
Publications of the Astronomical Society of Australia (2025), 42, e094, 10 pages

doi:10.1017/pasa.2025.10050

Research Article

Efficient summation of arbitrary masks – ESAM
Vivek Gupta1 , Keith Bannister1, Chris Flynn2,3 and Clancy James4
1Australia Telescope National Facility, CSIRO, Space and Astronomy, Epping, NSW, Australia, 2Center for Astrophysics and Supercomputing, Swinburne University of
Technology, Hawthorn, VIC, Australia, 3ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), Hawthorn, VIC, Australia and 4International Centre for
Radio Astronomy Research, Curtin University, Bentley, WA, Australia

Abstract
Searches for impulsive, astrophysical transients are often highly computationally demanding. A notable example is the dedispersion process
required for performing blind searches for fast radio bursts (FRBs) in radio telescope data. We introduce a novel approach – efficient
summation of arbitrary masks (ESAM) – which efficiently computes 1D convolution of many arbitrary 2D masks and can be used to carry
out dedispersion over thousands of dispersion trials efficiently. Our method matches the accuracy of the traditional brute force technique in
recovering the desired signal-to-noise ratio while reducing computational cost by around a factor of 10. We compare its performance with
existing dedispersion algorithms, such as the fast dispersion measure transform algorithm, and demonstrate how ESAM provides freedom
to choose arbitrary masks and further optimise computational cost versus accuracy. We explore the potential applications of ESAM beyond
FRB searches.
Keywords:Astronomical instrumentation: radio telescopes; astronomical techniques: time domain astronomy; dispersion measure

(Received 8 November 2024; revised 7 April 2025; accepted 16 May 2025)

1. Introduction

Many astrophysical sources emit short-duration radio pulses, such
as pulsars (Hewish et al. 1968), fast radio bursts (Lorimer et al.
2007), rotating radio transients (RRATS) (McLaughlin et al. 2006)
and ultra-long period sources (Caleb et al. 2022; Hurley-Walker
et al. 2023). Sensitive searches for new transient sources are highly
motivated by a number of astrophysical questions, such as mea-
suring the cosmological constant or cosmic baryon density with
fast radio bursts, to probing gravity and the neutron star equation
of state with pulsars.

As a radio pulse propagates through cold ionised plasma, it
undergoes a frequency-dependent time delay, known as ‘disper-
sion’, such that

�t =K DM
(
f−2
1 − f−2

2
)
, (1)

where �t is the time delay, f1 and f2 are lower and upper fre-
quencies, and K is a combination of physical constants (K =
8π 2ε0mec

e2 pc−1, Kulkarni 2020). DM is the ‘dispersion measure’ – or
the integrated electron density (ne) along the line-of-sight from
the source at distance D to the receiver:

DM=
∫ D

0
ne(l)dl. (2)

Typical radio telescope processing will sample the electric field
from a telescope, form nc equally spaced frequency channels, and

Corresponding author: Vivek Gupta, Email: vivg269@gmail.com.
Cite this article: Gupta V, Bannister K, Flynn C and James C. (2025) Efficient summa-

tion of arbitrary masks – ESAM. Publications of the Astronomical Society of Australia 42,
e094, 1–10. https://doi.org/10.1017/pasa.2025.10050

integrate the power over an integration time T. This produces a
sequence of sky power as a function of time and frequency, known
as a dynamic spectrum. While FRBs must be emitted via coherent
radiation processes (Petroff, Hessels, & Lorimer 2019), their emis-
sion mechanisms are not understood well enough to be predictive
about the signal shape in the voltage domain, hencematched filter-
ing in the power domain is commonly used for searching for FRBs.

Optimal detection of a signal embedded in noise in the
dynamic spectrum requires a matched filter. In the case of a
dynamic spectrum, a matched filter requires time-convolution
(multiply and sum for multiple time samples) of the input sig-
nal with a 2D mask that matches the expected signal shape. When
searching blindly for new transient sources, the DM of the signal
shape cannot be known a priori and surveyors need to convolve
their data with a bank of masks with different DMs - a process
known as dedispersion. The dedispersion masks are based on the
dispersion Equation (1). Carrying out dedispersion over thou-
sands of dispersion trials is a highly computationally expensive
operation, and usually, a trade-off between accuracy and computa-
tional speed has to bemade. In this paper, we describe an improved
algorithm for dedispersion both in speed and recovery of the astro-
physical signal, allowing computational resources to be allocated
to a wider search parameter space or other tasks.

1.1. Sources of S/N loss

The maximum theoretical signal-to-noise (also known as the
matched-filter S/N) of a signal xi convolved with a mask with
weights wi is obtained using assuming independent Gaussian
noise with unit variance, is given by:

(S/N)matched filter =
∑

i xiwi√∑
i w2

i

. (3)

c© The Author(s), 2025. Published by Cambridge University Press on behalf of Astronomical Society of Australia. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is
properly cited.

https://doi.org/10.1017/pasa.2025.10050 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2025.10050
https://orcid.org/0000-0001-9817-4938
https://orcid.org/0000-0003-1110-0712
https://orcid.org/0000-0002-6437-6176
mailto:vivg269@gmail.com
https://doi.org/10.1017/pasa.2025.10050
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/pasa.2025.10050&domain=pdf
https://doi.org/10.1017/pasa.2025.10050

2 V. Gupta et al.

Here we have assumed S/N as a ratio of mean to the standard
deviation of the measured signal, rather than a ratio of powers.

All practical dedispersion implementations perform either an
implicit or an explicit 1D convolution of the dynamic spectrum
with a bank of masks along the time axis. Practical algorithms
do not often achieve the matched filter S/N due to a mismatch
between the measured pulse and the assumed masks. There are
several reasons for this mismatch.

Firstly, resource limitations always cap the number of disper-
sion trials which can be searched, or equivalently, the number
of masks that can be convolved. Typically ∼ 103 dispersion trials
spanning a wide DM range are used, with gaps in DM between tri-
als. A pulse which falls in the gap between adjacent trials will have
an S/N lower than a perfectly matched pulse, an effect known as
‘scalloping’ (Keane & Petroff 2015).

Secondly, many algorithms simply add up the set of cells with
equal weights and do not perform an explicit 1D convolution with
arbitrary (continuous-valued) kernels. This is equivalent to 1D
convolution with a binary mask. This results in loss of S/N because
the input is continuous-valued but the kernel is binary-valued.

Thirdly, the structure of some algorithms (particularly tree-
based algorithms) may not approximate the f−2 dependence on
the delay very well. We describe this shape mismatch as the ‘accu-
racy’ of the mask. This results in loss of S/N again because the
effective mask does not match the signal.

Finally, measured pulses exhibit a wide range of morphologies
in addition to dispersion. They may be caused by astrophysical
effects (such as scattering and/or scintillation) and instrumental
effects (such as dispersion smearing due to limited frequency reso-
lution). Typically, accounting for all of these effects would require
a prohibitively large number of kernels, so the designer must com-
promise and choose a set of kernels that samples the parameter
space as efficiently as possible, within the computing budget. This
results in a fundamental trade-off between S/N and computational
resources.

1.2. Practical dedispersion algorithms

Many dedispersion algorithms have been developed over the years.
The algorithms fall broadly into 2 classes. Firstly, there are ‘brute
force’ methods that effectively shift and add channels to follow
a set of dispersion tracks as defined by Equation (1). Such algo-
rithms have a complexity of O(NcNd), where Nc is the number of
channels, andNd is the number of dispersion trials. Secondly, ‘fast’
or tree-based algorithms exploit the fact that adjacent dispersion
trials share many common partial-sums, and re-use these partial-
sums to reduce the computational cost. Fast algorithms have a
complexity ofO(Nd log2 Nc).

Choosing a dedispersion algorithm typically offers a trade-off
between computational cost, which favours tree-based algorithms,
and accuracy (which translates to S/N and ultimately detection
rate) which favours brute force algorithms.

With the advent of high-performance parallel and acceler-
ated computing, brute force dedispersion algorithms have been
adapted to work on parallel computing systems such as on GPUs
in HEIMDALL (Barsdell et al. 2012) and in AMBER (Sclocco et al.
2016), achieving very substantial speed-up in dedispersion, and
thus wider parameter space searches within a given performance
budget.

Taylor (1974) introduced the tree dedispersion algorithm,
which uses a more computationally efficient technique of divide-
and-conquer (Rajwade & van Leeuwen 2024). This algorithm
has the limitation that it only supports linear dispersion tracks.
Quadratic dispersion tracks can be achieved by carefully padding
the input channels with zeros before transforming.

More recently, Zackay & Ofek (2017) developed a significant
new tree-based algorithm, called the ‘Fast Dispersion Measure
Transform’ (FDMT). The FDMT approximates quadratic disper-
sion tracks in time-frequency data, without the need for additional
padding. FDMT is being used in a number of on-going tran-
sient detection pipelines to search for transient signals efficiently
(Bannister et al. 2017; Mandlik et al. 2024).

In this paper, we introduce a new tree-based algorithm –
ESAM, or ‘Efficient Summation of Arbitrary Masks’. In Section 2,
we describe the structure and the working of the algorithm.
In Section 3, we describe the methods used to quantify its
performance, and present the results in Section 4 placing it
in the context of the performance of brute-force and FDMT
dedispersion algorithms. We present our concluding remarks in
Section 5.

2. Efficient summation of arbitrary masks – ESAM

We call our method the Efficient Summation of Arbitrary Masks
(ESAM). ESAM is a generic algorithm for efficiently computing
1D convolutions of a bank of arbitrary 2Dmasks. For the purposes
of dedispersion, the convolution direction is the time axis, the sum
direction is over the channel axis, and the bank ofmasks comprises
shapes of dispersed pulses at the desired DM trials.

The structure of ESAM is inspired by the tree structure of
the FDMT. The key difference is that the sums performed by
ESAM are driven by lookup tables, whereas the FDMT com-
putation is fixed by an equation. The ESAM lookup tables are
prepared very intuitively. The designer generates a bank of arbi-
trary 2D masks. The masks can account for any astrophysical or
instrumental effects they choose (e.g. dispersion, scattering, intra-
channel smearing). The designer can choose arbitrary spacing of
DM trials between consecutive templates. The designer then loads
the 2D masks sequentially into the ESAM tree. As each mask is
loaded, the ESAM tree stores the 2D mask with an encoding that
minimises the number of redundant operations with respect to
previously loaded masks. When evaluating against incoming data,
a full 1D time-convolution is performed with each mask across
time. The sums across frequency are performedwith no redundant
operations.

ESAM computes every user-supplied mask with 100% accu-
racy, i.e. its S/N performance is identical to any brute force
algorithm for which the 2D masks can be specified numerically.
ESAM guarantees computation of the convolution with no redun-
dancy i.e. it guarantees maximum re-use of partial sums between
different kernel outputs and no redundant convolutions are com-
puted. Therefore, ESAM will always use fewer operations than a
brute-force algorithm. ESAM gives the designer complete freedom
to choose arbitrary convolution kernels and trade computational
cost versus accuracy.

ESAM has no internal concept of dispersion or pulse shape as
such – it simply performs convolution over a specified map and
keeps track of different output ‘products’. We therefore use the
‘product’ terminology in the description below. Products maymap

https://doi.org/10.1017/pasa.2025.10050 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2025.10050

Publications of the Astronomical Society of Australia 3

Figure 1. ESAM represents an arbitrary 2D mask as a ‘trace’. The trace is comprised of 2 structures: a set of relative offsets between a channel and the preceding, and the 1D
convolution kernels themselves without the leading or trailing zeros. All masks must be converted to traces before they can be given to the ESAM tree.

to dispersion trials, pulse types (e.g. Gaussian, exponential), pulse
widths, or spectral patterns, at the designer’s choice.

2.1. The pseudocode and reference Python implementation

Our functional Python implementation of ESAM is available at
https://github.com/vivgastro/ESAM. This implementation makes
use of classes to aid with readability and comprehension. This
implementation should be considered the primary reference
describing how the algorithm works. It includes sanity checks and
other functionality. To aid the reader, we have written key algo-
rithms in pseudocode with a Python-like syntax. For the sake
of brevity and clarity, these listings do not match the Python
reference implementation exactly, omitting some details.

2.2. The trace representation of a 2Dmask

Before describing ESAM, we need to describe a data structure
which we call a ‘trace’. A trace is an alternative representation of
a 2D mask, or dispersion trial. The trace representation facilitates
computations in the ESAM code when generating lookup tables
for a given mask. The mapping between a 2D mask and a trace,
and the method for splitting a trace, is shown in Figure 1.

The trace representation takes the 2D mask and produces
two data structures. The ‘offsets’ array is the number of initial
zero samples between the channel of interest, and the preceding
channel. The offset of the top channel is undefined. The second
structure is a list of the 1D kernel weights for each channel, with
the leading and trailing zeros removed. In Figure 1 we show the
procedure for making a trace from a mask.

2.2.1 Tree structure of ESAM

To aid with the explanation of ESAM, and with understanding our
Python implementation, we first describe the algorithm in terms of
a full binary tree as shown in Figure 2 For Nc which is not a power
of 2, the binary tree will not be full, and extra care constructing the
tree is required, but the algorithm remains essentially unchanged.

The ESAM tree is built by feeding in the bank of traces one by
one, starting from an empty tree. We describe below the struc-
ture of an ESAM tree (the tree-building procedure is found in
Subsection 2.3). The top layer (or root node) processes all chan-
nels provided in the trace. Each lower layer contains twice as many
nodes as the layer above. Nodes in a given layer processes 2×
fewer channels than a node in the layer above. The root node
and internal nodes are of type ‘IterNode’. IterNodes in the same
layer process disjoint sub-bands. The leaf nodes, which are of type
‘EndNodes’ processes a single channel. An ESAM tree processing
Nc channels (power of 2), will have Nc leaf nodes and log2 Nc lay-
ers. Layer i contains 2i nodes, with each node processing data for
a total of 2log2 Nc−i channels.

Each node maintains several attributes. IterNodes maintain
references to two child nodes, and a lookup table defining
how to compute output products given input products from
the child nodes. The lookup table is a list of 3-tuples, which
we call IterProducts: ‘(upper_product_id, lower_product_id, sub-
band_offset)’. The ‘subband_offset’ represents the total offset
between the upper and the lower subbands given to the current
IterNode, and is computed as the sum of all offsets in the upper
half of the trace, and the offset of the top channel in the lower half
of the trace. Each EndNodemaintains a list of 1D convolution ker-
nels as EndProducts. An EndNode applies its convolution kernels
to the channel for which it is responsible.

At design time, the designer loads traces into the tree. The
preparation procedure uses the traces to compute the lookup
tables. We call this ‘preparing’ the tree. At run time, we present
a time-frequency block to the tree, which computes the bank of
convolutions. We call this ‘evaluating’ the tree.

The general structure, as well as the process for preparing the
tree from a single trace, are shown in Figure 2.

2.3. ESAM preparation procedure

In the preparation stage, a trace is fed into the root node, which
is split up recursively from top to bottom into children nodes.
All nodes update their lookup tables if necessary and return the
index in their lookup table, known as a ‘product ID’ that identifies

https://doi.org/10.1017/pasa.2025.10050 Published online by Cambridge University Press

https://github.com/vivgastro/ESAM
https://doi.org/10.1017/pasa.2025.10050

4 V. Gupta et al.

Figure 2. Diagram showing how a trace is digested while building an 8-channel ESAM tree. The trace is split into upper and lower halves. The subband offset is computed and
saved and the trace halves are sent to the respective child nodes. This proceeds until the 1D kernels are saved by the EndNodes as EndProducts. Each node returns the index
(product ID) in its lookup table to its caller. The internal (IterNodes) save the upper and lower product ID, and the subband offset in a lookup table called the IterProduct. This
lookup table is used in the evaluation stage. A procedural description of the building of a given IterNode and EndNode is depicted in Figures 3 and 4, respectively. Please see
Section 2.3 for a more detailed discussion.

Figure 3. ESAM IterNode building procedure.

the trace. Once a trace is loaded, loading the same trace again
will return the same product ID. The procedure is illustrated in
Figure 2 and proceeds as follows. The designer prepares a 2Dmask
and converts it to a trace. The trace is given to the root node. The
root node splits the trace into upper and lower halves, and saves
the subband offset between the two halves as shown in Figure 2.
It passes the upper sub-trace to the upper child node and the
lower sub-trace to the lower child node. This process is repeated
recursively by each IterNode in a top-down fashion. The recursion
terminates when a single channel trace, i.e. a 1D kernel is presented
to an EndNode.

The recursion now unwinds upwards. Each EndNode checks
whether the supplied 1D kernel is already in its list of kernels (i.e.
its list of EndProducts). Two 1D kernels are deemed the same
if they have identical coefficients. If the kernel has not yet been
saved, it appends the 1D kernel into its list of EndProducts. The
EndNode returns the index, or product ID, of the supplied 1D ker-
nel to its parent. Every 1D kernel in an EndNode lookup table is
unique.

Each parent IterNode receives the two ProductIDs from its
respective child nodes, combines them with the subband off-
set saved in the downward recursion, and forms the 3-tuple
IterProduct. Two IterProducts are deemed to be the same if all
three attributes of the 3-tuple IterProduct (‘upper_product_id’,
‘lower_product_id’, ‘subband_offset’) are equal. Once again, if this
IterProduct is not present in its lookup table, it is appended to the

lookup table (or its list of IterProducts). Every IterProduct in the
IterNode lookup table is unique. The IterNode returns the index in
the lookup table of the IterProduct. This process unwinds upwards
until the root node returns the ProductID of the IterProduct in its
own lookup table. The ProductID returned by the root node is the
index in the output data where the result of the 1-D convolution
of the input data with the trace that was just supplied, is found.

A key feature of ESAM algorithm is that before each node adds
a new product to its lookup table, it checks if this product matches
with any of the existing products already present in the lookup
table. If found, the node returns the index of the existing prod-
uct. If not, it adds the new product to the list and returns the
index of the newly added element. In computing, this is known as
memoisation. Memoisation of the mapping between a trace and
a product ID in all nodes in the tree is the way ESAM guarantees
that no redundant partial sums, and no redundant convolutions
are performed.

Pseudocode for IterNode and EndNode function dispatch-
ing is shown in Listing 1. The IterNode preparation pseudocode
shown in Listing 2, and the EndNode preparation pseudocode is in
Listing 3.

2.4. ESAM evaluation procedure

Once the ESAM tree has been built with the set of traces, it can be
used at run time to process blocks of dynamic spectra data of shape

https://doi.org/10.1017/pasa.2025.10050 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2025.10050

Publications of the Astronomical Society of Australia 5

Figure 4. ESAM EndNode building procedure.

class IterNode:
def prepare(self, trace): return prepare_iternode(self,

trace)
def eval(self, data): return eval_iternode(self,

data)

class EndNode:
def prepare(self, trace): return

prepare_endnode(self, trace)

def eval(self, data): return eval_endnode(self,
trace)

Listing 1. Types, showing how functions are dispatched

def prepare_iternode(node, trace):
n = len(trace.offsets) subband_offset = sum(trace.offsets[:n/2+1])
upper_trace, lower_trace = split_trace(trace) upper_product_id =
node.upper_child.prepare(upper_trace) lower_prouduct_id =
node.lower_child.prepare(lower_trace) iter_product =
(upper_product_id,

lower_produc_id, subband_offset)
if product not in node.products:

node.products.append(iter_product)

product_id = node.products.get_index(iter_product) return product_id

Listing 2. Preparation step of IterNode

def prepare_endnode(node, trace):
if trace.kernel[0] not in node.kernels:

node.kernels.append(trace.kernel[0])

product_id = node.kernels.get_index(trace.kernel[0]) return product_id

Listing 3. Preparation step of an EndNode

(Nc,Nt). Once prepared with a bank of dispersed pulses, ESAM
will evaluate the dispersion measure-time transform.

The evaluation procedure proceeds in essentially a bottom-up
fashion. Each EndNode is presented with a time series of size Nt
from its corresponding channel (data can be supplied directly to

def eval_iternode(node, data): nc =
data.shape[0] nt =
data.shape[1]
Get data from lower nodes recursively

lower_data = node.upper_child.eval(data[:nc/2, :]) upper_data =
node.lower_child.eval(data[nc/2:, :]) for (iprod, product) in
enumerate(node.products):

(upper_product_id, lower_product_id,
subband_offset) = product

if subband_offset > 0:
output[iprod, 0:nt-subband_offset] =
lower_data[upper_product_id, :nt-subband_offset]+
upper_data[lower_product_id, subband_offset:nt]

else:
output[iprod, 0-subband_offset:nt] =

lower_data[lower_product_id, :nt+subband_offset]+

upper_data[upper_product_id, 0-subband_offset:nt] return output

Listing 4. Evaluation step of an IterNode

the end nodes, or by recursively splitting a block from the root
node downwards). The EndNode performs a 1D convolution of
the input time series with each of its convolution kernels saved in
its lookup table (list of products). It returns a block of convolution
results with shape (Nprod,Nt) to its parent IterNode.

Each IterNode now has convolution results from its upper and
lower child nodes. The IterNode loops through its lookup table
(which is a list of IterProducts) and computes a new output for
each element in its lookup table. This output is the sum of the
output from the lower output, and the upper output, with respec-
tive subband offset applied to the lower output. The outputs to
be added, as well as the offsets to be used, are chosen based on
the ProductIDs and subband_offsets present in the IterProducts
of that IterNode.

The IterNode evaluation pseudocode is shown in Listing 4, and
the EndNode evaluation pseudocode is in Listing 5.

If the tree has been prepared with a bank of dispersed pulses,
the root node computes and returns an (Nprod,Nt) shape array,
which represents the dispersion transform of the input data.

https://doi.org/10.1017/pasa.2025.10050 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2025.10050

6 V. Gupta et al.

def eval_endnode(node, data):
for iprod, kernel in node.products: output[iprod, :] =

convolve(kernel, data) return output

Listing 5. Evaluation step of an EndNode

Each trace supplied in the preparation step will be reproducedwith
100% accuracy in the order supplied. No redundant operations are
performed.

2.4.1 Tips for designing kernel banks

ESAM offers enormous freedom in choosing arbitrary kernels to
cover the search parameter space. Here we offer a few tips on
choosing kernels that should result in high levels of re-use with
controllable accuracy.

• Quantise kernel weights: quantising the kernel weights to
a small set of values increases the efficiency of re-use of
EndNode outputs. The simplest (and most efficient case)
is 1-bit (or binary) weights. By choosing as few bits as pos-
sible for the quantisation, 1D Kernel weights are much
more likely to be identical between different masks in the
bank. Having identical 1D kernels shared between masks
in a bank means the same convolution output can be re-
used for multiple top-level products. Binary masks also
have the advantage that 1D convolution can be efficiently
implemented as a moving average filter, requiring only 2
additions and nomultiplications per output point. By con-
trast, arbitrary weight convolution with a 1D kernel length
N requires N multiply-adds per output point.

• Evaluate the ESAM bank before adding new masks. An
ESAM application will typically enumerate a set of desired
masks and load them into a tree. The number of oper-
ations in the tree can be reduced if the user evaluates
the ESAM tree on a proposed new mask before loading
it. There will be cases where the existing result has suf-
ficient S/N (according to some user-specified threshold),
such that the proposed mask does not need to be added
to the tree, and the additional operations needed to com-
pute this mask exactly can be avoided. This approach is
often used in designing search pipelines with brute force
algorithms such as HEIMDALL. This allows the users of
ESAM to optimise the compute cost of the algorithmwhile
staying above a desired accuracy threshold.

3. Performance of ESAM

We evaluate the performance of the ESAM algorithm by test-
ing the recovered signal-to-noise ratios for a range of simulated
pulses, as well as counting the number of operations required. We
describe our simulation technique, as well as the derived results, in
the following subsections.

3.1. Preparing the ESAM tree

3.1.1 Pulse simulation technique

To prepare an ESAM tree, we first create a set of dispersed pulses.
We simulate dispersed radio pulses with narrow (delta-function)
width, and dispersed following the dispersion Equation (1). The
signal fluence is kept uniform across all frequency channels.

Table 1. ESAM simulation parameters.

Bottom frequency 800 MHz

Channel width 1 MHz

Number of channels 256

Integration time 1 ms

Lower DM delay 0 ms

Highest DM delay 1 000 ms

DM delay step 0.1 ms

S/N loss thresholds 0.9, 0.8

The amplitude of the pulse in each time sample is analytically com-
puted based on the amount of time the pulse spends in a given
sample (assuming that the pulse exits the lowest frequency channel
in the middle of a sample). This allows for accurate reproduction
of the effect of intra-channel dispersion, which is an important
factor when evaluating the performance of a dedispersion algo-
rithm. As a result of our choice of constant fluence, the matched
filter S/N is not constant as a function of DM (the S/N decreases
as the pulse amplitude gets smeared across multiple time samples
at higher DMs).

The bank of pulses is simulated using the parameters shown in
Table 1. These parameters are similar to those used in the ASKAP
FRB localisation mode. (Bannister et al. 2019).

3.1.2 Preparing the ESAM tree

To reduce the number of operations, we apply the techniques
of Section 2.4.1 as shown in Listing 6 while building the tree.
We use 1-bit quantised weights in the tree. We enumerate real-
valued pulses from the lowest DM delay (0 ms) to the highest
DM delay (1000 ms) with small increments, depending on the tree
parameterisation as described in Section 3.4. We calculate the best
possible S/N (which we also refer to as ‘Max snr’) by quantising
the proposed pulse to 1-bit masks, and calculating the matched fil-
ter S/N of the unquantised pulse against the quantised mask. Next,
we evaluate the ESAM tree feeding in the real-valued pulse as data.
After evaluating against all masks loaded in already, the ESAM tree
yields the achieved S/N. If the ratio of the achieved S/N to the best
possible S/N is less than the supplied threshold, the trace is added
to the tree. If the ratio is above the threshold, it indicates that the
masks already loaded in the tree can recover the new pulse with
S/N greater than the desired accuracy threshold from the user,
hence the mask corresponding to the given pulse can be skipped
to minimise the compute cost. If not, then the mask is converted
to a trace and added to the bank of lookup tables stored in the tree.

3.2. Measuring ESAM S/N recovery

We create test dispersed pulses in the same way as described in
Section 3.1.1 from the lowest DM delay (0 ms) to the highest
DM delay (1 000 ms) in increments of 0.1 ms, and evaluate the
Dispersion Measure transform as described in Listing 5. The out-
put of the tree evaluation in ESAM gives us the sum of the signal
along multiple mask and time trials. To obtain the recovered S/N,
we divide the output with appropriate scales for each input mask,
similar to what is described in Listing 6, and find the peak in the
scaled output. The output of the evaluation of ESAM tree built

https://doi.org/10.1017/pasa.2025.10050 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2025.10050

Publications of the Astronomical Society of Australia 7

import numpy as np def
mfsn(signal, template):

'''
Returns matched filter signal to noise given a template
''' return sum(signal*template)/sqrt(sum(template**2)) def

(mask):

'''
1-
''' return (mask > 0).astype(float) def

make_esam_tree(rootnode, sn_threshold, dm_step):

'''
Populates an ESAM tree with FRBs given a S/N threshold and dm_step
'''
product_ids = [] scales = np.array([]) dm_range =
np.linspace(dm_start, dm_end, dm_step) for ii, dm in
enumerate(dm_range): frb = make_frb(dm)

-bit values to improve re-use
proposed_mask = if ii == 0:

#Always feed in the first mask pid =
rootnode.prepare(proposed_mask) #save noise
scaling as the square-root of #quadrature sum of the
weights
scales.append(sqrt(sum(proposed_mask**2)))
product_ids.append(pid)

#The matched filter S/N is obtained when the

signal itself = mfsn(frb, frb)

#We define the best possible S/N that can be
#recovered as the S/N produced by the

version of the signal possible_sn = mfsn(frb, proposed_mask)

#we calculate the achieved S/N by running #the ESAM tree
we scale the output by the #inverse square of the weights
achieved_sn = rootnode.eval(frb)/scales

best_achieved_sn = output_sn.max() if

achieved_sn/possible_sn < sn_threshold:

#recover the desired S/N then, save the
#proposed mask
proposed_trace = mask_to_trace(proposed_mask) pid =
rootnode.prepare(proposed_trace)
scales.append(sqrt(sum(proposed_mask**2)))
product_ids.append(pid)

return product_ids

Listing 6. Code used for preparing an ESAM tree with S/N threshold and DM step

with 1 000 DM trial masks for an example pulse dispersed at a DM
delay of 500 samples is shown in Figure 5.

3.3. Measuring ESAM operation count

We estimate the number of operations in the ESAM tree as the
sum of N − 1 operations for every 1D convolution kernel of
length N plus 1 operation for every sum across frequency in the

Figure 5. The output of ESAM tree evaluation for an example pulse dispersed at a DM
delay of 500 samples. When loaded with dedipsersion masks, the ESAM produces the
bow-tie pattern in its dispersion transform.

ESAM tree. ESAMwill run very differently on different computing
architectures, so these operation counts are a guide for the pur-
poses of comparing parameterisations of ESAM (see below). We
have functions in our reference implementation which compute
these counts.

3.4. Algorithm evaluation

We evaluated the performance of 3 parameterised versions of
ESAM as described below and compare them with brute force
dedipsersion and the FDMT. In the following sections ESAM(t, s)
is a tree populated by the algorithm in Listing 6 with an S/N
accuracy threshold t, and simulated DM delay step size s (in ms).

For each algorithm, we simulate dispersed narrow test pulses
in the DM delay range 0–1 000 ms with 0.1 ms increments, and
compute the recovered S/N as well as the number of operations
required.

Brute Force – For brute force, we calculate the S/N of a
matched filter with 1-bit quantised masks made from the simu-
lated pulses (described in Section 3.1.1). The dedispersion masks
are spaced at integer sample (1 ms) delay increments in the
range 0–1 000 ms. We compute the number of operations (sums)
required as the number of non-zero values in each mask.

FDMT – we create an FDMT class (as described in Zackay &
Ofek 2017) and evaluate it on the bank of simulated test pulses. To
find the S/N of a simulated pulse, we find the maximum value in
the DM-time transform returned by FDMT, and note that value’s
DM and time index. We then pass a frequency-time block where
every value is set to 1, to the FDMT class, and find the output value
at the same DM and time index. This gives us the sum of FDMT’s
implicit mask, i.e. the number of samples added by FDMT. We
divide the maximum value in the DM-time transform with the
square root of the sum of the mask to get the signal-to-noise ratio
recovered by FDMT.a To calculate the compute cost of FDMT, we
extract the implicit masks the FDMT uses and load those kernels
into an ESAM tree. We then use ESAM to count the number of
operations the ESAM tree loaded with FDMT masks will perform

aIdeally, we should take the square root of the sum of the squares of the weights used in
FDMT’s implicit mask. However, since all weights are 1, taking a simple sum also gives us
the correct answer.

https://doi.org/10.1017/pasa.2025.10050 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2025.10050

8 V. Gupta et al.

Figure 6. Recovered S/N as a fraction of the theoretical S/N evaluated for a range of
algorithms and FRB DMs. The maximum recoverable S/N using quantised kernels is
shown with a black dashed line. The performance of ESAM(1, 1) is shown in orange,
and FDMT is shown in blue. The performance of the brute force algorithm is shown
with black stars. ESAM(1, 1) exactly matches the performance of the brute force algo-
rithm, while only requiring 10x fewer operations (see Figure 7). Red circles mark the
performance of ESAM(1, 1) where the test DM trial matches the input mask, i.e. at inte-
ger DM trials. ESAM(1, 1) recovers the max S/N at those DMs. Inset: zoom-in on a small
region of the three curves.

(see Section 3.3). We have checked that this ESAM tree performs
an identical transform to the FDMT.

ESAM(1,1) – We build an ESAM tree with 1-bit quantised
masks of simulated pulses distributed with a DM step of 1 ms
and a threshold of 1 (i.e. all masks get loaded in the tree). This
results in a tree with the same number, and distribution of DM tri-
als as the brute force algorithm and the FDMT (i.e. integer sample
spaced DM trials), but has traces generated from simulated pulses,
as distinct from the implicit traces used by the FDMT.

ESAM(0.9, 0.1) – We build an ESAM tree with 1-bit quan-
tised masks of simulated pulses with a DM step of 0.1 ms and a
threshold of 0.9. This illustrates the tunability of ESAM to balance
computational cost and accuracy.

ESAM(0.8, 0.1) – ESAM tree built with 1-bit quantised masks
of simulated pulses with a DM step of 0.1 ms and a threshold of
0.8. This illustrates the improvement in computational cost one
can get for a minimal hit in accuracy.

4. Results

Figure 6 shows the S/N recovery of ESAM(1, 1) as a function of
test DM trials (spaced at 0.1 ms delay increments). We also plot
the S/N recovered by brute force and FDMT algorithms for com-
parison. The best possible recovered S/N is not uniformly 100%
across all DMs because of the choice of 1-bit quantised masks and
constant fluence, rather constant S/N, of the simulated FRBs. The
FDMT algorithm loses up to 40% in S/N due at low DMs, due to
the low mask accuracy.

The S/N recovered by the ESAM(1,1) exactly matches the per-
formance achieved by the brute force algorithm. Since this tree is
loaded with all masks spaced by 1 sample delay, it recovers the best
possible S/N for all integer DM trials (red dots in the inset zoom
plot). In the gaps between two adjacent trial DMs, the S/N recov-
ery is lower, due to scalloping. Despite the fact that ESAM(1,1) has
been built with the same number, and spacing, of masks as the

Figure 7. Number of operations needed to evaluate dedispersion for a range of algo-
rithms and FRB DMs.

FDMT, on average, the performance of ESAM(1,1) exceeds that
of FDMT because of the higher accuracy of the masks loaded in
the tree.

A plot of the number of operations needed by each algorithm
is shown in Figure 7. While both brute force and ESAM(1, 1)
recover the same S/N, brute force has a O(Nd,Nc) complex-
ity and requires > 10× more operations to perform the same
operation. Both ESAM(1,1) and FDMT reuse partial sums and
lower their computational complexity toO(Nd, log2 Nc). However,
ESAM(1,1) only reuses fully redundant partial sums, and remem-
bers all unique operations that need to be performed to accurately
reproduce the bank of masks specified by the user. This results
in ESAM needing to perform more operations than the FDMT,
which has a higher reuse of partial sums but at the cost of mask
accuracy.

ESAM is inherently a generic algorithm. If an ESAM tree is
built with finely spaced DM trial masks, its S/N performance
would become even better, just like that of the brute force algo-
rithm (with the same finer spacing of DM trials), at increased com-
pute cost but still maintaining the lower computation complexity
resulting from the efficient reuse of partial sums. Conversely, if
an ESAM tree is built with masks that match the masks implicitly
used by the FDMT algorithm, then that tree would have identical
computation cost and performance as the FDMT (the orange line
would overlap with the blue line in Figures 6 and 7).

All algorithms show significant loss of S/N between adja-
cent DM trials due to scalloping. This problem can be tackled
by increasing the resolution of the DM search trials. Increased
DM resolution leads to a proportionate increase in the compute
cost. The generality in the ESAM algorithm allows us to easily
build trees optimised for better S/N accuracy without necessar-
ily increasing computational requirements. We demonstrate this
optimisation in the next section.

4.1. Optimised ESAM trees

We have built an ESAM tree – ESAM(0.9,0.1) which guaran-
tees > 90% S/N recovery at all DMs. As demonstrated in Listing
6, and builds the tree with masks with a fine DM spacing (0.1
ms) between them. The S/N performance of this tree is shown

https://doi.org/10.1017/pasa.2025.10050 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2025.10050

Publications of the Astronomical Society of Australia 9

Figure 8. S/N recovery performance of the optimised ESAM trees − ESAM(0.9,0.1) in
red, and ESAM(0.8,0.1) in green, as a function of DM. The best possible S/N is shown in
the black dashed line, and the performance of ESAM(1,1) is shown in orange for com-
parison. Black dotted lines show the 90% and the 80% S/N recovery thresholds used
to build the two optimised trees. Both trees exceed the performance of the ESAM(1,1)
tree in the low DM trial region – where the latter suffered. While we see larger drops in
S/N due to scalloping between the increased gaps between successive DM trials, their
performance stays within their specified thresholds, i.e. 0.8 and 0.9. This results in a
reduction in the number of operations needed, as shown in Figure 9

Figure 9. Number of operations needed to evaluate the dedispesion transform for
ESAM trees with differing parameters.

in Figure 8. The tree is clearly able to recover > 90% of the
maximum possible S/N. Importantly, the performance of ESAM
(0.9, 0.1) is better than that of ESAM(1, 1) at low DMs – where
ESAM(1,1) was missing more than 10% of the S/N. The compute
cost of ESAM(0.9,0.1) is shown in Figure 9. Overall, the number
of operations needed remains in the same order of magnitude as
ESAM(1,1). However, the tree requires more operations at low
DMs and has reduced requirements for higher DMs. This explains
how the tree is able to recover better S/N at low DMs, but loses
more S/N at higher DMs than ESAM(1,1).

For illustrative purposes, we have also shown results for
another tree – ESAM(0.8, 0.1) with a lower S/N accuracy thresh-
old. As evident from Figures 8 and 9, this tree achieves the

desired S/N threshold with further relaxed computational require-
ments. We encourage the readers to build their own custom tree
optimisation schemes that suit their needs.

This demonstrates that the designer can, with minimal effort,
trade between computational cost and recovery S/N. This allows
designers to eliminate the problem in FDMT of inefficient distri-
bution of DM trials for a sensitive search (Rajwade & van Leeuwen
2024).

5. Discussion and conclusions

We have introduced a new algorithm ESAM, based on the divide-
and-conquer strategy, capable of efficiently computing 1D convo-
lutions of arbitrary 2D masks on 2D data arrays. We demonstrate
how this method can be used to construct a dedispersion engine
that achieves high accuracy while maintaining lower computa-
tional complexity compared to brute-force implementations. We
find that ESAM has a similar S/N performance to a brute force
algorithmwhile requiring an order of magnitude fewer operations.
We note that our analysis here relies on the total operation count
for each algorithm. We do not compare the actual runtime of the
algorithms, which can depend on the individual implementation.
For example, the GPU-accelerated implementation of the brute
force algorithm in HEIMDALL will likely have a lower runtime
than our vanilla Python implementation of ESAM, despite having
a much higher operation count. Developing parallelised/GPU-
accelerated implementations of ESAM is left for future work.

This algorithm has potential applications beyond This algo-
rithm has potential applications beyond the dedispersion case. For
any application where a 1D convolution of a large number (� 1)
of 2D masks with data is required, this algorithm can be used to
compute the convolution efficiently and accurately. For instance,
searching for technological signatures in dynamic spectra from
radio telescopes involves convolving data with multiple trials of
Doppler delays (Enriquez et al. 2017). An ESAM tree can be built
using simulated masks of all the desired Doppler delays within the
search window, in an identical fashion to the way we built our tree
for multiple DM trials in Section 3. Since the tree is generated
directly from the simulated masks, there is no need to explic-
itly code the analytic equations that parameterise the necessary
transform for each trial. This flexibility also allows designers to
incorporate nuanced features into their searched templates, such
as the frequency-dependent pulse broadening due to the effect
of interstellar scattering, or temporal drifting of signal to lower
frequencies (the ‘sad trombone’ effect) seen in some repeating
FRBs – features that are easier to simulate, but challenging to code
in inversion transforms.

We acknowledge that, unlike other dedispersion algorithms
that function with minimal setup ‘out of the box’, ESAM requires
users to invest time in preparing the ideal set of masks for their
data and building the corresponding ESAM tree. However, this
additional preparation step makes ESAM a versatile and adaptable
algorithm, offering the flexibility to tailor it to specific use cases,
leading to improved S/N accuracy and lower compute costs. Once
the tree is built, it can be saved to disk as a set of lookup tables or
as a serialised Python object (if implemented in Python), making
it easy to share across different users and platforms. For demon-
stration purposes, we have provided an example ESAM(1, 1)
tree as a pickled Python object in the GitHub repository
(https://www.github.com/vivgastro/ESAM).

https://doi.org/10.1017/pasa.2025.10050 Published online by Cambridge University Press

https://www.github.com/vivgastro/ESAM
https://doi.org/10.1017/pasa.2025.10050

10 V. Gupta et al.

Acknowledgement. The authors are grateful to Dr. Pravir Kumar, Dr.
Barack Zackay and Dr. Daniel C. Price for useful discussions during the
preparation of this manuscript. This project was supported by resources and
expertise provided by CSIRO IMT Scientific Computing. This research made
use of NUMPY (van der Walt, Colbert, & Varoquaux 2011), PANDAS (Wes
McKinney 2010), MATPLOTLIB (Hunter 2007), and JUPYTER (Kluyver et al.
2016) packages.

References

Bannister, K. W., et al. 2017, ApJ, 841, L12
Bannister, K. W., et al. 2019, Sci, 365, 565
Barsdell, B. R., Bailes, M., Barnes, D. G., & Fluke, C. J. 2012, MNRAS, 422, 379
Caleb, M., et al. 2022, NatAs, 6, 828
Enriquez, J. E., et al. 2017, ApJ, 849, 104
Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., & Collins, R. A. 1968,

Natur, 217, 709
Hunter, J. D. 2007, CSE, 9, 90

Hurley-Walker, N., et al. 2023, Nature, 619, 487
Keane, E. F., & Petroff, E. 2015, MNRAS, 447, 2852
Kluyver, T., 2016, in Positioning and Power in Academic Publishing: Players,

Agents and Agendas, ed. F. Loizides, & B. Schmidt (IOS Press), 87
Kulkarni, S. R. 2020, arXiv e-prints, arXiv:2007.02886
Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J., & Crawford, F.

2007, Sci, 318, 777
Mandlik, A., et al. 2024, MNRAS, 532, 2644
McLaughlin, M. A., et al. 2006, Nature, 439, 817
Petroff, E., Hessels, J. W. T., & Lorimer, D. R. 2019, A&A Rev., 27, 4
Rajwade, K. M., & van Leeuwen, J. 2024, Universe, 10, 158
Sclocco, A., Bal, H. E., Hessels, J., van Leeuwen, J., & van Nieuwpoort, R. V.

2016, arXiv e-prints, arXiv:1601.05052
Taylor, J. H. 1974, A&AS, 15, 367
van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, CSE, 13, 22
WES McKinney. 2010, in Proceedings of the 9th Python in Science Conference,

ed. S. van der Walt, & J. Millman, 56
Zackay, B., & Ofek, E. O. 2017, ApJ, 835, 11

https://doi.org/10.1017/pasa.2025.10050 Published online by Cambridge University Press

https://doi.org/10.3847/2041-8213/aa71ff
https://ui.adsabs.harvard.edu/abs/2017ApJ...841L..12B
https://doi.org/10.1126/science.aaw5903
https://ui.adsabs.harvard.edu/abs/2019Sci...365..565B
https://doi.org/10.1111/j.1365-2966.2012.20622.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.422..379B
https://doi.org/10.1038/s41550-022-01688-x
https://ui.adsabs.harvard.edu/abs/2022NatAs...6..828C
https://doi.org/10.3847/1538-4357/aa8d1b
https://ui.adsabs.harvard.edu/abs/2017ApJ...849..104E
https://doi.org/10.1038/217709a0
https://ui.adsabs.harvard.edu/abs/1968Natur.217..709H
https://doi.org/10.1038/s41586-023-06202-5
https://ui.adsabs.harvard.edu/abs/2023Natur.619..487H
https://doi.org/10.1093/mnras/stu2650
https://ui.adsabs.harvard.edu/abs/2015MNRAS.447.2852K
https://arxiv.org/abs/arXiv:2007.02886
https://doi.org/10.1126/science.1147532
https://ui.adsabs.harvard.edu/abs/2007Sci...318..777L
https://doi.org/10.1093/mnras/stae1309
https://ui.adsabs.harvard.edu/abs/2024MNRAS.532.2644M
https://doi.org/10.1038/nature04440
https://ui.adsabs.harvard.edu/abs/2006Natur.439..817M
https://doi.org/10.1007/s00159-019-0116-6
https://ui.adsabs.harvard.edu/abs/2019A&ARv..27....4P
https://doi.org/10.3390/universe10040158
https://ui.adsabs.harvard.edu/abs/2024Univ...10..158R
https://arxiv.org/abs/arXiv:1601.05052
https://ui.adsabs.harvard.edu/abs/1974A%\gdef &{%}\gdef no{no}\gdef yes{yes}26AS...15..367T
https://doi.org/10.3847/1538-4357/835/1/11
https://ui.adsabs.harvard.edu/abs/2017ApJ...835...11Z
https://doi.org/10.1017/pasa.2025.10050

	
	Introduction
	Sources of S/N loss
	Practical dedispersion algorithms
	Efficient summation of arbitrary masks "2013` ESAM
	The pseudocode and reference Python implementation
	The trace representation of a 2D mask
	Tree structure of ESAM
	ESAM preparation procedure
	ESAM evaluation procedure
	Tips for designing kernel banks
	Performance of ESAM
	Preparing the ESAM tree
	Pulse simulation technique
	Preparing the ESAM tree
	Measuring ESAM S/N recovery
	Measuring ESAM operation count
	Algorithm evaluation
	Results
	Optimised ESAM trees
	Discussion and conclusions

