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ARITHMETIC E8 LATTICES WITH MAXIMAL GALOIS ACTION

ANTHONY VÁRILLY-ALVARADO and DAVID ZYWINA

Abstract

We construct explicit examples of E8 lattices occurring in
arithmetic for which the natural Galois action is equal to the
full group of automorphisms of the lattice, i.e., the Weyl group
of E8. In particular, we give explicit elliptic curves over Q(t)
whose Mordell–Weil lattices are isomorphic to E8 and have
maximal Galois action.

Our main objects of study are del Pezzo surfaces of degree 1
over number fields. The geometric Picard group, considered as
a lattice via the negative of the intersection pairing, contains
a sublattice isomorphic to E8. We construct examples of such
surfaces for which the action of Galois on the geometric Picard
group is maximal.

1. Introduction

In this paper we construct explicit examples of E8 lattices coming from arithmetic
for which the Galois action is as large as possible. Recall that a lattice is a free
abelian group equipped with a Z-valued non-degenerate symmetric bilinear form.
The E8 lattice is the unique, positive definite, even, unimodular lattice of rank 8.
As the notation suggests, it is also the root lattice of the E8 root system (which is
the largest exceptional root system). The Weyl group of E8, denoted W (E8), is the
group of automorphisms of the E8 lattice; it is a finite group of order 696,729,600.

Suppose that E is a non-isotrivial elliptic curve over Q(t). Then the group
E(Q(t))/E(Q(t))tors is free abelian of finite rank and has a natural pairing called the
canonical height pairing (see [20, Theorem III.4.3]). The group E(Q(t))/E(Q(t))tors
equipped with this pairing is a lattice, called the Mordell–Weil lattice of E. The
natural action of Gal(Q/Q) on E(Q(t))/E(Q(t))tors preserves the lattice structure.

Let us now give an example of an E8 lattice occurring in arithmetic.

Theorem 1.1. Let a(t), b(t), c(t) ∈ Z[t] be polynomials of degrees at most 2, 4, and
6, respectively, which satisfy the following congruences:

a(t) ≡ 70t (mod 105),

b(t) ≡ 84t4 + 7t3 + 98t2 + 84t + 98 (mod 105),

c(t) ≡ 65t6 + 42t5 + 21t4 + 77t3 + 63t2 + 56t + 30 (mod 105).

Let E be the elliptic curve over Q(t) given by the Weierstrass model

y2 = x3 + a(t)x2 + b(t)x + c(t). (1.1)
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Arithmetic E8 lattices with maximal Galois action

Then the group E(Q(t)) is free of rank 8 and as a Mordell–Weil lattice it is iso-
morphic to the E8 lattice. The group Gal(Q/Q) acts on E(Q(t)) as the full group
W (E8).

Remark 1.2.
(i) Mordell–Weil lattices of type E8 have been extensively studied by Shioda

(see [18, 19]). In fact, Shioda [18, Theorem 7.2] has shown that every Galois
extension of Q with Galois group isomorphic to W (E8) arises from the Mordell–
Weil lattice of an elliptic curve E/Q(t). Theorem 1.1 thus gives explicit
examples of this theory.

(ii) If the Mordell–Weil lattice of E/Q(t) is isomorphic to the E8 lattice, then the
240 roots of the lattice are Q(t)-rational points of the form

x = a2t
2 + a1t + a0 y = b3t

3 + b2t
2 + b1t + b0, (1.2)

where ai, bj ∈ Q for all i and j. Conversely, any Q(t)-point of this form is a root
of the lattice; see [17, §10]. The field extension of Q obtained by adjoining
all the coefficients ai and bj is a Galois extension of Q with Galois group
isomorphic to a subgroup of W (E8).
Theorem 1.1 can thus be used, in principle, to write down explicit Galois
extensions of Q with Galois group isomorphic to W (E8): first substitute the
expressions of (1.2) into (1.1). We then obtain a polynomial in the variable t,
which is identically zero if (x, y) ∈ E(Q(t)). This will give a series of relations
among the ai and bj . We can then use elimination theory to distill these
relations to a single polynomial in, say, the variable a1. The Galois group
of the splitting field of this polynomial will be isomorphic to W (E8). The
polynomial we obtained by this method is too large to be included here.
Another method for obtaining a polynomial whose splitting field has Galois
group isomorphic to W (E8) can be found in [13]. This approach uses an
algebraic group of E8 type.

1.1. Del Pezzo Surfaces
A del Pezzo surface X of degree 1 over a number field k is a surface over k that

when base extended to an algebraic closure k of k is isomorphic to P2
k

blown up at
8 points in general position.

An E8 lattice naturally arises from a del Pezzo surface X of degree 1 as follows.
Let Xk = X ×Speck Spec k. The intersection pairing on Pic(Xk) ∼= Z9 gives this
group a lattice structure. Let K⊥

X denote the orthogonal complement in Pic(Xk)
of the canonical class KX with respect to the intersection pairing. We give K⊥

X a
lattice structure by endowing it with the form that is the negative of the intersection
pairing. As a lattice, K⊥

X is isomorphic to the E8 lattice. We denote by O(K⊥
X) the

group of lattice automorphisms of K⊥
X . It is thus isomorphic to W (E8).

There is a natural action of Gal(k/k) on Pic(Xk) that respects the intersection
pairing and fixes KX . We thus obtain a Galois representation

φX : Gal(k/k) → O(K⊥
X).

We will construct explicit examples of X such that φX is surjective, that is, such that
the action of Galois on K⊥

X is maximal. Ekedahl [9] and Erné [10] have made the
analogous constructions for del Pezzo surfaces of degree 3 and 2, respectively (for the
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general definition of del Pezzo surfaces, see §2). The reader will see their influence
here. In [18], Shioda also constructs explicit examples for del Pezzo surfaces of
degrees 2 and 3, using the theory of Mordell–Weil lattices.

We can now state our main result.

Theorem 1.3. Let f be a sextic polynomial in the weighted graded ring Z[x, y, z, w],
where the variables x, y, z, w have weights 1, 1, 2, 3 respectively, such that

f ≡ 40x6 + 63x5y + 84x4y2 + 28x3y3 + 42x2y4 + 49xy5 + 75y6 + 84x4z (1.3)

+ 7x3yz + 98x2y2z + 84xy3z + 98y4z + 35xyz2 + z3 + w2 (mod 105).

Then X := Proj (Q[x, y, z, w]/(f)) is a del Pezzo surface of degree 1 over Q and
the homomorphism

φX : Gal(Q/Q) → O(K⊥
X)

is surjective. Equivalently, if LX is the fixed field of ker(φX) in Q, then

Gal(LX/Q) ∼= W (E8).

Letting the polynomials f that satisfy (1.3) vary, the corresponding fields LX give
infinitely many linearly disjoint extensions of Q with Galois group isomorphic to
W (E8).

Remark 1.4.
(i) Suppose that k is a finitely generated extension of Q. By Theorem 1.3, there

is a del Pezzo surface X/Q of degree 1 such that Gal(LX/Q) ∼= W (E8), and
such that k and LX contain no isomorphic subfields except Q (the proof of
Theorem 1.3 will give a constructive way to find such an X). Therefore Xk is a
del Pezzo surface of degree 1 over k, and the homomorphism φXk

: Gal(k/k) →
O(K⊥

Xk
) is surjective.

(ii) The finite subgroups of GL8(Q) with maximal cardinality are isomorphic to
W (E8) (this depends on unpublished results in group theory, see [1]). Thus
our examples have maximal Galois action amongst all rank 8 lattices.

1.2. Genus 4 curves
We shall now describe certain genus 4 curves that arise from del Pezzo surfaces of

degree 1. These curves have been studied by Zarhin, and our examples complement
his. For details, see [21].

Let X be a del Pezzo surface of degree 1 over a field k of characteristic 0. The
surface X has a distinguished involution called the Bertini involution; it is the
unique automorphism of X which induces an action of −I on K⊥

X ⊆ Pic(Xk). The
fixed locus of the Bertini involution consists of a curve C and a rational point. The
curve C is smooth, irreducible, non-hyperelliptic, and has genus 4.

Let J(C) be the Jacobian of C, and let J(C)[2] be the 2-torsion subgroup
of J(C)(k). The group J(C)[2] is an 8-dimensional vector space over F2 and is
equipped with the Weil pairing

〈 , 〉 : J(C)[2] × J(C)[2] → {±1} ∼= F2.

The pairing 〈 , 〉 is an alternating nondegenerate bilinear form. The Galois group
Gal(k/k) acts on J(C)[2] and preserves the Weil pairing. The following lemma
describes the structure of J(C)[2].
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Lemma 1.5 ([21, Theorem 2.10 and Remark 2.12]). There is an isomorphism of
Gal(k/k)-modules

J(C)[2] ∼= K⊥
X/2K⊥

X,

which preserves the corresponding F2-valued pairings.

Recall that K⊥
X

∼= E8, so the Galois action on J(C)[2] factors through the group
W (E8)/{±I}. We may thus use our examples from Theorem 1.3 to give examples
of such curves with maximal Galois action.

Proposition 1.6. Let f be a sextic polynomial in the weighted graded ring Z[x, y, z],
where the variables x, y, z have weights 1, 1, 2 respectively, such that

f ≡ 40x6 + 63x5y + 84x4y2 + 28x3y3 + 42x2y4 + 49xy5 + 75y6 + 84x4z

+ 7x3yz + 98x2y2z + 84xy3z + 98y4z + 35xyz2 + z3 (mod 105).

Define the curve C := Proj(Q[x, y, z]/(f)) and let J(C) be its Jacobian. The curve
C is smooth, geometrically irreducible, non-hyperelliptic, and has genus 4. There is
an isometry

J(C)[2] ∼= E8/2E8

under which the group Gal(Q/Q) acts as the full group W (E8)/{±I}.
The Jacobian J(C) has no non-trivial endomorphisms over Q, i.e.,

End(J(C)Q) = Z.

In particular, J(C) is an absolutely simple abelian four-fold.

Proof. Let f1 := f + w2 ∈ Z[x, y, z, w]; for the del Pezzo surfaces associated to
f1 in Theorem 1.3, the automorphism [x : y : z : w] 	→ [x : y : z : −w] is
the Bertini involution. The curves in the proposition are in the fixed locus of the
Bertini involution of the appropriate del Pezzo surface. That the Galois action is
maximal is then a consequence of Theorem 1.3 and Lemma 1.5. The last statements
of the proposition follow from [21, Theorem 4.3].

1.3. Overview
Let us briefly outline the contents of this paper.
In §2, we summarize some of the basic theory of del Pezzo surfaces, focusing on

the aspects relevant to our application. In particular, in §2.5 and §2.6 we describe
how given a del Pezzo surface of degree 1 as a blow-up of P2

k, one can write down
an explicit (weighted) sextic polynomial defining this surface; i.e., the anticanonical
model.

In §3, we prove a useful criterion to determine whether a subgroup H ⊆ W (E8)
is actually the full group W (E8). Applied to a del Pezzo surface X/Q of degree 1,
it gives a criterion for the representation φX to be surjective (Proposition 3.2). In
particular, to show that φX is surjective, it suffices to give a model X/Z of X with
certain kinds of reduction at three special fibers. For example, one of the conditions
is the existence of a prime p for which XFp is a del Pezzo surface of degree 1 and
φXFp

: Gal(Fp/Fp) → O(K⊥
XFp

) has image of order 7.
In order to construct the surfaces of Theorem 1.3, we first construct three del

Pezzo surfaces of degree 1 over the finite fields F3, F5 and F7, with the properties
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required by Proposition 3.2 (this explains the congruences modulo 105 = 3·5·7). To
prove Theorem 1.3, we then exhibit a scheme X/Z whose generic fiber is X/Q, and
whose special fibers at 3, 5, and 7 are isomorphic to the del Pezzo surfaces already
calculated (see §6).

Our surfaces over F3 and F5 will be given explicitly as the blow-up of 8 points in
the projective plane (see §4.1 and §4.2). For our example over F7, we simply write
down a candidate surface and then verify that it satisfies the required properties
by applying the Lefschetz trace formula (see §5.3).

Finally, in §7, we show how given a del Pezzo surface X/Q of degree 1, one can
associate an elliptic curve E/Q(t). As a consequence of the work of Shioda, there is
a lattice isomorphism K⊥

X
∼= E(Q(t))/E(Q(t))tors which respects the corresponding

Galois actions. Working this out explicitly, we will find that Theorem 1.1 is a direct
consequence of Theorem 1.3.

Acknowledgements
We thank Bjorn Poonen and the referee for many helpful comments. Our com-

putations were performed using Magma [2]; the code is available via http://
www.lms.ac.uk/jcm/12/lms2008-010/appendix-a/.

Notation
We now fix some notation and conventions which will hold throughout the paper.

For a field k, fix an algebraic closure k. For S-schemes X and Y , define XY :=
X ×S Y ; if Y = Spec B, then we will write XB for XSpecB. If F is a sheaf of
OX -modules on a k-scheme X , then the dimension of the k-vector space H0(X, F )
of global sections will be denoted by h0(X, F ).

By a surface, we mean a smooth projective geometrically integral scheme of
dimension 2 of finite type over a field k. Given a surface X over k, we have an
intersection pairing ( , ) : Pic(Xk) × Pic(Xk) → Z. We write ωX for the canonical
sheaf of X , and KX for its class in the Picard group. We will identify Pic(X) with
the Weil divisor class group; in particular, we will use additive notation for the
group law on Pic(X).

Suppose that k is a number field and that v is a finite place of k. Denote the
completion of k at v by kv, the valuation ring of kv by Ov, and the corresponding
residue field by Fv. Let Fv ∈ Gal(Fv/Fv) be the Frobenius automorphism x 	→ x|Fv|.
We will denote the ring of integers of k by Ok. If S is a set of places of k, we write
Ok,S for the ring of S-integers of k.

2. Background on del Pezzo surfaces

We now review some basic theory concerning del Pezzo surfaces. The standard
references on the subject are [16], [7] and [14, III.3]. In some cases, we give proofs
of easy ‘folklore facts’ that are not included in these standard references. The reader
acquainted with the theory of del Pezzo surfaces is encouraged to only skim this
section, referring back to it as necessary.

2.1. Del Pezzo surfaces
Definition 2.1. A del Pezzo surface over a field k is a surface X over k with ample
anticanonical sheaf ω−1

X . The degree of X is the intersection number (KX , KX).

148https://doi.org/10.1112/S1461157000001479 Published online by Cambridge University Press

http://www.lms.ac.uk/jcm/12/lms2008-010/appendix-a/
http://www.lms.ac.uk/jcm/12/lms2008-010/appendix-a/
https://doi.org/10.1112/S1461157000001479


Arithmetic E8 lattices with maximal Galois action

For a del Pezzo surface X over k of degree d, we have 1 � d � 9. The surface
Xk is isomorphic to either P1

k
× P1

k
(which has degree 8) or to the blow-up of P2

k
at

r := 9 − d closed points. Moreover, in the second case, the r points are in general
position; that is, no 3 of them lie on a line, no 6 of them lie on a conic, and no 8 of
them lie on a cubic with a singularity at one of the points.

For r � 8, the blow-up of r distinct closed points of P2
k

in general position is a
del Pezzo surface of degree 9 − r over k [7, Theorem 1, p. 27].

2.2. Structure of the Picard group
Let X be a del Pezzo surface over k of degree d � 6. The Picard group Pic(Xk)

is a free abelian group of rank 10− d = r +1, and has a basis e1, . . . , er, � such that

(ei, ej) = −δij , (ei, �) = 0, (�, �) = 1, and −KX = 3� −
r∑

i=1

ei.

If Xk is the blow-up of P2
k

along a set of closed points {P1, . . . , Pr} which are in
general position, then we may take ei to be the class of the exceptional divisor ei

corresponding to Pi and � to be the class of the strict transform of a line � in P2
k

not passing through any of the Pi. The divisors ei are isomorphic to P1
k
.

Definition 2.2. Let K⊥
X be the orthogonal complement of KX in Pic(Xk) with re-

spect to the intersection pairing. We give K⊥
X the structure of a lattice by endowing

it with the form that is the negative of the intersection pairing.

The lattice K⊥
X is isomorphic to the root lattice of type A1×A2, A4, D5, E6, E7

or E8 (where r is the sum of the subscripts) [16, Theorem 23.9]. The group O(K⊥
X)

of lattice automorphisms of K⊥
X is isomorphic to the Weyl group of K⊥

X (see [16,
Theorem 23.9 and §26.5]).

2.3. Galois action on the Picard group
Let X be a del Pezzo surface over k. For each σ ∈ Gal(k/k), let σ̃ : Spec k →

Spec k be the corresponding morphism. Then idX ×σ̃ ∈ Aut(Xk) induces an auto-
morphism (idX ×σ̃)∗ of Pic(Xk). This action of Gal(k/k) on Pic(Xk) fixes the
canonical class KX and preserves the intersection pairing. Therefore it factors
through the action on K⊥

X , inducing a group homomorphism

φX : Gal(k/k) → O(K⊥
X)

σ 	→ (idX ×σ̃)∗|K⊥
X

.

2.4. Weighted projective spaces
We quickly recall some basic definitions for weighted projective spaces; a good

general reference is [8]. Fix a field k and positive integers q0, . . . , qn. Let k[x0, . . . , xn]
be the polynomial ring in the variables x0, . . . , xn graded with weights q0, . . . , qn,
respectively. We define the weighted projective space Pk(q0, . . . , qn) to be the k-
scheme Proj(k[x0, . . . , xn]).

The Z-grading on the variables x0, . . . , xn gives rise to an action of Gm on An+1
k =

Spec(k[x0, . . . , xn]) via the k-algebra homomorphism

k[x0, . . . , xn] → k[x0, . . . , xn] ⊗ k[t, t−1]
xi 	→ xi ⊗ tqi .
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The open subscheme U = An+1
k \ {0} is stable under this action. The universal

geometric quotient U/Gm exists and coincides with Pk(q0, . . . , qn). The set of k-
valued points of Pk(q0, . . . , qn) can be described as

Pk(q0, . . . , qn)(k) =
(
k

n+1 − {(0, . . . , 0)})/ ∼,

where (a0, . . . , an) ∼ (a′
0, . . . , a

′
n) if there exists a λ ∈ k

×
such that ai = λqia′

i for all
i. We denote the equivalence class of (a0, . . . , an) by [a0 : . . . : an]. A homogeneous
ideal I of k[x0, . . . , xn] (with respect to the above grading) determines a closed
subscheme V (I) := Proj(k[x0, . . . , xn]/I) of Pk(q0, . . . , qn). The set of k-valued
points of V (I) is

V (I)(k) = {[a0 : . . . : an] ∈ Pk(q0, . . . , qn)(k) :
f(a0, . . . , an) = 0 for all homogeneous f ∈ I}.

2.5. The anticanonical model
Besides the blow-up description, there is another useful model of a del Pezzo

surface. For any k-scheme X and line bundle L on X , we may construct the
graded k-algebra

R(X, L ) :=
⊕

m�0

H0(X, L ⊗m).

When L = ω−1
X , we call R(X, ω−1

X ) the anticanonical ring of X . If X is a del Pezzo
surface over k, then X ∼= ProjR(X, ω−1

X ) [14, Theorem III.3.5]. The k-scheme
ProjR(X, ω−1

X ) is known as the anticanonical model of X .

Proposition 2.3. Let X be a del Pezzo surface of degree 1 over a field k, and let
x, y, z, w be variables with weights 1, 1, 2, 3 respectively. Then there is an isomor-
phism of graded k-algebras

R(X, ω−1
X ) ∼= k[x, y, z, w]/(f),

where f is a sextic in k[x, y, z, w]. The surface X is thus isomorphic to the smooth
sextic hypersurface V (f) in Pk(1, 1, 2, 3).

Conversely, if f ∈ k[x, y, z, w] is a sextic polynomial such that V (f) is smooth,
then V (f) is a del Pezzo surface of degree 1.

Proof. See [14, Theorem III.3.5].

We now briefly outline how, given a blow-up model of a del Pezzo surface X of
degree 1 over a field k, one can find a sextic polynomial f as in Proposition 2.3;
details can be found in [6, pp. 1199–1201] and [14, Theorem III.3.5].

Fix a graded k-algebra R =
⊕

m�0 Rm that is isomorphic to R(X, ω−1
X ). In

Proposition 2.6 below, our algebra R will be expressed in terms of the blow-up
description of X . By [14, Corollary III.3.2.5], for each integer m > 0

dimk(Rm) = h0(X, ω−m
X ) =

m(m + 1)
2

+ 1.

(1) Choose a basis {x, y} for the k-vector space R1.
(2) The elements x2, xy, y2 of R2 are linearly independent. Since dimk(R2) = 4,

we may choose z ∈ R2 such that {x2, xy, y2, z} is a basis of R2.
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(3) The elements x3, x2y, xy2, y3, xz, yz of R3 are linearly independent. Since
dimk(R3) = 7, we may choose w ∈ R3 such that {x3, x2y, xy2, y3, xz, yz, w}
is a basis of R3.

(4) Since dimk(R6) = 22, the 23 elements

{x6, x5y, x4y2, x3y3, x2y4, xy5, y6, x4z, x3yz, x2y2z, xy3z,

y4z, x2z2, xyz2, y2z2, z3, x3w, x2yw, xy2w, y3w, xzw, yzw, w2}
must be linearly dependent over k. Let f(x, y, z, w) = 0 be a nonzero linear
relation among these elements.

(5) Viewing f as a sextic polynomial in weighted variables x, y, z, w, we have an
isomorphism of graded k-algebras, R(X, ω−1

X ) ∼= R ∼= k[x, y, z, w]/(f).

Remark 2.4. If k is a field of characteristic not equal to 2 or 3, then in step (5)
above, we may complete the square with respect to the variable w and the cube
with respect to the variable z to obtain an equation involving only the monomials

{x6, x5y, x4y2, x3y3, x2y4, xy5, y6, x4z, x3yz, x2y2z, xy3z, y4z, z3, w2}.
Lemma 2.5. Let X be a del Pezzo surface of degree 1 defined over a field k. The
linear system |−KX | has a single base point O, and this point is defined over k.
We call O the anticanonical point of X. If X is the locus of a sextic f(x, y, z, w)
in Pk(1, 1, 2, 3), then the linear system |−KX | gives rise to the rational map

X ��� P1
k, [x : y : z : w] 	→ [x : y].

Proof. For the first statement, see [7, p. 40]. If X is a sextic f(x, y, z, w) = 0 in
Pk(1, 1, 2, 3) then the functions x and y form a basis for H0(X, ω−1

X ) (see [15, Proof
of Theorem 3.36(6)]).

2.6. Blow-up and anticanonical models
The following proposition shows how, given a del Pezzo surface X of degree 1

as a blow-up of P2
k, one may recover information about the action of Galois on

Pic(Xk), as well as the anticanonical ring, in terms of the blow-up data.

Proposition 2.6. Let k be a perfect field. Fix a Gal(k/k)-stable set

S := {P1, . . . , P8}
of eight distinct closed points in P2

k
= Proj(k[x0, x1, x2]) that are in general position.

Let I ⊆ OP2
k

be the coherent ideal sheaf associated to the closed subset S of P2
k with

its reduced-induced subscheme structure. Let X be the del Pezzo surface of degree 1
over k obtained by blowing up P2

k along I .
(i) For each σ ∈ Gal(k/k), the order of φX(σ) is equal to the order of the action

of σ on the set S, the trace of φX(σ) is equal to the number of Pi fixed by σ,
and the determinant of φX(σ) is equal to the sign of the permutation of the Pi.

(ii) There is an isomorphism of graded k-algebras,

R(X, ω−1
X ) ∼=

⊕

m�0

H0(P2
k, I m(3m)).

The vector space H0(P2
k, I m(3m)) is the set of homogenous degree 3m poly-

nomials in k[x0, x1, x2] that have m-fold vanishing at each Pi.
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Proof. Let π : X → P2
k be the blow-up of P2

k along I , and let ei be the class of the
exceptional divisor ei of Xk corresponding to Pi. Then

Pic(Xk) = Ze1 ⊕ · · · ⊕ Ze8 ⊕ Z�,

where Gal(k/k) fixes the class � of � and permutes the ei the same way it permutes
the Pi. On the other hand, Pic(Xk) = K⊥

X ⊕ Z · KX , and Gal(k/k) acts via φX

on K⊥
X and fixes KX . Part (i) follows by comparing these two descriptions of the

action of Gal(k/k) on Pic(Xk).
Let Ĩ ⊆ OX be the ideal sheaf of e1∪· · ·∪e8 with the reduced-induced subscheme

structure. We claim that the invertible sheaf

Ĩ ⊗OX π∗(OP2
k
(3))

is isomorphic to the anticanonical sheaf of X . To prove this it suffices to work
over an algebraic closure k, in which case the invertible sheaves π∗(OP2

k
(3)) and Ĩ

correspond to the divisor classes of 3� and −(e1 + · · ·+ e8) in Pic(Xk), respectively.
The claim is then immediate since −KX = 3� − (e1 + · · · + e8) ∈ Pic(Xk).

We thus have the following isomorphisms of graded k-algebras (we shall write
P2 instead of P2

k to avoid clutter),

R(X, ω−1
X ) ∼=

⊕

m�0

H0(X, (Ĩ ⊗OX π∗(OP2(3)))⊗m)

∼=
⊕

m�0

H0(X, Ĩ m ⊗OX π∗(OP2(3m)))

=
⊕

m�0

H0(P2, π∗(Ĩ m ⊗OX π∗(OP2(3m))))

∼=
⊕

m�0

H0(P2, π∗(Ĩ m)(3m)),

where the last isomorphism follows from the projection formula [12, Exercise II.5.1].
The morphism OP2 → π∗OX coming from π, is an isomorphism of OP2-modules

(this can be checked on stalks, using the fact that π gives an isomorphism between
X − π−1(S) and P2 − S, and that a regular function on ei must be constant). We
will identify OP2 and π∗OX , and in particular, we may view π∗(Ĩ ) as an ideal of
OP2 .

The ideal sheaves π∗(Ĩ ) and I both correspond to closed subschemes of P2

with support {P1, . . . , P8}. Since I corresponds to the reduced-induced subscheme
structure on {P1, . . . , P8}, we find that π∗(Ĩ ) ⊆ I . The ideal sheaf π∗(I ) has sup-
port e1∪· · ·∪e8. Since Ĩ corresponds to the reduced-induced subscheme structure
on e1 ∪ · · · ∪ e8, we find that π∗(I ) ⊆ Ĩ and hence

I = π∗π∗(I ) ⊆ π∗(Ĩ )

(the equality follows from the projection formula). Therefore π∗(Ĩ ) = I . For any
m � 1, we have π∗(Ĩ m) = π∗(Ĩ )m (these sheaves have support {P1, . . . , P8} so
it suffices to check on the stalks at each Pi). Thus π∗(Ĩ m) = π∗(Ĩ )m = I m for
each m � 1, and hence

R(X, ω−1
X ) ∼=

⊕

m�0

H0(P2, I m(3m)).
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2.7. Reductions of del Pezzo surfaces

Lemma 2.7. Let v be a finite place of a number field k. Suppose that X is a smooth
Ov-scheme such that X := Xkv and XFv are both del Pezzo surfaces of the same
degree d � 6. Given σ ∈ Gal(kv/kv), restrict σ to the maximal unramified extension
of kv in kv and let σ ∈ Gal(Fv/Fv) be the corresponding automorphism of residue
fields. There exists an isomorphism of lattices

β : K⊥
X

∼→ K⊥
XFv

such that for any σ ∈ Gal(kv/kv) we have

φX(σ) = β−1φXFv
(σ)β.

Proof. Fix an integral divisor V of X . Let V be the Zariski closure of V in X .
Since V is an Ov-scheme, we may consider its reduction V Fv . Extending V 	→ V Fv

by additivity defines a group homomorphism α : Pic(X) → Pic(XFv) called the
specialization map (see [11, §20.3]). By [11, Corollary 20.3], α preserves intersection
pairings. From our description of the intersection pairing on Pic(Xkv

) in §2.2, we
find that the intersection pairing is nondegenerate and hence α is injective.

We claim that α(KX) = KXFv
. There is a commutative diagram [11, §20.3.1],

Pic(X )
j∗

�����������
i∗

������������

Pic(X) α �� Pic(XFv ),

where j : X → X and i : XFv → X are the morphisms coming from the respective

fiber products. Thus it is enough to show that j∗(KX ) = KX and i∗(KX ) = KXFv
.

Since pull-backs commute with tensor operations [12, Ex. II.5.16(e)], it suffices to
prove that

Ω1
X/Ov

×Ov kv
∼= Ω1

X/kv
and Ω1

X/Ov
×Ov Fv

∼= Ω1
XFv /Fv

;

these isomorphisms follow from the compatibility of relative differentials with base
extension [12, II.8.10]. Therefore α(KX) = KXFv

.
Since α preserves intersection pairings and α(KX) = KXFv

, we have an injection
of lattices

β := α|K⊥
X

: K⊥
X ↪→ K⊥

XFv
.

Since X and XFv are del Pezzo surfaces of the same degree, we know that β(K⊥
X)

and K⊥
XFv

are isomorphic lattices. However, the root lattice K⊥
XFv

has no sublattice
isomorphic to itself. So β(K⊥

X) = K⊥
XFv

, and thus β is an isomorphism.

Take any σ ∈ Gal(kv/kv). For an integral divisor V of X , one finds that σ(V )Fv
=

σ(V Fv); equivalently, α commutes with the respective Galois actions. It is then an
immediate consequence that βφX(σ) = φXFv

(σ)β.
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Lemma 2.8. Let X be a del Pezzo surface of degree d � 6 over a number field
k. Let S be a finite set of places of k. Let X be a smooth Ok,S-scheme for which
X = Xk, and let v /∈ S be a finite place of k such that XFv is also a del Pezzo
surface of degree d. Then there is a lattice isomorphism θ : K⊥

X
∼→ K⊥

XFv
and an

automorphism σ ∈ Gal(k/k) such that

φX(σ) = θ−1φXFv
(Fv)θ.

Proof. In the notation of Lemma 2.7, choose σ ∈ Gal(kv/kv) with σ = Fv. Applying
Lemma 2.7 with XOv , we know there is a lattice isomorphism β : K⊥

Xkv

∼→ K⊥
XFv

for
which

φXkv
(σ) = β−1φXFv

(Fv)β.

Now fix an embedding ι : k ↪→ kv. This gives an inclusion Gal(kv/kv) ↪→ Gal(k/k),
and hence we may also view σ as an automorphism of k. The embedding ι induces
an isomorphism γ : Pic(Xk) ∼→ Pic(Xkv

) which preserves the intersection pairing
and the canonical class. Therefore γ|K⊥

X
is a lattice isomorphism from K⊥

X to K⊥
Xkv

such that
φX(σ) = (γ|K⊥

X
)−1φXkv

(σ)γ|K⊥
X

.

The lemma follows by setting θ := βγ|K⊥
X

.

3. Group theory

We wish to find a del Pezzo surface X of degree 1 with surjective homomorphism

φX : Gal(k/k) → O(K⊥
X).

To accomplish this, we will need a convenient criterion to determine whether a
subgroup of O(K⊥

X) ∼= W (E8) is the full group.
The Weyl group W (E8) may be viewed as a subgroup of GL(E8) ∼= GL8(Z), so we

can talk about the trace, determinant, and characteristic polynomials of elements
(or conjugacy classes) of W (E8). The order of a conjugacy class is the order of any
element in the conjugacy class as a group element; this should not be confused with
the cardinality of a conjugacy class which is the number of elements it contains.
The goal of this section is to prove the following group theoretic proposition.

Proposition 3.1. Let H be a subgroup of W (E8). Suppose that the following con-
ditions hold:

i. there exists an element in H of order 7,
ii. there exists an element in H of order 3 and trace 5,
iii. there exists an element in H of order 3 and trace −4,
iv. there exists an element in H with determinant −1.

Then H = W (E8).

In terms of our application to del Pezzo surfaces, we have the following criterion.

Proposition 3.2. Let X be a del Pezzo surface of degree 1 over a number field
k. Let S be a finite set of places of k, and let v1, v2, v3 /∈ S be finite places of k.
Suppose there exists a smooth Ok,S-scheme X such that the following conditions
hold:
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(i) X = Xk,
(ii) XFv1

, XFv2
, and XFv3

are del Pezzo surfaces of degree 1,
(iii) φXFv1

(Fv1) has order 7,

(iv) φXFv2
(Fv2) has order 6 and determinant −1, and φXFv2

(Fv2 )2 has trace 5,

(v) φXFv3
(Fv3) has order 3 and trace −4.

Then φX : Gal(k/k) → O(K⊥
X) is surjective.

Proof. By the assumptions of the proposition and Lemma 2.8, there are σ1, σ2, σ3 ∈
Gal(k/k) such that φX(σ1) has order 7, φX(σ2) has order 6 and determinant −1,
φX(σ2)2 has order 3 and trace 5, and φX(σ3) has order 3 and trace −4.

Recall that K⊥
X is isomorphic to the E8 lattice, and O(K⊥

X) ∼= W (E8). Thus
applying Proposition 3.1, we find that φX(Gal(k/k)) = O(K⊥

X).

Remark 3.3. Let X be a del Pezzo surface of degree 1 over a number field k. Using
the Chebotarev density theorem, it is easy to see that if φX is surjective, then there
is a model X and places v1, v2, v3 satisfying the conditions in Proposition 3.2.

Let W+(E8) be the subgroup of W (E8) consisting of the elements with positive
determinant. We have an exact sequence

1 → W+(E8) → W (E8)
det→ {±1} → 1. (3.1)

Since −I is an element of W (E8), there is an exact sequence

1 → {±I} → W+(E8)
ϕ→ G → 1, (3.2)

where G := W+(E8)/{±I} and ϕ is the quotient map. In [3, Ch. VI §4 Ex. 1], it
is sketched out that G is isomorphic to a certain simple nonabelian group O+

8 (2).
We will use the Atlas of finite groups [5, p. 85], which we will henceforth refer to
simply as the Atlas, as a source of information concerning the group G ∼= O+

8 (2).
In the notation of the Atlas, W (E8) is isomorphic to 2.O+

8 (2).2.

Lemma 3.4. Given a conjugacy class C of W+(E8) of order 3, ϕ(C) is a conjugacy
class of G of order 3; this induces a bijection between the conjugacy class of order 3
of W+(E8) with those of G.

The group W+(E8) and G both have exactly five conjugacy classes of order 3. In
both cases these five conjugacy classes have cardinalities 2240, 2240, 2240, 89600,
and 268800.

Proof. Let C be a conjugacy class of W+(E8) of order 3. The homomorphism ϕ
is surjective, so ϕ(C) is indeed a conjugacy class of G. Since kerφ = {±I}, ϕ(C)
must also have order 3.

Let C be a conjugacy class of G of order 3. Choose g ∈ W+(E8) such that
ϕ(g) ∈ C . Then either g or (−I)g has order 3 (the other element having order 6). It
is now clear that there are two conjugacy classes C of W+(E8) such that ϕ(C) = C ,
one of order 3 and one of order 6. The correspondence stated in the lemma is now
apparent.

For any conjugacy class C of W+(E8) of order 3, |C| = |ϕ(C)|. The last statement
of the lemma on the number and size of conjugacy classes of G of order 3 can then be
read off the Atlas (the Atlas gives the cardinality of the centralizer of any element of
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a conjugacy class of G, from this one can calculate the cardinality of the conjugacy
class itself).

Lemma 3.5. The group W (E8) has exactly four conjugacy classes of order 3. These
conjugacy classes {Ci}i=1,...,4 can be numbered so that

|C1| = 2240, tr(C1) = 5 |C2| = 4480, tr(C2) = −4
|C3| = 89600, tr(C3) = −1 |C4| = 268800, tr(C4) = 2.

Proof. A description of the conjugacy classes of W (E8) in terms of ‘admissible
diagrams’ can be found in [4]. A conjugacy class of W (E8) of order 3 must have
one of the following four characteristic polynomials:

(x2 + x + 1)(x − 1)6, (x2 + x + 1)2(x − 1)4, (x2 + x + 1)3(x − 1)2 , (x2 + x + 1)4

(and hence have trace 5, 2, −1, or −4 respectively). In terms of the conventions
of [4, §6], these characteristic polynomials correspond to the ‘admissible diagrams’
A2, A2

2, A3
2 and A4

2. The lemma is then a consequence of Table 11 in [4].

Proof of Proposition 3.1. Define H = ϕ(H ∩ W+(E8)). Note that any element in
W (E8) of odd order has determinant +1. By assumption (i) of the proposition,
there is an h ∈ H of order 7. The homomorphism ϕ has kernel {±I}, so ϕ(h) is an
element of order 7 in H .

By (iv) there is a w ∈ H such that det(w) = −1, and by (ii) and (iii) there are
h1, h2 ∈ H ∩ W+(E8) of order 3 such that tr(h1) = 5 and tr(h2) = −4. Let C1, C2

and C3 be the conjugacy classes of W+(E8) of order 3 and cardinality 2240 (here
we are using Lemma 3.4). By Lemma 3.5 and cardinality considerations, we have
(after possibly renumbering the Ci) C1 = C1 and C2 = C2 ∪ C3.

Since W+(E8) is a normal subgroup of W (E8), the set wC2w
−1 is also a conju-

gacy class of W+(E8) (of trace −4). Since C2 is not a conjugacy class of W (E8), we
deduce that C3 = wC2w

−1. So h1 ∈ C1 = C1, and the set {h2, wh2w
−1} contains

elements from both of the conjugacy classes C2 and C3. Therefore ϕ(h1), ϕ(h2),
ϕ(wh2w

−1) ∈ H are representatives of the three conjugacy classes of order 3 and
cardinality 2240 in G.

Now consider any maximal proper subgroup M of G. The Atlas gives a descrip-
tion of the maximal proper subgroups of G.

Suppose that |M | > 155520. By checking the permutation character of G associ-
ated with M given in the Atlas, one verifies that M does not contain elements from
all three of the conjugacy classes of order 3 and cardinality 2240 in G. However,
we have just shown that H contains elements from each of these three conjugacy
classes, hence H �⊆ M .

If |M | � 155520, then the Atlas shows that 7 � |M | and in particular M does not
have any elements of order 7. Since H has an element of order 7, H �⊆ M .

Since H is not contained in any of the proper maximal subgroups of G, we must
have

ϕ(H ∩ W+(E8)) = H = G.

Suppose that −I �∈ H∩W+(E8). Since ϕ(H∩W+(E8)) = G and (H∩W+(E8))∩
kerϕ = {1}, the map ϕ : W+(E8) → G induces an isomorphism H ∩W+(E8) ∼= G.
Using our description of W (E8) as a subgroup of GL(E8), we get an injective group
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homomorphism G ↪→ W (E8) ⊆ GL(E8). Hence there exists an injective complex
representation of G,

ρ : G ↪→ GL(E8 ⊗Z C) ∼= GL8(C).

The character table of G in the Atlas, shows that G has no non-trivial irreducible
representations of degree less than 28, and so any eight dimensional complex repre-
sentation of G is trivial. This contradicts the injectivity of ρ, and we conclude that
−I is an element of H ∩ W+(E8).

Since −I ∈ H∩W+(E8) and ϕ(H∩W+(E8)) = G, the exact sequence (3.2) shows
that H ∩W+(E8) = W+(E8). Finally, since H ⊇ W+(E8) and det(H) = {±1} (by
assumption (iv)), the exact sequence (3.1) shows that H = W (E8).

4. Examples: from blow-up to anticanonical models

The graded ring in Proposition 2.6(ii) is amenable to computation, and in par-
ticular we may implement the procedure outlined after Proposition 2.3. Thus, given
a Galois stable set of 8 points in general position, we have a method for finding the
corresponding del Pezzo surface of degree 1 as a sextic in weighted projective space.
We will give two examples of this. The first will be of a surface X over F3 such that
φX(F3) has order 7. The second will be a surface X over F5 such that φX(F5) has
order 6 and determinant −1, and such that φX(F5)2 has trace 5. We will use these
surfaces to construct a del Pezzo surface of degree 1 over Q satisfying parts (iii)
and (iv) of Proposition 3.2. The calculations amount simply to linear algebra over
finite fields, and are easily implemented on a computer. We have provided enough
details so that the careful reader may verify all our claims.

4.1. An example over F3

Let α be a root of the irreducible polynomial t7+2t2+1 ∈ F3[t]. Let F3 : F3 → F3

be the Frobenius map x 	→ x3, and define the following set of eight points in P2
F3

:

S := {[1, 0, 0]} ∪ {[1 : F i
3(α) : F i

3(α
4)] : 0 � i � 6}.

A direct computation shows that the points in S are in general position. Let I be
the coherent sheaf of ideals in P2

F3
corresponding to the reduced-induced structure

of S. Denote by π : X → P2
F3

the blow-up along I . Since F3 fixes [1 : 0 : 0] and
acts transitively on the other seven points of S, it follows from Proposition 2.6(i)
that φX(F3) has order 7.

We now use Proposition 2.6(ii) and the procedure outlined after Proposition 2.3
to calculate a defining equation for X . The polynomials

x = x2
0x1 + x0x

2
2 + 2x3

1 and y = x2
0x2 + 2x0x

2
1 + 2x1x

2
2

form a basis of H0(P2
F3

, I (3)). Let

z = x6
0 + x3

0x
3
1 + 2x2

0x
2
1x

2
2 + 2x2

0x
4
2 + x0x

5
1 + 2x0x

3
1x

2
2

+ x0x
2
1x

3
2 + x0x1x

4
2 + 2x6

1 + 2x5
1x2 + x4

1x
2
2;

then {x2, xy, y2, z} is a basis of H0(P2
F3

, I 2(6)).
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Let

w = x9
0 + 2x7

0x1x2 + x5
0x

2
1x

2
2 + x5

0x
4
2 + 2x4

0x
2
1x

3
2 + 2x4

0x1x
4
2 + x3

0x
6
1 + x3

0x
4
1x

2
2

+ x3
0x

6
2 + 2x2

0x
6
1x2 + 2x2

0x
4
1x

3
2 + x0x

7
1x2 + x0x

6
1x

2
2 + x0x

5
1x

3
2 + 2x0x

2
1x

6
2

+ x5
1x

4
2 + 2x4

1x
5
2 + 2x3

1x
6
2;

then {x3, x2y, xy2, y3, xz, yz, w} is a basis of H0(P2
F3

, I 3(9)). Elementary linear
algebra now yields the relation

2x6 +2x3y3 +xy5 + y6 +2x3yz +x2y2z + y4z +2xyz2 +2z3 +2x3w + y3w +w2 = 0

in H0(P2
F3

, I 6(18)). The transformation w 	→ w − (x3 + 2y3) gives a new equation

x6 + x3y3 + xy5 + 2x3yz + x2y2z + y4z + 2xyz2 + 2z3 + w2 = 0.

Under the transformation z 	→ −z the coefficient of z3 becomes 1 and yields

x6 + x3y3 + xy5 + x3yz + 2x2y2z + 2y4z + 2xyz2 + z3 + w2 = 0. (4.1)

This gives a model for X as a smooth sextic hypersurface in PF3(1, 1, 2, 3).

4.2. An example over F5

Let α be a root of the irreducible polynomial t6 + t4 +4t3 + t2 +2 ∈ F5[t]. Define
β = α54+52+1 and γ = α53+1, so F5(β) and F5(γ) are degree 2 and 3 extensions of
F5, respectively. Let F5 : F5 → F5 be the Frobenius map x 	→ x5, and define the
following set of eight points in P2

F5
:

S := {[1, 0, 0], [3 : 2 : 4], [4 : 2 : 1], [1 : β : β3], [1 : F5(β) : F5(β3)],

[1 : γ : γ4], [1 : F5(γ) : F5(γ4)], [1 : F 2
5 (γ) : F 2

5 (γ4)]}.
A direct computation shows that the points in S are in general position. Let I be
the coherent sheaf of ideals in P2

F5
corresponding to the reduced-induced structure

of S. Denote by π : X → P2
F5

the blow-up along I . Since F5 acts as an order 6 odd
permutation on S, it follows from Proposition 2.6(i) that φX(F5) has order 6 and
determinant −1. The automorphism F 2

5 fixes exactly 5 elements of S, that is the
three F5-rational points and the order 2 orbit of [1 : β : β3]; therefore φX(F5)2 has
trace 5.

We now use Proposition 2.6(ii) and the procedure outlined after Proposition 2.3
to calculate a defining equation for X . The polynomials

x = x3
0 + 4x0x

2
1 + 2x0x1x2 + x0x

2
2 + x2

1x2 + 4x1x
2
2 and

y = x2
0x1 + 3x2

0x2 + 3x0x
2
1 + x0x1x2 + 3x0x

2
2 + 4x2

1x2 + 3x1x
2
2

form a basis of H0(P2
F5

, I (3)). Let

z = x5
0x1 + 2x4

0x
2
2 + 4x3

0x
3
1 + 2x3

0x
2
1x2 + x3

0x1x
2
2 + 4x3

0x
3
2 + 3x2

0x
4
1 + x2

0x
3
1x2

+ 4x2
0x

2
1x

2
2 + 3x2

0x1x
3
2 + 3x2

0x
4
2 + x0x

4
1x2 + 4x0x

3
1x

2
2 + 4x0x

2
1x

3
2

+ 3x0x
5
2 + 4x4

1x
2
2 + 4x3

1x
3
2 + x2

1x
4
2 + 2x1x

5
2 + 3x6

2;

then {x2, xy, y2, z} is a basis of H0(P2
F5

, I 2(6)). Let
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w = x9
0 + 2x6

0x
2
1x2 + 2x6

0x1x
2
2 + x6

0x
3
2 + x5

0x
3
1x2 + 3x5

0x
2
1x

2
2 + 4x5

0x1x
3
2 + 3x5

0x
4
2

+ 4x4
0x

5
1 + 3x4

0x
3
1x

2
2 + 2x4

0x
5
2 + 3x3

0x
5
1x2 + x3

0x
4
1x

2
2 + 3x3

0x
3
1x

3
2 + 3x3

0x
2
1x

4
2

+ 4x3
0x1x

5
2 + 3x3

0x
6
2 + 2x2

0x
5
1x

2
2 + x2

0x
4
1x

3
2 + x2

0x
3
1x

4
2 + 4x2

0x
2
1x

5
2 + 4x2

0x1x
6
2

+ 2x2
0x

7
2 + 2x0x

6
1x

2
2 + 4x0x

5
1x

3
2 + x0x

4
1x

4
2 + 3x0x

3
1x

5
2 + 4x0x

2
1x

6
2 + 2x0x1x

7
2

+ x6
1x

3
2 + x5

1x
4
2 + x4

1x
5
2 + 2x2

1x
7
2 + x9

2;

then {x3, x2y, xy2, y3, xz, yz, w} is a basis of H0(P2
F5

, I 3(9)). Elementary linear
algebra now yields the linear relation

2x6 + 3x5y + x4y2 + 4x3y3 + 4x2y4 + 4y6 + 4x4z + 2x3yz + x2y2z + 2xy3z

+ 3y4z + 3x2z2 + 2y2z2 + 2z3 + 2x3w + 2x2yw + 2xy2w + xzw + w2 = 0

in H0(P2
F5

, I 6(18)). Performing the transformations w 	→ w−(x3+x2y+xy2+3xz)
and z 	→ z − (x2 + 4y2), we obtain the equation

2x5y+x4y2+2x3y3+3x2y4+xy5+2x4z+x3yz+4x2y2z+2xy3z+4y4z+2z3+w2 = 0.

Multiplying both sides by 4, and rescaling by [x, y, z, w] 	→ [x, y, z/2, w/2] yields

3x5y + 4x4y2 + 3x3y3 + 2x2y4 + 4xy5 + 4x4z

+ 2x3yz + 3x2y2z + 4xy3z + 3y4z + z3 + w2 = 0.
(4.2)

This gives a model for X as a smooth sextic hypersurface in PF5(1, 1, 2, 3).

5. The Lefschetz trace formula

In §5.3, we will describe a del Pezzo surface X of degree 1 over F7 such that
φX(F7) has order 3 and trace −4. This gives a surface satisfying part (v) of Propo-
sition 3.2. To prove these properties of X/F7 it will suffice, by the Lefschetz trace
formula, to compute |X(F7)| and |X(F73)|. The method used in §4 cannot produce
this example, since Proposition 2.6 only gives surfaces X/F7 with tr(φX(F7)) � 0.

5.1. The Lefschetz trace formula
The following version of the Lefschetz trace formula (specialized to del Pezzo

surfaces) is due to Weil.

Theorem 5.1. Let Fq be a finite field with q elements, and let Fq ∈ Gal(Fq/Fq)
be the Frobenius automorphism x 	→ xq. Let X be a del Pezzo surface over Fq of
degree d � 6. Then

|X(Fq)| = q2 + q(tr(φX(Fq)) + 1) + 1.

Remark 5.2. For a proof of Theorem 5.1, see [16, §27]. Note that tr(φX(Fq)) +1 is
the trace of the action of Fq on Pic(X

Fq
).

5.2. Points on the anticanonical model
Fix a finite field F. Let X be a del Pezzo surface of degree 1 defined over F which

is given explicitly as a smooth sextic hypersurface

w2 = z3 + F (x, y)z2 + G(x, y)z + H(x, y)
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in PF(1, 1, 2, 3). Now consider the morphism ϕ : X − {[0 : 0 : 1 : 1]} → P1
F, [x :

y : z : w] 	→ [x : y] of Lemma 2.5. Take any point P = [a : b] ∈ P1(F) with
(a, b) ∈ F2 − {(0, 0)}. The fiber of ϕ above P is isomorphic to the affine curve

CP : W 2 = Z3 + F (a, b)Z3 + G(a, b)Z2 + H(a, b)

in A2
F. We thus have

|X(F)| =
∑

P∈P1(F)

|CP (F)| + 1. (5.1)

5.3. An example over F7

Lemma 5.3. Let X be the closed subscheme of PF7(1, 1, 2, 3) defined by the sextic

w2 = z3 + 2x6 + 2y6.

Then X is a del Pezzo surface of degree 1 over F7, φX(F7) has order 3, and
tr(φX(F7)) = −4.

Proof. The scheme X is defined by a smooth sextic, and hence is a del Pezzo surface
of degree 1 by Proposition 2.3. Consider an element g ∈ O(K⊥

X). Since K⊥
X

∼= Z8

and g has finite order, we find that tr(g) � 8, with equality holding if and only if
g = I. By Theorem 5.1,

|X(F7)| = 72+7(tr(φX(F7))+1)+1 and |X(F73)| = 76+73(tr(φX(F7)3)+1)+1,

and thus the lemma is equivalent to showing that

|X(F7)| = 72 + 7 · (−3) + 1 = 29 and |X(F73)| = 76 + 73 · 9 + 1 = 120737.

Let F be an extension of F7. For (a, b) ∈ F2 − {(0, 0)}, define the affine curve

C[a,b] : W 2 = Z3 + 2a6 + 2b6

in A2
F. From (5.1),

|X(F)| = |C[1,0](F)| +
∑

a∈F

|C[a,1](F)| + 1. (5.2)

For F = F7, we have |C[1,0](F7)| = |C[0,1](F7)| = 8, and |C[a,1](F7)| = 2 for all
a ∈ F×

7 ; so |X(F7)| = 2 · 8 + 6 · 2 + 1 = 29.
Now let F = F73 . We will use (5.2) to compute |X(F)|, but it is useful to note

that |C[a,b](F)| depends only the class of 2a6 + 2b6 in F×/(F×)6 ∪ {0}. We have a
bijection r : F×/(F×)6 ∪ {0} → F7, a 	→ a(|F|−1)/6. For i ∈ F7, let Ni(F) be the the
number of F-points of the affine curve W 2 = Z3 + α, where α is any element of F
with r(α) = i. It follows that

|X(F)| = |C[1,0](F)| +
6∑

i=0

|{a ∈ F : r(2a6 + 2) = i}| · Ni(F) + 1.

The right hand side is readily computed, and we find that:

|X(F73)| = 323 + 0 · 343 + 43 · 323 + 72 · 380 + 72 · 360
+ 36 · 326 + 36 · 306 + 84 · 363 + 1 = 120737.
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Remark 5.4. We can also verify our previous examples of del Pezzo surfaces over
finite fields using this method. For example, consider the surface X/F3 defined by
(4.1). To show that φX(F3) has order 7, it suffices to check that

|X(F3)| �= 32 + 3 · 9 + 1 and |X(F37)| = 314 + 37 · 9 + 1.

Now consider the surface X/F5 defined by (4.2). One verifies that

|X(F52)| = 54+52·6+1, |X(F53)| = 56+53·7+1, and |X(F56)| = 512+56·9+1.

It is then apparent that φX(F5) has order 6 and φX(F5)2 has trace 5. Since
φX(F5)3 has order 2 and tr(φX(F5)3) = 6, we deduce that φX(F5)3 has eigen-
value +1 with multiplicity 7, and −1 with multiplicity 1. Therefore det(φX(F5)) =
det(φX(F5)3) = −1.

6. Proof of Theorem 1.3

Let X = Proj(Z[x, y, z, w]/(f)); since

f ≡ x6 + x3y3 + xy5 + x3yz + 2x2y2z + 2y4z + 2xyz2 + z3 + w2 (mod 3),

we find that XF3 is the del Pezzo surface of degree 1 from Example 4.1. In particular,
φXF3

(F3) has order 7. Since

f ≡ 3x5y + 4x4y2 + 3x3y3 + 2x2y4 + 4xy5 + 4x4z

+ 2x3yz + 3x2y2z + 4xy3z + 3y4z + z3 + w2 (mod 5),

we find that XF5 is the del Pezzo surface of degree 1 from Example 4.2. In particular,
φXF5

(F5) has order 6 and determinant −1, and φXF5
(F5)2 has trace 5. Since

f ≡ 5x6 + 5y6 + z3 + w2 (mod 7),

we find that XF7 is isomorphic to the del Pezzo surface of degree 1 from Lemma 5.3;
thus φXF7

(F7) has order 3 and trace −4.
Let S be a finite set of primes such that X ′ := XZ[S−1] is smooth over Spec Z[S−1],

where Z[S−1] is the ring of S-units in Q. Since X has smooth fibers at 3, 5 and 7,
we may assume that S is chosen such that 3, 5, 7 /∈ S. Note that X = X ′

Q is smooth,
so it is a del Pezzo surface of degree 1 by Proposition 2.3. By Proposition 3.2, we
deduce that φX : Gal(Q/Q) → O(K⊥

X) is surjective.
To prove the final statement of the theorem, it suffices to show that for any

number field k ⊆ Q, we may find an f such that LX ∩ k = Q. Let k1, . . . , km

be all the subfields of k except for Q. By the Chebotarev density theorem, there
are distinct rational primes p1, . . . , pm greater than 7 such that pi does not split
completely in ki.

For each i, choose 8 points of P2(Fpi) that are in general position; blowing them
up gives a del Pezzo surface Xi of degree 1 defined over Fpi . By Proposition 2.6(i),
φXi = I.

There is a sextic polynomial fi ∈ Fpi [x, y, z, w] such that Xi is isomorphic to the
hypersurface fi = 0 in PFpi

(1, 1, 2, 3) (the polynomial can be calculated using the
results of §2.5 and §2.6. Now let f ∈ Z[x, y, z, w] be a sextic which satisfies (1.3),
and for each i satisfies f ≡ fi (mod pi). There is a finite set S of rational primes
such that the scheme X := Proj(Z[S−1][x, y, z, w]/(f)) is smooth over Spec Z[S−1],
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and S can be chosen so that 3, 5, 7, p1, . . . , pm /∈ S. We have already proven that
X := XQ is a del Pezzo surface of degree 1 with surjective homomorphism φX .

If LX ∩ k �= Q, then ki = LX ∩ k for some i. Let Frpi ∈ Gal(Q/Q) be any
Frobenius automorphism over pi. Using Lemma 2.7 and φXpi

(Fpi) = φXi (Fpi) = I,
one proves that φX(Frpi) = I. Therefore pi splits completely in LX (and hence also
in LX ∩ k = ki). This contradicts the assumption that pi does not split completely
in ki. We conclude that LX ∩ k = Q.

7. Elliptic curves

7.1. Rational elliptic surfaces
We summarize, making certain simplifying assumptions, some basic facts about

Mordell–Weil lattices of rational elliptic surfaces. A full account of the theory can
be found in [17].

Let π : E → P1
Q

be an elliptic surface with a fixed section O. Assume that

(1) E is rational
(2) π has at least one singular fiber, and no reducible fibers (in Shioda’s notation,

R = ∅).
Let E be the generic fiber of π : E → P1

Q
, which is an elliptic curve over the

function field Q(t). There is a natural one-to-one correspondence between the Q(t)-
points of E and the sections of π : E → P1

Q
. The image of the section corresponding

to a point P ∈ E(Q(t)) will be denoted by (P ); it is a divisor of the surface E .
To each point P ∈ E(Q(t)) we associate a fibral divisor ΦP ∈ Div(E) ⊗Z Q such

that for all fibral F ∈ Div(E),

((P ) − (O) + ΦP , F ) = 0

(recall an irreducible divisor Γ of E is fibral if π|Γ : Γ → P1
Q

is a constant map —
such a divisor always exists, see [20, III.8.3]). Let NS(E) be the Néron–Severi group
of E ; in our case, this group is finitely generated and torsion free [17, Theorem 1.2].
The map

φ : E(Q(t)) → NS(E) ⊗Z Q

P 	→ (P ) − (O) + ΦP

is a group homomorphism with kernel E(Q(t))tors [17, 8.2]. We define a pairing on
E(Q(t)) using the intersection pairing of E as follows:

〈 · , · 〉 : E(Q(t)) × E(Q(t)) → Q, 〈P, Q〉 = −(φ(P ), φ(Q)).

This pairing is symmetric, bilinear, and coincides with the canonical height pairing
on E(Q(t)) [20, III.9.3].

Let T be the subgroup of NS(E) generated by (O) and all the fibers of π : E → P1
Q
.

By [17, Theorem 1.3], we have a group isomorphism

β : E(Q(t)) → NS(E)/T, P 	→ (P ) mod T.

Let T ′ = (T ⊗Q)∩NS(E). We have an isomorphism β : E(Q(t))tors
∼→ T ′/T by [17,

Corollary 5.3]. Hence there is an isomorphism of lattices

β : E(Q(t))/E(Q(t))tors
∼→ NS(E)/T ′. (7.1)
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Remark 7.1. The isomorphism (7.1) holds without the hypothesis that π : E → P1
Q

has no reducible fibers, but the map φ is harder to define in this case.

7.2. Galois actions
Let π : E → P1

Q be an elliptic surface with a fixed section O, such that the elliptic
surface π̄ : EQ → P1

Q
, obtained by base extension, satisfies the hypotheses (1) and (2)

of §7.1. Then the isomorphism of lattices (7.1) respects the Gal(Q/Q)-actions [17,
proof of 8.13]. Hence E(Q(t))/E(Q(t))tors and NS(E)/T ′ are also isomorphic as
Gal(Q/Q)-modules.

7.3. Elliptic surfaces associated to del Pezzo surfaces of degree 1
Let X be a del Pezzo surface of degree 1 over Q. We now describe how, given

X , one can obtain a rational elliptic surface. The linear system |−KX | gives rise to
a rational map f : X ��� P1

Q that is regular everywhere except at the anticanonical
point O (cf. Lemma 2.5). Blowing up X at O, we obtain a surface E . Composing
the blow-up map with f gives a morphism π : E → P1

Q, where almost all of the
fibers are non-singular genus 1 curves. The morphism π induces an isomorphism
between the exceptional divisor of E corresponding to O and P1

Q; we thus have a
distinguished section O : P1

Q → E of π. Therefore, π : E → P1
Q with the section O is

an elliptic surface.
Concretely, if X is given by a smooth sextic

w2 = z3 + F (x, y)z2 + G(x, y)z + H(x, y)

in PQ(1, 1, 2, 3), then the anticanonical point is O = [0 : 0 : 1 : 1]. In this case, E is
the subscheme of PQ(1, 1, 2, 3)× P1

Q = Proj(Q[x, y, z, w])×Proj(Q[u, v]) cut out by
the equations

w2 = z3 + F (x, y)z2 + G(x, y)z + H(x, y) and vx − uy = 0. (7.2)

The map π : E → P1
Q is then given by ([x : y : z : w], [u : v]) 	→ [u : v]. Note that for

points away from the exceptional divisor we have [u : v] = [x : y].
Let t be the rational function u/v, thus x = ty on E . The generic fiber of π is

the curve

E : w2 = z3 + y2F (t, 1)z2 + y4G(t, 1)z + y6H(t, 1) (7.3)

in Proj(Q(t)[y, z, w]). On the affine chart Spec(Q(t)[z/y2, w/y3]) of this weighted
ambient space, the curve (7.3) is isomorphic to the affine curve

(w/y3)2 = (z/y2)3 + F (t, 1)(z/y2)2 + G(t, 1)(z/y2) + H(t, 1).

Relabelling the variables, we find that the elliptic curve E/Q(t) is given by the
Weierstrass model

y2 = x3 + F (t, 1)x2 + G(t, 1)x + H(t, 1).

7.4. Proof of Theorem 1.1
Let X be a del Pezzo surface as in Theorem 1.3. Let π : E → P1

Q be the elliptic
surface obtained by blowing up the anticanonical point of X (see §7.3). The generic
fiber of this surface is the elliptic curve E/Q(t) in the statement of the theorem.
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Let π̄ : E
Q
→ P1

Q
be the base extension of π by Spec Q → Spec Q. The following

properties hold:

(1) the surface EQ is rational (since it is isomorphic to a blow-up of P2
Q

at 9 points).

(2) π̄ has at least one singular fiber (otherwise E has constant j-invariant [20,
Ex. 3.35(c)]). Moreover, the fibers of π̄ : E

Q
→ P1

Q
are irreducible: using the

blow-up model (7.2) of E , the reader may verify that the fiber above the point
[u : v] ∈ P1

Q
is isomorphic to the projectivization of the irreducible curve

y2 = x3 + F (u, v)x2 + G(u, v)x + H(u, v).

We may thus apply §7.1 to obtain an isomorphism

E(Q(t))/E(Q(t))tors
∼→ NS(E

Q
)/T ′.

Furthermore, this isomorphism respects the action of Gal(Q/Q) (see §7.2). On the
other hand, the lattice K⊥

X is isomorphic to NS(EQ)/T ′ via the composition of maps

K⊥
X → NS(E

Q
) → NS(E

Q
)/T ′,

where the first map is induced by pullback of divisors along the blow-up map, and
the second is the natural quotient map. Therefore we have isomorphisms

K⊥
X

∼= NS(E
Q
)/T ′ ∼= E(Q(t))/E(Q(t))tors

of lattices and Gal(Q/Q)-modules. Now, K⊥
X is an E8-lattice with maximal Galois

action W (E8), because X has maximal Galois action on its geometric Picard group
by Theorem 1.3. To complete the proof of the theorem, it remains to check that
E(Q(t))tors = 0; this is true by [17, Theorem 10.4].
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