equation 

wx%wnwn = wnp23 

where W denotes the regular (normalised) co-representation. The cocycle 
relations for ft with respect to 8 follow easily by combining the relations 
for co and ooo with respect to 8G. To prove the bicharacter relation 

i ® 8M = J813JS I2 

we start with the equation 

&3 = * W * 3 ^ 2 ^ 3 
where W denotes the regular co-representation. Applying 8œ to this in the 
third (tensor) factor and using the relation 
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we obtain 

* ® ««08)234 = »î5(»îi»îS«34)»Î2(«Î4»Î3»Î4) 
= wx\wx%wx%wX2wX3wX4 

= WiW,Wu(Wx\Wx%WnWu)Wu 

= wxwm2p23wu 
= wx\w^wnwXAp2, 
= ^24^23-

Thus t ® 5^08) = /?13/?12 as required. The relation for Sw ® *(/?) can be 
derived in a similar fashion. Finally (vi) follows from (iv) and (v) by 
cancelling 8 ® L(/3) and i ® 8(fi). Equally well (vi) follows from (i) and 
either of the bicharacter relations. 

Our next task is to investigate the equivalence relation on the pairs 
(/}, 8) induced by the equivalence relation we have imposed on cocycles. 
The following result is immediately verified. 

LEMMA 27. Ifv is in &, then 

jBttv = Ad(v* ® v*) • j8tt, 

8^ = Ad(v* 0 v*) • Su • Ad(v). 

We shall call two pairs (/?l9 8X), (/?2, 82) equivalent if they are related by a 
unitary v in 9 in the above way, that is if 

j3l = (v* ® v*)^2(v 0 v), 8X = Ad(v* ® v*) • 82 • Ad(v). 

It turns out that if G is a connected compact group, then the conclusion 
of Lemma 27 can be reversed, i.e., the two notions of equivalence, on pairs 
and on cocycles, correspond exactly. In general, however, the equivalence 
relation on the pairs induces a weaker equivalence relation on the 
corresponding cocycles than that so far defined. To explain this new 
relation we will have to introduce a subgroup Autc(G) of the automor
phism group Aut(G) of G. This subgroup first made its appearance for 
finite G in the work of Burnside ( [2], Note B) and eventually received a 
more thorough analysis in [14]. 

Let Autc(G) be the subgroup of Aut(G) consisting of those automor
phisms of G which act trivially on the dual space G. Thus Autc(G) is a 
normal subgroup of Aut(G) containing the normal subgroup Inn(G) of 
inner automorphisms. Elements of Autc(G) can also be characterised by 
the triviality of their action on central functions on G, or equivalently on 
the space of conjugacy classes of G. Since IT • a and 77- are unitarily 
equivalent for any a G Autc(G) and IT e G, it follows from Schur's lemma 
that there is a unique projective representation of Autc(G) on Vm extending 
that of Inn(G). Hence, since 

«(G) = e ^ E n d ^ ) , 
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there is a unique homomorphism K of Autc(G) into the projective unitary 
group 

PU(@(G) ) = â?(G)u/(@(GfY 

oî&(G) extending the natural inclusion of Inn(G), Ad(g) I—> [p(g) ]. (Note 
that although there is a natural "permutation" representation of Aut(G) 
and hence Autc(G) on L2(G), this will not in general bear any relation to 
the homomorphism /c.) Our next result identifies the image of K and 
permits an internal characterisation of Autc.(G) in terms of certain 
normalising unitaries in ̂ (G) . 

LEMMA 28. (1) Using the homomorphism /c, Autc(G) may be identified 
with the quotient of the group 

SP, = {v e ®{Gf : Ad(v)(p(G) ) = P(G) } 

by its centre (&(G) ')". The automorphism y corresponding to v is determined 
by vp(g)v* = p(y(g) ). 

(2) Any unitary u e &(G) satisfying Ad(w)(p(G) ) Q p(G) automatically 
lies in ^ and hence induces an automorphism in Autc(G). 

Proof. To prove (1), we note that if v G ^ , then Ad(v) \p(G) gives an 
automorphism of G fixing G. Thus v h^ Ad(v) |p(G), ^ / ^ N -> Autc(G) 
yields an inverse to the homomorphism 

KiAutc(G) -> S ^ / ^ . 

To prove (2), we must show that if u G &(G)U satisfies up(G)u* Q p(G), 
then we actually have equality here. 

Suppose first of all that G is a compact Lie group. Let G° be the 
connected component of the identity in G, exp(Lie(G) ), a clopen normal 
subgroup of G of finite index. Then up(G°)u* is connected so lies in p(G ). 
Since these groups have the same dimension, they must therefore be equal. 
It follows that Ad(w) induces an injective map of the quotient p(G)/p(G°) 
into itself. Since this quotient is finite, the induced map must be 
onto. From this we deduce that up(G)u* = p(G), so the result holds 
in this case. 

To treat the case of a general compact group G, we take a decreasing 
sequence Kn of closed normal subgroups of G such that G/Kn is a Lie 
group and DKn = {1}. (Such a sequence may be obtained by taking 

where 7rx, 772,. . . is an enumeration of the inequivalent irreducible 
representations of G.) The condition up(G)u* Q p(G) implies that under 
the natural homomorphism 

®(G)-*9l{G/Kn\ a^d, 

we have ûp(G/Kn)û~* Q p(G/Kn). Since G/Kn is a Lie group, the previous 
argument applies and we see that 

mG/K„)u* = p(G/Kn). 
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Now let H be the closed subgroup of G defined by p(H) = up(G)u*; it is 
closed because it is a continuous image of G. The condition on w above 
translates into the condition 

HI H n Kn = G/Kn for all n. 

In other words G = H - Kn for each «. The proof of (2) will be complete 
once we show that H = G. 

Let x e G. Then x e 7/ • Kn for each « and so we may write x = hn- kn 

with hn ^ H and &„ G X"n. Since / / is compact, we can find a convergent 
subsequence (hn ) of (hn) with /in ->/? G ^ a s r ^ o o . But then /:„ —> / j ~ lx 
as r —> oo and this limit must lie in OKn, since the Kn are closed. This 
intersection is trivial, so that x = h and x lies in H. Thus H = G 
as required. 

The next result gives some general information on the structure of 
Autc(G)/Inn(G). Note that Lemma 28 identifies Autc(G) with a closed 
subgroup of PU(&(G) ) (in the ultraweak topology). Since 

m.G) S ®^ô End(fQ, 

the latter may be identified with the compact group n ^ c PU{\C). Thus 
Aut6,(G) is again a compact group. 

LEMMA 29. (1) If G is connected, then Autc(G) = Inn(G) and hence 

<sx = p(G) • m o t r . 
(2) If G is a compact Lie group {in particular, finite), then Autc(G)/ 

Inn(G) is a finite solvable group. 
(3) If G is an arbitrary compact group, then Autc(G)/Inn(G) is a 

projective limit of finite solvable groups. 

Proof. Before embarking on the proof, let us note that any y G Autc(G) 
leaves each closed normal subgroup N of G invariant, and hence induces 
an automorphism y of the quotient group G/N which, as is easily verified, 
lies in Autc(G/N). Moreover y|^ lies in Aut(TV). These observations will 
often be used without specific reference in the sequel. 

(1) Let us first consider the case when G is a compact connected Lie 
group. Then G = Gs • A where Gs is a connected semisimple group, A is a 
central torus in G and A n Gs is finite. Thus if y e Autc(G), we see that 
y\A G Autc,(^) and y\G G Autc(G5). It follows immediately that y acts 
trivially on A. We claim that y\G is inner. Let T be a maximal torus in Gs 

with topological generator t. By hypothesis y(7) = gtg~x for some g e Gs. 
So Ad(g)~1 • y fixes T. By an old root space argument of Gantmacher (see 
for example Theorem 8.11.2 in [21] ), Ad(g) - 1 • y must be given by Ad(s) 
on Gs for some s G T. But then y is given by Ad(gs) on Gs, so is inner on 
Gs and hence on G. 

If G is an arbitrary connected compact group, we may take closed 
normal subgroups Kn exactly as in the proof of Lemma 28. Let 
y <E Autc(G). Then since G/Kn is a connected Lie group, our work above 
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shows that the automorphism y induced on G/Kn is inner. Hence for each 
n we can find gn G G such that for all x in G 

y(x) = gnxg~X moàKn. 

Passing to a subsequence if necessary, we may assume that gn —> g in G. 
Then, since y(x)(gnxg~ ) _ 1 is in AT„ for each x, we see that in the limit 
as n —» oo, 

Y t o t e * * - 1 ) - 1 e n „ # „ = {1}. 

Thus y(x) = gxg~] for all x in G, and hence y is inner. 
(2) When G is a finite group, the assertion is a consequence of Theorem 

2.10 of [14] and Schreier's conjecture, which is now known to be true by 
the classification of finite simple groups. Now let G be any compact Lie 
group with identity component G° and let T be the finite group G/G°. In 
view of the known result for finite groups, it will suffice to show that the 
kernel of the natural map 

Autc(T)/Inn(G) -» Au t c ( r ) / / ( r ) 

is solvable. Let Tbe a maximal torus in G with normaliser NG(T) and let TV 
be the subgroup of NG(T) fixing some given choice of positive roots (or 
Weyl chamber). 

Let us first show that the image of Autc(G) in Out(G) = Aut(G)/ 
lnn(G) is contained in the image of A0(G), the subgroup of Aut(G) fix
ing G . Indeed suppose that y G Autc(G) and let t be a topological gen
erator of T. By assumption y{t) = gtg~x for some g G G, so that y' = 
Ad(g~ ) • y fixes T. Let Z be the identity component of the centre of G 
and let x H-> X be the quotient map of G° onto the semisimple group G /Z. 
Thus y' fixes the maximal torus 77 Z of G°/Z. By the result of Gantmacher 
already used in (1), yr = Adfs) for some s G. T. Hence 

y'(x) = sxs~l mod Z for all x G G°. 

Thus the automorphism 

y" = Ad(gs) - 1 • y = A d ^ ) " 1 • y' 

fixes T as well as having the property that <p(x) = y"(x)x~] lies in Z for 
every x G G . But then <p is a homomorphism of G into Z containing Z in 
its kernel. The semisimplicity of G°/Z implies that the Abelianisation of 
G°/Z is trivial, so that <p(x) = 1. This means that y" fixes G°, so that 
Ad(xs-)-1 • y lies in Aut0(G) as required. 

In view of the inclusion just established, the assertions in (2) will follow 
from the stronger statement that the kernel of the map 

77G(Aut0(G) ) -> Out(T) 

is solvable. (Here TCG denotes the map Aut(G) —-> Out(G)). Now any 
element of Auto(G) fixes T and therefore leaves NG(T) and TV invariant. 
The subgroup N has the property that its identity component is T and that 
the inclusion of N in G induces an isomorphism of 7V7 T onto T = G/G°, 
so that in particular G is generated by TV and G°. It follows that the 
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restriction map Aut(G) —> Aut(N) gives rise to an injection of Aut0(G) 
into Aut0(JV), the subgroup of Aut(N) fixing T. It is also easy to see that 
we get an injection 

7TG(Aut0(G))^7rN(Aut0(N)) 

on quotienting out by inner automorphisms. Moreover the map 

77G(Aut0(G))-+Out(r) 

is the composition of this restriction and the map 

7rN(Aut0(N) ) -> Out(r). 

So it will be enough to show that the kernel of this latter map is 
solvable. 

By definition this kernel is the image under TTN of the group JT 
consisting of all automorphisms of N that fix T and induce inner 
automorphisms of N/T. Let Xx be the subgroup of Aut(TV) consisting of 
automorphisms that induce trivial automorphisms of NIT and are 
implemented on T by an inner automorphism of N. Clearly TTN{Jt) = 
TTNÇ%\), SO we may complete the proof by showing that Jtfj" is solvable. 

For y G i J and x e N, let fy(x) = y(x)x~l. Since y acts trivially on 
N/T, it follows that fy(x) lies in T. Moreover fy clearly uniquely de
termines y. Let a be the homomorphism of N into Aut(T) given by ax = 
Ad(x)| r . The fy satisfies the cocycle identity 

fy(xy) = fy(x)ax(fy(y) ) (x, y e N). 

The set of such cocycles forms an Abelian group B under pointwise 
multiplication. Let A be the centre of the subgroup aN of Aut(T). Clearly 
the action of A on T induces an action of A on B via S(f)(x) = 8(f(x) ), 
w h e r e / G B and 8 & A. Furthermore the automorphism 8y of Tgiven by 
8y = y\T must lie in A: for if x G Af and t G T, then 

«*(y(0 ) = ïK(x)(0 ) = YK(0 I 
since y(x) = x mod T. It is also readily verified that 

4iY2 =fyi&yM f o r Yi,Y 2
 e ^ -

Thus the map y —> (fy, 8y) defines an injective homomorphism of Jfx into 
the semidirect product B XI A. Since both A and B are Abelian, their 
semidirect product is solvable. Hence Jfx is solvable as required. 

(3) Let G be any compact group and choose closed normal subgroups Kn 

of G as in Lemma 28. Now Autc(G)/Inn(G) is compact and there are 
continuous homomorphisms 

0„:Autc(G)/Inn(G) -» Autc(G/Kn)/lnn(G/Kn) 

where the target groups are already known to be finite solvable groups by 
(2). Thus (3) will follow if we can show that nn ker(0„) = {1}. This is 
equivalent to showing that an automorphism in Autc(G) which is inner on 
each quotient G/Kn is inner on G; this, however, may be proved by the 
same argument as that used in the second part of the proof of (1). 
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1 A 

We next wish to define an action of Autc(G)/Inn(G) on H (G). To do 
so we will define an action of ^ on cocycles which passes immediately 
to Autc(G). We shall need a preliminary result. 

LEMMA 30. Let a e @(G) and u e ^ . 

(i) 8G(uau*) = (u® u)8G(a)(u* ® w*), so that 8G(u*)(u ® u) commutes 
with 8G(@(G) ). 

(ii) a(uau*) = u(aa)u*, so that (au)u is central in &(G). 
(iii) u can be multiplied by a central unitary to yield an element oj 

Proof. Let y be the automorphism of G determined by w, so that 

up(g)u* = p(y(g) ). 

This equation shows that (i) and (ii) are satisfied when a = p(g) and they 
follow in general by linearity and continuity. To prove (iii), we simply 
have to premultiply u by a unitary square root of ( (au)u)* in (32(G) ')a. 

LEMMA 31. Let oo be a cocycle of G and u e <^. Then (u 0 w)co(w* ® u*) 
is a normalised cocycle of G the class of which in H (G) depends only on the 
class of CO. 

Proof The cocycle identity for coj = (u ® w)co(w* ® u*) is an easy 
consequence of the cocycle identity for co and Lemma 30 (i). Lemma 30 (i) 
also shows that 

*G(*I) = SG(uexu*) = (u ® u)8G(ex)(u* ® w*), 
so that the fact that 8G(ex)w = 8G(e}) implies that 8G(e])ul = 8G(e]). Thus 
co j is normalised. Finally if v e ^ , we have 

(u ® u)[8G(v*)œ(v ® v) ](w* ® w*) 

= SG(wvw*)[ (w ® w)co(w* ® w*) ](wvw* ® uvu*) 

using Lemma 30 (i) again; and from Lemma 30 (ii) it follows that uvu* is 
still in ^. 

We shall say that two cocycles of G are weakly equivalent if and only if 
they lie in the same Autc(G)-orbit of H2(G). We are now in a position to 
establish the first main result of this section. 

THEOREM 11. Let col and co2 be cocycles for G Then CJX and co2 are weakly 
equivalent if and only if (/?w , 6W ) and (/?w , Sw ) are equivalent. 

Proof The equivalence of the pairs follows from the weak equivalence of 
the pairs using Lemma 27 and Lemma 30 (i). In fact, if co is a cocycle for G 
and co' = (u ® U)CÔ(U* ® w*), then 

P„, = Ad(u ® u) • j8w, 8tt, = Ad(u ®u)'8„- Ad(n*), 

where, by Lemma 30 (iii), we may assume that w e ^ n <&v 

Now suppose that (/?w , 8^ ) and ($^ , ôw ) are equivalent. We must show 
that coj and co2 are weakly equivalent. By Lemma 23, we may assume 
without loss of generality that 
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Let co = Wjwf. The two equations above imply that co is symmetric 
(a<o = co) and commutes with 8G(&(G) ). The latter condition permits us to 
combine the cocycle identities for o)] and co2 and deduce that co is itself a 
normalised cocycle. Since it is symmetric it must be trivial by Lemma 21, 
so that 

co = 8G(v*)(y 0 v) for some v e <£ 

Since 60 commutes with ôG(g) for each g E G, we have 

SG(v*)(v 0 v)p(g) 0 p(g) = p(g) 0 p(g)Ô(v*)(v 0 v). 

Let u = vp(g)v*. Then the above equation may be rewritten 

8G(u) = u 0 u 

and this is a necessary and sufficient condition for u to lie in p(G). Thus 
vp(G)v* Q p(G), so by Lemma 28 (2) we see that v belongs to ^ n ^ j . 
Finally we obtain 

wj = SG(v*)(v 0 v)co2 = 8c(v*)[ (v 0 v)co2(v* 0 v*) ](v 0 v), 

which demonstrates the weak equivalence of coj and 6o2. 
A 

Our last theorem gives various equivalent criteria for TTJ^G)" to be a 
factor, analogous to those stated at the beginning of this section for 
Abelian groups. We need one final ingredient to state the result, namely 
an analogue of the map A:G —» G. In fact we (dually) define a map 

K-.AJG) -> <%(G) 

by A(<t>) = (<J> ® id)f} so that A is specified by the equation 

<A(*), 0 = ($ 0 | , 0> (* G AJG), | G «(G) , ) . 

In view of the bicharacter relations for /?, the following lemma and its 
proof are very close in spirit to Theorem 8 and its proof. 

LEMMA 32. (i) A is a norm continuous *-homomorphism of AJfi) into 
St{G\ 

(ii) ker(A) = (im(A) ^ in &{G)%. 

Proof, (i) Let £, x\ e ^W(G), <J> G 0(G)*. Then 

<A(£ * Î J U ) = ( ^ Î I ® <f>, «tt 0 i(j8) > 

= ( € ® i , ® * , V813y823> 

= (è 0 *, j8(/ 0 Aft) ) > 

= <A(& A(i,)*> 

= <A(0Afo), *>, 

so that A(£ * 7}) = A(£)A(TJ) . Furthermore 

<A(0, <#>> = <€ 0 <?>, £> = <€ 0 $, j8(e, ® / ) > 

= <€ 0 <t>, ex 0 7> = <J>0O 
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so that A(e) = / . The estimate ||A(£) || ^ ||£|| is immediate from the 
unitarity of /?. Finally we check the formula A(£ ) = A(£)*. In fact 

(A(t), <J>> = (t ®<t>,P) = (è* ® 4>, /?*> 

= <A(0, 4>*) = <A(£)*, <t>) 

where we have used the identity a 0 t(fi) = /?* of Lemma 26 (ii). 
(ii) By definition 

ker(A) = {<j> e # ( £ ) * : <<J> 0 f, 0 ) = 0 for all £ e #(G)*}, 

(im(A) ) x - {£ G ^(G)* : <<£ 0 £, 0> = 0 for all 4> G «(G)*}. 

But the relations a/3 = /?, oji = /?* then permit (im(A) ) x to be identified 
with (ker(A) )+ . Since (ker(A) )+ = ker(A) from (i), the result follows. 

In view of this lemma, we get a family of finite-dimensional representa
tions of AJ(G) by composing A with the representations <%(G) —> End(f^) 
(IT G G). Each of these representations is clearly equivalent to the 
compression of S%(G) by a central projection em corresponding to 
the End(PQ component of &(G). In particular, ex yields what we shall 
refer to as the trivial representation of AJfi). It is easily verified that 
A(<£)£j = <t>(I)el so that this is essentially the character </> 1—» 4>(I) of 
AJfi). In general a projection p e &(G) will be invariant under A 
provided that 

A(4>)p = PM<» for all <J> e Aa(G). 

This condition is equivalent to the condition that I ® p and /? commute; 
applying the flip a, we see that this is in turn equivalent to the condition 
that p ® I and ft commute. In these circumstances we shall say that the 
restriction on A top is trivial if this restriction is equivalent to a direct sum 
of copies of the trivial representation, that is A(<p)p = §(I)p for all <£>; or 
equivalently if either (7 0/?)/? = I ® p or (p 0 I)jS = p 0 I. 

THEOREM 12. Let <o be a normalised cocycle of G. Then the following 
conditions are equivalent. 

(A i ) *JS*)" is a {finite) factor. 

(A2) C*(G) (or Ll(G) ) has trivial centre. 
A 

(A3) C*(G) is simple. 
A 1 A 

(Bj) C*(G) (or LJfi) ) has a unique normalised trace. 
(B2) (x 0 /)/? = x ® I implies that x is a scalar multiple of ex. 

(Cj) The image of A is ultraweakly dense in &(G). 

(C2) A is infective. 

Proof We start by establishing that each group of conditions A, B, C is 
equivalent. Then we prove the easy implications C => B and B => A. 
Finally we reverse both of these implications. 

(1) Aj «=» A2. We note that the G-finite elements of both ww(G)" and 
irJiC%(G) ) are contained in TTJJ^JJG) ). Thus the G-finite elements in their 
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centres must also lie in irJ^LJfi) ) and hence their centres are the closure 
of the centre of ^JL]jjG) ) in the appropriate topologies. This proves the 
equivalence of Ax and A2. 

(2) A j <̂> A3. If 7rw(G)" is a factor, then C*(G) is primitive since 77 w will 
provide a faithful factor representation by Theorem 10(2). So C*(G) must 
be simple by the corollary to Lemma 24. Conversely if C*(G) is simple, it 
must have trivial centre. 

(3) Bj <̂> B2. To establish this equivalence we shall need the following 
characterisation of the traces of I^(G). 

LEMMA 33. (i) The set of traces on LJ(G) may be identified with 

L = {x G <^(G) : (x ® I)P = x ® / } 

where <f> I—» <f>(x) is the trace corresponding to x e L. 
(ii) L is a ultraweakly closed left ideal of ^ (G) , so has the form 

L = &(G)p for some unique {self adjoint) projection p in &(G). 
(iii) p is the largest projection in &(G) invariant under A such that the 

restriction of A to p is trivial. In particular ex ^k p. 

Proof. Since L^G) = &(G)* as a Banach space, its dual space may 
be identified with ^ (G) in the obvious way. So a trace x e ^ (G) 
must satisfy 

(<t> ow h x) = (xP ow 4>, x) (<J>, xp e ^(G)*), 

that is 

<4> ® +, SG(x)œ) = (+ ® <?>, SG(*)<o> = <$ ® *, 8c(jc)aco>. 

Thus x is a trace if and only if SG(x)o) = SG(x)oœ. Now we recall that 

8G(x) =W£{x®I)WG. 

So we find that x is a trace if and only if 

(x ® I)Wau = {x ® I)W„. 

Applying i ® a to this relation and recalling that both W^ and Wooi are 
normalised, we see that this is in turn equivalent to the condition that 

(x®I)Wal = {x®I)W£. 

We may cancel WG from this equation to obtain 

(x ® I)a* = (x® I)oo>* 

which may be rewritten as (x ® I)fi = x ® I. Thus L is indeed the set of 
traces. The remaining assertions are now immediate, bearing in mind the 
remarks after Lemma 32. 

i A 

The equivalence of Bj and B2 is now clear, since LJ(G) has a unique 
normalised trace if and only if p — ex which occurs precisely when 
L = Cev 

(4) Cj <=* C2. The equivalence of C{ and C2 is an immediate consequence 
of Lemma 32 (ii). 

(5) C => B. Suppose that A(L^(G) ) is ultraweakly dense in @(G). Since 
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the projection/? of Lemma 33 is invariant and the restriction of A(Lt0(6') ) 
to p is trivial, it follows that p is actually invariant under &(G) and the 
restriction of&(G) top is trivial. Hence/? = e,, so that L^(G) has a unique 
normalised trace. 

(6) B => A. Suppose that Tr is the unique normalised trace on LJ^G). 
Then if f were a non-trivial central element in L' (G), <£ M> Tr(<£ o f) would 
be a trace on LJ(G) which was not a multiple of Tr. Hence the centre of 
Ll(G) must be trivial. 

(7) A => B. Let/? be the projection generating the left ideal L. Thus 

(/? 0 I)P = p 0 / = £(/? 0 / ) , 

so that 

co(/? 0 / ) = ou(p 0 / ) . 

From this it follows that if <£, \p e ^(G)*, X e ^ (G) then 

</?•</> 0 ^, SG(x)œ) = (4> 0 ^ SG(x)co(/? 0 / ) > 

= <* 0 +, 8G(x)oo>(p 0 / ) > 

= < ^ 0 / ? •$,«(;(*)«> 

so that (/? • <£) o \p = \p o (/? • 4>) in Lœ(G) and/? • <£> is central. Hence/? • <j> 
must be some multiple of e for each $ e ^(G)*. On the other hand, the 
natural map 

cj> H+ $, ^ ( G ) # -> L2(G) 

carries the left module action of ^ (G) on .^(G)* into the right regular 
representation of G (and &(G) ) on L2(G), since 

P(g) ~ <K*) = <P(g)^ PO) > = *(*g). 

From this we conclude that/? = ex. 
(8) B => C. This is by far the least straightforward implication to prove; 

we need to have some substitute for the fact that in the Abelian case the 
A 

map A : G ^ G is a group homomorphism. Such a substitute is provided by 
the existence of a tensor product operation on representations of &(G) 
induced by the comultiplication 8^. We first verify that the ultraweak 
closure 

#, = A(Ll(G))" 

of the image of A is a triangular sub-Hopf-von Neumann algebra of ^ ( G ) 
in the following sense. 

LEMMA 34. 

(i) «„(#,) c ^ ® % 

(ii) fi <= 0tx ®9tv 

(iii) a(A(<j>) ) = A(a<t>). 

Proof. To prove (i), it suffices to show that (8^(x), <£, 0 <£2) = 0 for 
x G im(A) if either <f>j or <J>2 lies in ^ . But 
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< f i t t ( A « 0 ) , 4>x 0 <J>2> = <A(<|>), ^ * 4>2> 

= < * 0 ( ^ * 4>2), £ > 

= <<*4> 0 4>x * <J>2, ayS> 

= < A ( * , * <#>2), a<|>> 

= (Afo^Afo) , a<J>> 
so the result follows immediately from the equality ker(A) = (im(A) ) . 
Similar reasoning can be used to prove (ii). The proof of (iii) is a 
straightforward consequence of the identity 

i 0 «08) = £* = a 0 <£). 

Now the assumption B, in conjunction with Lemma 33 (iii), implies that 
the restriction of A to em or Vm (where m e G) contains no copies of the 
trivial representation unless m is itself trivial. To prove C, we must show 
that 9tx = 9t(G\ 

In order to motivate our proof, let us consider an analogous, but 
simpler, situation. Let H be a closed subgroup of G such that VJH contains 
the trivial representation of H only if IT is trivial. It is of course immediate 
by Frobenius' Reciprocity that H = G and that the natural inclusion 
&(H) ^ &(G) is in fact onto. Let us outline a Hopf-algebraic proof of this 
last assertion which will generalise to a proof of C. <%(H) is a Hopf 
subalgebra oî&(G) with respect to the comultiplication SG and antipode a. 
The assertion that &(H) = &(G) will follow provided we can show that 
the irreducible representations Vm of &(G) stay irreducible and inequi-
valent when restricted to <%(H). Now the tensor product V 0 W of 
two (normal) representations V, W of &(G) can be defined via 
the composition 

8C 
®(G) -> &(G) 0 9t(G) -> End(K) 0 End(W) = End(F 0 W) 

and this obviously gives a compatible definition for &(H). The assumption 
on H implies that ex is contained in &(H), since VJ^H^ does not contain 
the trivial representation unless 77 is trivial. Suppose that p e End( JQ Q 
&(G) is a projection onto an ^(//)-invariant subspace of Vm and let us 
consider VtJT®Vif. This contains the trivial representation of G exactly once 
and it corresponds to the rank one projection 

e = 8G(ex)(e„ ® es) in End(Fff) ® End(^) . 

Now p 0 e- lies in End(JQ 0 End(P^) and commutes with e since 
ex e <%(H). Hence the minimality of e forces (p 0 ew)e = 0 or e. Since 
a(ew) = ew9 we see from Lemma 9 that 

8G(eO(p 0 / ) = 0 or S ^ X ^ 0 / ) 

and hence p = 0 or ew. Consequently the restriction of Vm to &(H) is 
irreducible. Finally if Vm and ^ are isomorphic as ^(Tf)-modules, then 
Vm 0 VQ and Va ® V^ are isomorphic as ^(i/)-modules and therefore the 
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former contains a copy of the trivial representation of 9t(H) and hence of 
&(G). Thus Vm and VG must be isomorphic as ^(G)-modules. 

We shall now repeat the above arguments with (^(G), &(H), 8G) 
replaced by (^(G), ^ , Sw). We first observe that, since VJ@ does not 
contain the trivial representation unless m is itself trivial, e] must lie in 0tx 

and its image yields the projection onto the trivial subrepresentation of 
any (normal) representation of @lv Given two representations V, W 
of 3i(G) we shall define their w-tensor product V ®w W as V ® W with 
the ^(G)-module structure induced by the composition 

&(G) -> @(G) ® &<&) -> End(F) ® End(W) ^ End(K ® W) 

with a similar (compatible) definition for representations of $ftv (Note that 
it is necessary to introduce conjugation by /? to show that V ®w W and 
W ®w Fa re isomorphic as ^(G)-modules; a similar argument applies for 
^j-modules in view of Lemma 34 (ii).) The fact that co is normalised 
implies that 8œ(e\) =

 ^G(^I ) ' S O ^ follows t na t> since the projection onto 
the trivial submodule of Vm ®w Va is given by the image of Sj^j), the 
module Vm ®w Va contains a copy of the trivial representation of ^ (G) if 
and only if m = a and then only with multiplicity one. 

We now show that VJ# is irreducible. Let p e End(l^) ç gg(G) be 
a projection onto an ^-invariant subspace of Vm. Then p ® e^ e 
End(l^ ® J£) is ^-invariant. On the other hand, 

e = *„(*,)(*„ ® <-) = Ô ^ i X ^ ® **) 

is a rank one projection in End(J^ ® Vw) contained in the image of <%v 

Hence it commutes with/? ® e- and its minimality forces e(p ® e^) = 0 or 
e. As before Lemma 9 allows us to conclude that p = 0 or ew, so that J^ is 
indeed irreducible as an ^-module . 

Finally, it is clear that if V]9 V2, £/are^(G)-modules and if Vx and V2 are 
isomorphic as ^,-modules, then Vx ®w U and V2 ®w U are isomorphic as 
^-modules . In particular if V„ and Va are isomorphic as ^-modules , we 
have as before that Vm ®w V^ and are isomorphic as ^-modules . Since the 
latter contains a trivial representation of ^ (G) , it contains a trivial 
representation of $x ; hence the former contains a trivial representation 0tx 

and hence of ^ (G) . But then by our previous remarks Vm and Va must be 
isomorphic as ^(G)-modules, as required. 

This completes the proof of Theorem 12. 

Having established what happens in the factorial case, it is fairly natural 
to ask what can be said when 7rw(G)" fails to be a factor. In fact it follows 
from the corollary to Theorem 7 of [17] that the ergodic action on ^ ( G ) " 
is induced from a full multiplicity action of a closed subgroup H of G on a 
factor. In particular this means that there is a non-degenerate normalised 
cocycle <o0 for H in dt(H) ® &(H) Q 31(G) ® 9t(G) and a unitary v <= <$ 
such that cô = œv

0. It is a fairly easy consequence of Theorem 12 that the 
subalgebra 9tx = A(A„(G) )" of ^ (G) is then just the algebra v*@(H)v. 
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Thus the apparently simpler case discussed in the preamble to part (7) of 
the proof of Theorem 12 is in fact very close to the actual case to be dealt 
with. 
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