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To Alexander Doniphan Wallace on his 60th birthday

Let p and ¢ be two congruences on a completely 0-simple semigroup.
Suppose that there is a maximal chain of congruences from p to ¢ which
is of finite length. Then, as we shall show, any maximal chain of congruences
from p to o is finite and of the same length.

Throughout, all congruences considered will be on a single completely
0-simple semigroup which, without loss of generality, may be taken as a
Rees matrix semigroup #° (G; I, A; P) (see Rees [3]; the notation and
terminology of Clifford and Preston [1] is being used). Here G is the structure
group of A°, I and A are index sets and P is a regular A X I matrix, the
sandwich matrix of .#°. The entries p,; of P belong to the group with zero
GO The elements of .#° are the ordered triples (a; 7, A) where a e G°,
i1el, 2 e A and where (0; 7, A) = (0; 1, #) = 0, the zero of #°, for all 7, 7,
A, u. The product in #° is defined by

(a: 4, 1) (b3 1, 1) = (apaybs s, ).

The s#-classes of #° other than the set {0}, are the sets
H, ={(a;4,2): aeG}, iel, AeA. For each iel[leA] there exists
A e A [ieI]such that H,; is a subgroup of .#° (isomorphic to G). Without
loss of generality we may assume that 1 el n A and that H,, is a group.

Let Z denote the I XA rectangle of #-classes {H,,: 1el, AeA}. A
permissible partition of Z is a partition of Z induced by partitions of I
and 4 and which is such that each subrectangle of the partition either
is a completely simple subrectangle, i.e. every #-class it contains is a
group, or is a zero subrectangle i.e. it contains no 5#-class which is a group.
If # and 2 are two permissible partitions of Z then & C 2 means that
each subrectangle of & is contained in a subrectangle of 2. We shall speak
of the partition classes into which & divides Z as P-classes.

1 The results in this paper were presented at the National Science Foundation Summer
Institute in Algebra, held at Pennsylvania State University, 1963.
2 I have profited from a detailed discussion of these results with Dr J. M. Howie.
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With these assumptions and this notation it was proved in [2] that,
except for the universal congruence, the congruences on .#° are in one-
to-many correspondence with the quadruples [#, M, {¢;}, {f1}], where
(i) 2 is a permissible partition of Z, (ii) M is a normal subgroup of H,,
and (iii) ¢;e H,; ((€l) and f, € Hy, (A € A) are elements of #° such that

(L) Mfre; = Mf/tea'

when H,;, and H,, belong to the same completely simple #-class. The
equivalence classes of the congruence (determined by) [, M, {e¢;}, {/1}]
are the sets u{e,Maf,: 7ed* Aei*}, where ae H,; and +*(CI) and
A* (C A) the “sides’” of a P-class. In particular, M is the intersection with
H,, of one of the equivalence classes. Also proved in [2] is:

() (2, M, {es}, (W1 S [2. N, {g.}, (]

if and only if

i 22

(i) MCN,

(ili) for each subrectangle of P, with sides i* and A*, say, there exist
A, and by tn Hy, such that, for 1 ed* and A€ A*,

e:fy = g:miauhy,
efr = gitabala,

where n, and n, belong to N.
As a corollary to (x) (see [2]) we have:

(8) Let p=1[2. M, {e}, {{1}].
o =[2, M, {g}, {}]

Then p= o if and only if pCo.

We shall prove our result by means of a series of lemmas. First, a
comment on notation. The inclusion sign C and the containment sign O
will be taken to mean proper inclusion and proper containment, respectively.
In a partially ordered set L, ordered by <, say, an element & will be said
to cover an element @ if (1) ¢ < b, (i) @ # b and (iii) e ¢ <, for ¢ in
L, implies that either a = ¢ or ¢ = b. We shall write & >4, or a < b,
to denote that & covers a. The set L involved will either be specified or be
clear from the context.

LeEMMA 1. Let p= [P, M, {¢,}, {fa}] and o = [?, N, {g,}, {fr}] be con-
gruences on M°. Suppose that p C 0. Then ¢ = [P, N, {e;}, {fA}].

ProoF. Since, by (x), M CN, Mf,e; = Mf,e, implies Nfye; = Nf,e;.
Consequently, [#, N, {¢,}, {f1}] is a congruence on .#°. Using (i), (ii) and
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(iii) of («) pC o implies that [2, N, {¢;}, {/i}] S 0. Whence, by (f),
o = [Z.N, {e. {I\}]-

LEMMA 2. Let p =[P, M, {¢;}, {f}] and o = [2, M, {g.}, {I\}] be
congruences on A°. Suppose that pCo. Then p = [P, M, {g.}, {:}].

ProOF. Mh, g, = Mh,g, for any 1, §, 4, p such that H,, and H;, belong
to the same completely simple subrectangle of 2. Since, by («), ZC 2,
it follows that Mh,g, = Mh,g; for any %, §, 4, u such that H,, and H,,
belong to the same completely simple subrectangle of £. Hence
(2, M, {g;}, {m}] is a congruence on .#° As in the proof of lemma 1, it
now follows from («x) that pC (2, M, {g;}, {#:}], whence, by (B),
p = (2 M, (g}, ().

The result asserted in the next lemma may be easily verified.

LeEMMA 3. (i) Let p and o be congruences on MA°® such that p = [P, M, {e;},
{H}1C[2, N, {e;}, {{1}] = 0. Let K be a normal subgroup of Hy, such that
MCKCN.Thent = [P, K, {e;}, {f1}] is a congruence on M° and pC 1 C 0.

(ii) Let p and o be congruences on M° such that p = [P, M, {g.}, {h}]1 C
[2, M, {g} {h}] =0 Let & be a permissible partition of Z such that
PCFC2 Then v=[&, M, {g}, {I}] is a congruence on MA° and
pCrlo.

LeEMMA 4. Let p = [P, M, {¢,}, {{1}] and o = [2, N, {g;}, {h:}] be two
congruences on M° and suppose that o > p in the lattice of congruences on
M°. Then, either (1) P = 2 and N > M in the lattice of normal subgroups
of Hyy, or (ii) M = N and 2 > P in the lattice of permissible partitions of Z.

Proor. Since p C o we know by (x) that ZC 2 and M C N. Since
Z C 2 and o is a congruence, it follows that [#, N, {g,}, {#.\}], = 7, say, is
a congruence on .#° Again using (x) it follows from p C o that pC 7 C 0.
Whence, if #C 2 and M CN, pCrCo. This is contrary to hypothesis,
for ¢ > p. Hence either (i) # = 2 or (ii) M = N. The remaining assertions
of the lemma under (i) and (ii) follow immediately from lemma 3 part
(i) and part (ii), respectively.

We now come to the key interchange lemma which enables us to prove
our theorem. If ¢ D p and o and p have the same permissible partition of
Z, then o and p will be said to be obtained from one another by a group
change. We shall write this as 0 D, p; and, when also ¢ >> p, we shall similarly
write ¢ >, p. If ¢ D p and o and p determine the same normal subgroup
of H,;, then ¢ and p will be said to be obtained from one another by a
partition change. We shall write this as o D, p; and, when also o > p, we
shall similarly write o >, p.

LeMMA 5. Let p, o and v be congruences on M° such that ¢ D, D, p.
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Then there exists a congruence ' on MA°® such that ¢ D, 7' D, p.
Moreover, if o >, 1 >, p, then also ¢ >,7" >, p.

Proor. Suppose that

p= [9, M, {8,-}, {f/l}]:
T = [Q; M: {gi}’ {h/\}]:
o= [2,N, {$}, {a}];

the assumptions here being justified because v is obtained from p by a
partition change and o from 7 by a group change. By lemma 1, 0 = [2,
N, {g:}, {m}] whence Nk, g, = Nh,g; provided 1, , 4, u are such that H,
and H;, belong to the same completely simple subrectangle of 2. 4 fortiors,
since ZC 2, it follows that [Z, N, {g.}, {f1}] = 7/, say, is a congruence
on #° Since #C 2, it follows that v C,¢. By lemma 2, p = [#, M,
{g:}, {#:}]; whence, since M CN, pC, 7.

Suppose now that ¢ >, v >, p and that 7’ is a congruence on .#°
such that ¢ 2,7 D, p. Now ¢ >, 7 implies that N > M; from which it
follows that ©’ >, p. Similarly, ¢ >, 7'.

We will also need

LEMMA 6. Let p C o be neither a partition change nor a group change.
Then there exists a congruence v on M°® such that pC,7C, 0.

ProoF. Let p=[2, M, {¢}, {f}] and o= [2, N, {g;}, {h}]. Since
p to o is neither a partition change nor a group change, & % 2 and M # N.
It is easily verified that [2, N, {g.}, {f:}], = 7, say, is a congruence on
M, since ZC 2 and M C N. Moreover, p C ¢ implies that p C 7z and v C 0.
Whence we have p C, 7 C, 0, as required.

Before proceeding let us examine more closely the lattice L, say, of
permissible partitions of Z. Define the equivalence relations w(I) on the
set I and w(A4) on the set A thus:

o) ={(,)eIxI: H,; is a group iff H,, is a group},

w(A4) = {(A, p) e AXA: H, is a group iff H,, is a group}.
Let (I) be the partition of I into the equivalence classes of w(l) and n{41)
be, similarly, the partition of A into the equivalence classes of w{A4). Let
L, be the set of all partitions of I contained in # (/) and let L, be the set
of all partitions of A4 which are contained in #n(4).

Then we have

LEMMA 7. L s isomorphic to the direct product Ly X L,.

Proor. Let & be a permissible partition of Z. Suppose that partitions
7 and 7, of I and A, respectively, induce #. Thus H;, and H;, belong
to the same P-class iff ¢ and § belong to the same x,-class and also 4 and
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4 belong to the same zy-class. Then n, C 5(I) and =, C 5(A). For let 4, §
belong to a n,-class. Then H,, is a group iff H,, is a group, for H, and
H,, belong to the same P-class. Hence (¢,7) e w(l), ie. 7, § belong to the
same 7 (I)-class. This shows that =, C n(I). Similarly, =, C n(A4).

Conversely, let =, C#n(I) and @, C (A) be partitions of I and of 4,
respectively. Let & be the partition of Z induced by =; and =,. If Hy,
H,, belong to a Z-class, then 7, § belong to a m,-class and so H,, is a group
iff H;, is a group; and 4, u belong to a m,-class and so H}, is a group iff
H;, is a group. And this shows that £ is a permissible partition of Z.

The correspondence between permissible partitions & and ordered
pairs (7;, 7,) is clearly one-to-one and is an isomorphism between L and
L, XL,.

CorOLLARY 8. L possesses a unique maximal element, viz. the element
of L corresponding to the element (n(I), n(A4)) of Ly xXL,.

We will denote this maximum element of L by #.

We shall need the following fact about L.

LEMMA 9. Let P, 2 be elements of L such that there exists a finite maximal
chain of elements of L

P=Py< P < < P=239

of length t from P to 2. Then any chain from P to 2 of distinct elements of
L is of length not greater than t and any maximal chain is of length ¢.

Proor. By lemma 7 it will suffice to prove the result for the lattice
L,xL,. Since, for (a, b), (c, d) e LyXL,, (a,b)C (c,d)iff aCcand 5C4d,
the assertion of the lemma will hold for L if we prove it for each of L,
and L,. We prove it holds for L,; it then follows that it holds for L, also.

Let a4, b€ L,. Then a, b are partitions of I each contained in %(I);
and @ C b means that each partition class of « is contained in a partition
class of b. Moreover, a < b iff a coincides with b except that precisely
one of the b-classes has been split into two a-classes. A sequence
a=ay<a;,<-+"+<a,=0>b, from a to b therefore implies that a is ob-
tained from & simply by ¢ successive splittings of partition classes into two.
It is now evident that all chains of distinct elements of L from a to b are
finite and that all maximal such chains have length ¢.

This completes the proof of the lemma.

To deal with the special case of a sequence of congruences with an
end-point which is the universal congruence — recall that the description
we have given of congruences on .#° excludes the universal congruence —
we shall need the following result.

LemMAa 10. Let v denote the universal congruence on M° and let w be
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a congruence on M° such that v > w. Then o = [%, Hyy, {e;}, {f2}], where
{e;} and {f,} may be chosen arbitrarily.
Moreover, any congruence on MO, other than v, is confained in w.

ProoF. Since fye;e Hy, if and only if H, is a group (see [2]),
[#, Hyy, {e.;}, {f,}] is a congruence on .#° for any permissible partition &
and for any choice of {¢;} and {f,}. Thus, in particular, [%, Hy,, {e;}, {f1}]
is always a congruence on #° Consider the congruences w = [%, H,,,
{e.}, {f1}] and o = [#, M, {g}{/,}]. Let {H,: ied*, AeA*} be a sub-
rectangle of &. Then, there exists n, e Hy,, such that ¢f; = g;n;A,, for
i e1*: take n, = x,f, k7", where z; e H;; and gz, = ¢;. Similarly, there
exists %, € Hy;, such that e, f, = g,myky, for A € A*. Whence, by («), 0 C w.

Thus every congruence, other than v, is contained in o = [%, H,,,
{e;}, {f2}]. It follows that e is independent of the choice made of the
sets {¢;} and {f,}. The remaining assertions of the lemma are now evident.

We turn now to the proof of the theorem. Let p and ¢ be two con-
gruences on .#° such that there is a maximal sequence of congruences

P=p<pp< "< pn=0

from p to ¢ which is of finite length m. We aim to show that any other
sequence of distinct congruences from p to o is of finite length less than or
equal to m, and that any maximal such sequence is of length . Let us dispose
first of the case of o == v, the universal congruence on #°. In this event,
from lemma 9, we conclude that p,,_; = , the congruence on .#° containing
all congruences on .#° other than v. If we prove our theorem for sequences
of congruences from p to w we can therefore conclude that it also holds for
sequences from p to v. Thus it will suffice to assume that ¢ is not the universal
congruence on .#°.

With this assumption it then follows from lemma 4 that each step
p; < pisy Is either a group change or a partition change. Successive ap-
plications of lemma 5 may therefore be made to replace the sequence
pi, 2 =0,1,---, m, by a maximal sequence, of the same length, in which
all the group changes occur first and are then followed by the partition
changes. Without loss of generality, we can therefore assume that

P =po <y P1 <7<y Prs
and

P <p Prt1 <35 <ypPm =0,
for some & with 0 < %k < m.
Suppose that p = [, M, {¢,}, {f1}]. From lemma 1, it follows that
pe =12, M,, {e;}, {/x}], for 0 < s < k, writing, in particular, M = M,.
Suppose that ¢ = [2, N, {g.,}, {#}]. From lemma 2, it follows that

https://doi.org/10.1017/51446788700025891 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700025891

82 G. B. Preston 7

pe = [2,, N, {g}, {m}], for k < ¢ < m, writing, in particular, 2 = 2,,.
Because of the double description of p,, it follows that Z = 2,and M, = N.
From lemma 4, we conclude that

M=M<M,< -+<M,=N
in the lattice of normal subgroups of H,,; and that
P=2<2y<<2,=2

in the lattice L of permissible partitions of Z.

By a well-known result from group-theory it follows that every sequence
from M to N, of distinct normal subgroups of Hy,, is finite, and that every
maximal such sequence has length k. From lemma 9, it follows that any
sequence from &£ to 2, of distinct elements of L, is also finite and, when
maximal is of length m—£&.

Now consider any sequence of distinct congruences from

p=1[P M {e}, {fi}] to o=[2 N, {g}, {Mm}]
and let

2 p=0,C0,C---Co,=0

be a finite portion of this sequence. If, for any ¢, o, C 0,,, is neither a group
change nor a partition change, then, by lemma 6, there exists a congruence
7 on. A° such that ¢, C, v C, ¢,,,. Consequently, without loss of generality,
we can assume that each change in (2) is either a group change or a partition
change. From lemma 5 it then follows that we can assume that all the
group changes are performed first and then followed by the partition
changes. It now follows immediately, by considerations similar to those
already used, that £ < m. And this completes the proof of our theorem.
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