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THE FRACTAL DIMENSION OF SETS DERIVED FROM 
COMPLEX BASES 

BY 

WILLIAM J. GILBERT 

ABSTRACT. For each positive integer n, the radix representation of the 
complex numbers in the base —n + i gives rise to a tiling of the plane. Each 
tile consists of all the complex numbers representable in the base —n + i 
with a fixed integer part. We show that the fractal dimension of the bound­
ary of each tile is 2 log \„/log(Az2 + 1), where k„ is the positive root of 
X3 - (2/i - 1) \ 2 - (n - 1) 2\ - (n2 + 1). 

1. Introduction. For each positive integer n, the complex numbers can be repre­
sented in the base —n + i using the digits 0, 1 ,2, . . . , n2. Each of these representations 
gives rise to a tiling of the plane into a set of interlocking tiles of unit area with the 
boundary of each tile having infinite length. A single tile consists of all the complex 
numbers representable in the base —n + i with a fixed integer part. For a given base, 
there is one tile corresponding to each Gaussian integer. In this paper we investigate 
the geometry of the boundaries of these regions. 

The base — 1 + / yields Davis and Knuth's space-filling twin dragon curve. Man­
delbrot [6; pp. 66-67] has calculated the fractal (Hausdorff) dimension of the dragon's 
"skin" to be 1.5236 to four places. We prove that the fractal dimension of the tile 
derived from the base — n + i is 2 log kn/\og(n2 + 1) where \„ is the positive root of 
X3 - {In - 1) X2 - (n - 1) 2X - (n2 + 1). This agrees with Mandelbrot's calculation 
for the case n = 1. 

These results were first announced in [3]. The author would like to thank F. M. 
Dekking for his helpful comments. 

2. The Construction of the Tiles. A complex number is said to be written in base 
—AZ H- 1 if it is expressed in the form 2/=_» r7(—n + i)\ where the digits 
r7- E {0, 1, 2, . . . , n2}. We represent this number as (rqrq-\. . . r0T_i r_2. . .)_„ + /. 
The digits to the left of the radix point make up the integer part of the expression. Kâtai 
and Szabô [5] showed that, if n is a positive integer, every complex number could be 
expressed in the base —n + i. We mentioned in [4] that some numbers have two or even 
three different expansions. The boundary of the tiles that we construct are the complex 
numbers having two expansions with different integer parts. 
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The tiling of the complex plane derived from the base ~n + i is constructed as 
follows. Successive approximations to each tile will consist of the set of points repre-
sentable in the base -n + i with a given integer part and using a fixed number of 
negative powers of that base. Each Gaussian integer is uniquely representable in the 
base -n + / by means of an expression of the form (rqrq-,.,. . r0)-„ + ,-. Divide up the 
plane into unit squares whose centres are the Gaussian integers. These squares are the 
initial approximations to the tiles. The kth approximation consists of squares of side 
(n2 + \yk/1 whose centres are numbers of the form (rqrq-x.. . r0T_/ . . . r-k)-n + ,-. 
The squares whose centres have the same integer part are coloured the same colour. As 
k tends to infinity, the limits of these coloured regions yield the tiling of the plane 
derived from the base —n + i. 

Let us fix our attention on the particular tile consisting of those numbers with zero 
integer part. The kth approximation consists of the union of squares with centres 
(0-r_!. . . r-k)-n + , and can be obtained from the (n2 + l^unit squares, whose centres 
are the Gaussian integers (r_,. . . r-k)-n + ,, by dividing by (-n + /)*• Figure 1 shows 
the beginning of the construction of the tile derived from the base - 2 + /. 

FIG. 1. The first four stages of the construction of the tile derived from the base 
- 2 + i. 

The kth approximation contains (n2 + 1)* squares, each of side (n2 + 1)~k/2, so its 
total area is unity. However, the length of the boundary increases indefinitely as k 
increases and its rate of increase will determine its fractal dimension. Figures 6 to 9 
illustrate some examples of these regions. 
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In each base — n + /, there is an identically shaped tile of unit area for each Gaussian 
integer. Points on the boundary of two tiles have two expressions in base —n + i with 
different integer parts. Because the plane is two dimensional, there must be some points 
lying on the boundary of three areas which have three expressions in the base 
—n + i, all with different integer parts. For example, (1 + i)/2 = (0.041)_2 + ; = 
(13.104)_2 + / = (14.410)-2 + ,, where the bar over a sequence of digits indicates that 
they are to be repeated indefinitely. 

These approximations to the tiles are natural examples of replicating superfigures as 
constructed in [2]. In fact [2; Figure 1] shows the first three approximations to the tiling 
derived from the base —2 + i, using the digit set {0, ± 1, ± /}. 

3. The Boundary of the Tiles. We now determine a formula for the length of the 
boundary of the &th approximation of each tile. This kth approximation, iPk, has a 
similar shape to the union ^ , of unit squares whose centres are the Gaussian integers 
that require at most k digits in their base —n + i representation. Hence it will be 
sufficient to find the length of the boundary of CS .̂ 

The region <êk can be considered as being built up of rectangles of length n2 + 1 and 
height 1 corresponding to the n2 + 1 Gaussian integers whose base —n + i represent­
ations differ only in the unit place. These rectangles lie in the framework shown in 
Figure 2. The left end of each tile is a multiple of the base — n + i. The framework is 
constructed as shown in Figure 3. There are three basic edges, which we call A, B and 
C, used in this construction. The boundary of <%k is built up of a certain number of these 
three edges, while the boundary of ifk is built up of the same number of shrunken edges. 
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FIG. 2. The framework of the Gaussian integers in the base — n + i. 

-n2+l-

1 

FIG. 3. Details of the construction of the framework. 

Figure 4 depicts the frameworks of ifk and iPk + x in the passage from one approxi­
mation to the next. In this passage, each tile of iPk is replaced by a region of the same 
area in tfk+\ consisting of n2 + 1 tiles such as those shaded in Figure 4. This 
corresponds to adding an extra digit in the base -n + i representation. The three edges 
A, B, C in Figure 4 are the common boundaries of the tile I with the tiles II, III and 
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IV respectively. These are transformed into the configurations in ifk+\ shown in Figure 
5. In particular, each A edge is transformed into {In — 1) A edges and 2n C edges, each 
B edge is transformed into (n2 - 2n + 2) A edges and (n - l)2 C edges, while each 
C edge is transformed into one B edge. Hence, if ak, bk and ck are the numbers of A, 
B and C edges, respectively, on the boundaries of <%k or iPk, then 

ck + 1 

2/i 1 0 

In + 2 0 
1 

In 
(n I)2 

K 
1 I 

FIG. 4. Successive approximations in the shrinking of the framework. 

B c 
/ / 

/ / 
/ f 

i 

(2n-l)A+2nC (n2-2n+2)A B 

+ (n-l)2C 

FIG. 5. How the edges change in successive approximations. 

The initial conditions for this difference equation are a{ = bx = cx = 2. Denote the 
vector (aky bk, ck)

1 by v̂  and the transition matrix by T. Then the length of the boundary 
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of % is gk = (n, n2 -n + 1, l)v* = (/i, rc2 - n + 1, 1)7*" ' v,, while the length of 
the boundary of ifk is (n2 + \)~k/2 times this. 

The eigenvalues of this transition matrix T are the roots of the characteristic poly­
nomial X3 - (2/i - 1) X2 - (n - 1) 2X - (n2 + 1). Since T4 is a positive matrix, it 
follows from the Perron-Frobenius Theorem that T has one real positive dominant 
eigenvalue; call it X„. Since X„ > (n2 + l) l / 2 , the length of the boundary of iPk tends 
to infinity as k tends to infinity. 

4. The Fractal Dimension of the Boundary. In [6] Mandelbrot calls the Hausdorff 
dimension of a space its fractal dimension. This dimension is a metrical, not a topo­
logical concept. It may take non-integral values, but yields the usual dimension for the 
most ordinary spaces. A fractal set is one whose Hausdorff dimension is strictly greater 
than its topological dimension. Examples of fractal sets are the Cantor set and the 
boundary of Koch's snowflake. 

The fractal dimension of the boundary of the tiles can be found as follows. The d 
dimensional measure of the boundary can be computed from the sequence of grids 
obtained by dividing the integer grid by (—n + /)k as in [1]. This d dimensional measure 
is a constant times lim^̂ ooX (̂A22 + l)"kd/2. Hence, if X„ (n2 + \)'d/2 > 1, the measure 
will be infinite while, if X„ (n2 + \yd/1 < 1, the measure will be zero. Hence the fractal 
dimension of the boundary of the tiles derived from the base — n + / is Dn where 
(n2 + 1)D«/2 = \„ and X„ is the positive root of X3 - {In - 1) X2 - (n - 1) 2X -
(n2 + 1). That is, Dn — 2 log X„/k>g (n2 + 1). Since Dn is always greater than one, 
these boundaries are examples of fractal curves. Figures 6 to 9 illustrate the first four 
cases. 

FIG. 6. The base — 1 + / tile whose boundary has dimension approximately 1.5236. 
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FIG. 7. The base —2 + i tile whose boundary has dimension approximately 1.6087. 

FIG. 8. The base — 3 + / tile whose boundary has dimension approximately 1.5496. 

FIG. 9. The base - 4 + i tile whose boundary has dimension approximately 1.4961. 
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