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Introduction.

Let 2 be a bounded domain in R' (I > 2) with C* boundary I' of
dimension I — 1 and let there be given a second order elliptic differential
equation

(1) Ay = — ZL] 9i(a;;0,u) + Zlaiaiu +ou=f in 2,
i,J=1 1=1

where 9; = 3/dx; and all coefficients are assumed, for the sake of sim-
plicity, to be real-valued and C= on Q2 = QUI'. It is also assumed that
a;; = a;; on £ and that there exists a positive constant ¢, such that

0 (D665 = ¢ |EF

l
1,j=1
holds for all xe¢ 2 and &¢ R'.

Then we consider a boundary condition
(2) Bu=adu+1u+pu=¢ on I,

where «, B are real-valued C= functions on I', y is a C> real vector field
tangent to I, and 9,u denotes the conormal derivative of u, i.e.,

l
oU = D, 00U ,
%,J=1

n=m,--,n) being the exterior normal of I'. Moreover, throughout
this paper, we assume o« > 0 on ['.

In case y =0 on I', the boundary problem (1)-(2) was discussed in
[2, 3] by using the Hilbert space technique and the elliptic regularization.
This paper is a continuation of their studies and is especially nothing
but a slight improvement of [2].
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8 YOSHIO KATO
Now we state the results obtained. The notations appearing will
be made clear in §1.

THEOREM 1. If we assume that
(3) %r*(1)+ﬂ>0 on I'y={wel;a) =0},

it then follows that for every feH** (2;p) and every pec H*\(I') (k
integer >2), the boundary problem

{(A-I-X)u:f n 2

(4)
B+u=¢ on I

has the unique solution u in H¥(Q2; p), provided 2 > 4,, a number which is
a constant not depending on k, and t > t,, a number which is a constant
depending in general on k.

Moreover it follows that there exists a constant C, > 0 independent
of t > t; such that

(5) lw; plle < CellS5 Plli-z + ll@lle-r,r) -
COROLLARY. Assume, in addition to (3), that
(6) r=0 m a neighbourhood of I,.

Then we can take as t, = 0 for every k.

The following example shows us that condition (6) is necessary for
Theorem 1 to be valid for ¢, = 0.

EXAMPLE. Let £ be a bounded domain in the (x,y)-plane whose
boundary I' is a C~ curve and contains an open interval o> (0,0) in the
xz-axis. In (1) and (@) we take as A =4, =0 in o, y = —2d/ox in
o, > 1 integer and ¢ = adv/on + yv + pv, where v is a harmonic func-
tion whose boundary value is C~ except the origin and is equal to |z}’
in w. Clearly we have ¢ e C=(I).

Then # = v is a solution belonging to C*-'(2) of the problem

—du =20 in 2

aa—u—}-ru-l—ﬁuzga on I,
an

but does not belong to C#(2). Here it is easily seen that (8) is satisfied
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NON-ELLIPTIC BOUNDARY PROBLEMS 9
but not (6).

THEOREM 2. If I'yis a C~ manifold of dimension | — 2 and y is trans-
versal to Iy, it then follows that for every feH** (Q;p) and every
pe H1 (') (k integer >2) the problem (4) with t =0 has the unique
solution u in H*(Q; p), provided 2 > A, which is a constant not depending
on k. Moreover the u satisfies (5).

In case g =0, this is nothing but a class of the oblique derivative
problems, which was already discussed in [1] by the slightly different
manner (cf. §7 of [1]).

The plan of the paper is as follows. §1 is devoted to preliminaries
of the proof of Theorem 1, which will be given in §2. Corollary and
Theorem 2 will be briefly proved in §§8 and 4, respectively, by the
similar argument as in Theorem 1.

§1. Preliminaries.

Let y be a C~ real vector field tangent to I'. The adjoint y* of ¢
is defined by the identity

j)%m&r:jibﬁmk, w,ve () ,
r r

where de¢ is the Lebesque measure on I.

Let {U},7=1,---,N, be a family of open subsets of R’, covering
I', and assume that there exists a C~ coordinate transformation y = «;(x)
on U, such that 2 N U; is mapped in a one-to-one way onto an open
portion X; of a half space y, < 0 and I'; = I' N U, is transformed onto
an open portion z; of y, = 0. Moreover assume that dy = J;dx and
do = K;dy' (y =¥y, -+, 4.)).

Let {{;(x)} be a partition of unity of I' belonging to {U,}, i.e.,
£;eCiUy,¢; >0 and 337 C(x) =1 on I'. Using the partition of unity
{U;, ¢}, we can easily prove

LEMMA 1. There exists a C~ function b(x) on I' such that y* =
—r + b(@).

Proof. We assume that by the transformation £; the vector field r
is altered to
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1-1
5/ = ;cjkak (3k = 3/3yk) .
Then we have
N
f ru-vde = 3| r(w-vde
r j=1J Ty

= Zf Do oK dy = —% 3 uauenK p)dy

Jj Ju=0 k

= -2 Zk: Cju{cijjak'v + 3k(0ijj)v}dy'

J Jyi=0

=3[ X CatmK dy
J Y1=0 k

- f L3 dulenK KK dy

J Yi=

S f Guegvds — 3 f LK Y enK Nods
J J

which completes the proof.
The following lemma can be easily proved. So we omit the proof.

LEMMA 2. Under condition (3) we can find a function q(x)e C=(2)
satisfying

(i) ¢g>0in Q2 and q=a on I'.

(ii) There exist two positive constants C and d such that C dis (x,I")
<q@) in 2, ={xe;dis(z,I") < d}.

(iii) There exists a positive constant ¢, such that

%aq+%r*(l)+52q on I'.

LEMMA 3. For any 6 > 0 there exists a constant C, > 0 such that

ull,o < éllpoully,o + Cillpulle,  ueC(Q),
where p = Vq, |ul, =J~ |uff de and
2
l
Iwoulf = 3 [ alojuf dx .
Proof. This lemma is due to [2]. Let ¢(x) e Cy(2) such that ¢, =

1—>%,¢ in Q and =0 outside of 2. Then u = >, {u + {u in Q.
Hence we have
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. N 2
lult.o < (50000 + 1Etlho
§=

=1

< const. (;ﬁ S_lvjlz dy + Hpullé,g) ,

where v; = V/J,{u is in Cy(Z; U z;). It was indicated by Hayashida in
[2] that for any ¢ > 0 the inequality

[ wray<e[ jwiowray+ 2 [ il ay
24 25 e JIj

holds. Thus we can establish the proof with the aid of Lemma 2.
Now we introduce an integro-differential bilinear form:

Qlu,v] = Blu, qv] + L (yu + pw)-vdo ,

where

Blu, v] =J ( fl_l 0,0, + ZL} a0,u-v + au-v)dx .
2\i,j=1 i=1

1,7=

It is easily seen that u e C*(2) satisfies (1) and (2) if and only if it satis-
fies

(7) Qlu, v] = (¢f, )y + (V)1 , veC(2),

where (,), and (,), denote the usual inner products in L*(2) and L¥ ),
respectively. Hence we have only to deal with (7). This idea was used
in [4].

Throughout the paper we always assume condition (3).

PRrROPOSITION 1. There exist two positive constants c,, A, such thot
Qilu, ul > elpoulls,o + lIpulls,e + luli,r)
holds for every ue C=(2) and 2 > 4, where ||ul}, = (u, ), and
Q:lu-v] = Qlu, v] + A(u, qv) .
Proof. For ue C=(2) we have

l l
Qlu, u] = J. q< D0 O 00U + D) a0 u-u + auu)dx
2 i=1

i,7=1

+ o 3 aaaands + [ (Lo + pe)is
2 Jai5=1 r\ 2
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> % |poulf.e - Cllpulia + 5 [ Aw-vida
Log 4 Lo ;
+ | (504 + 57D + B)wds ,
r\2 2

where C is a constant and 4, = —3};_,9,a,,0;. Thus, using Lemmas 2
and 3, we can conclude the proposition.

For any ¢, 0 < ¢ < 1, putting ¢.(x) = q(x) + ¢, we define an integro-
differential bilinear form as

Q°[u, v] = Blu, q.v] + L (ru + pwvdo .

PROPOSITION 2. Let 2> 1, and t > 0. Then for every f e C=(2) and
every ¢ e C*(I"), there exists the unique u, € C=(2) which depends also on
2 and t, satisfying

(8) Qs lu, vl = (0., 0o + (0, ¥)r, veC(D).

Moreover it follows that there exists a constant ¢, > 0 independent of
e, 2 and t such that

(9)  cllpouse + Ipalse + A+ Dfwli ) <|nSke + llolhr
where p, = vq, and
Q;,.lu, v1 = Q[u, v] + Au, q,v) + t(u,v), .

Proof. By the same argument as in Proposition 1, we can imme-
diately obtain

Q:ilu, ul > a(|pdulf,e + [Ipulie + @ + Dllulf,r)

(10) X _
(=alllullR) , ueC(),
with ¢; = min (¢,,1). Clearly we have

{Q;,t[u, ul > ec; ||ulli
[Q3,:[u, v]] < const. ||ull,, |v],q »

where

l
ko = 35 [ 10uF do + ulta -

Accordingly we can apply the theorem of Riesz-Milgram-Lax which
guarantees the existence of the unique solution u, of (8) in H'(2). It is
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well known that u, is really in C=(9), since the problem is elliptic. In
fact u, satisfies

an {(A +du,. =1 in 9

(@ + 9ou, + 7u, + B+ Du, =9 on I'.
Substituting v = u, in (8) and using (10), we obtain
clllu b < Qs elu,u) = (q.f,4), + (p, u)r

< NpSlloa DM, 0 + N@llo,r %1,
L ([PS Mloa + el 2%].e 5

which proves (9).

Finally we shall define the Hilbert space H*(2; p) for integer k > 0.
By H({2), s real, we denote the Sobolev space with norm |-|l,,. Then
H*Q;p) is a Hilbert space given by the completion of C~(2) with respect
to the norm | ., p|; defined by

12) 1w il = lpo*ulls,0 + %lfi-12.0 -

2. Proof of Theorem 1.

Setting U, = 2 — (Uy., U;, we obtain the partition of unity {U,, ¢},
7=0,1,---,N, of 2. In the following we denote by U, {, t, 3,7,/ and K
one of U,,{;,65 2,25, J; and K; (j =1, -..,N), respectively, and assume
that by the transformation « the form Q:[u-v] is altered to, 1 fixed,

Pilu, v] = j ( 37 budu-0,(q0) + 37 bidau-qv + buqﬁv)dy
z\i7=1 i=1
+ j ou-vKdy + J puvKdy' + tj uwvKdy'

= Ifu, v] + II[u, v] + III[w, v] + IVIu, ],

with b;; = b;;. It then follows from (10) that there exists a constant
¢/ > 0 independent of ¢, 2 and ¢t such that

(13) c/(lpoull: + lIpuli: + Q + Dlulf ) < Pilu,ul,  uweCy(U) .

For any multi-integers p = (o, - - -, p,_,) such that |p| = o+ -+ 0,
=7r>1, we set

Ty = 8°(Cu) = 0% -+« 907 (Cw)

with 9; = 8/dy;. In the following propositions all constants are inde-

https://doi.org/10.1017/50027763000024569 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024569

14 YOSHIO KATO

pendent of ¢ and ¢ > 0.

PROPOSITION 3. There exist positive constants C;,Cy and Cy; depend-
ing only on the forms I, I1 and 111, respectively, such that

PTu, Tul — Pjlu, K"'T*KTu] < C(|ull,,s l10(@.Twlo,> + %l 5
+ Cyllulf,. + Cull%llr e | T, » ue C°(R)) ,

where Ky, y,)) = K(¥').
Proof. (1) Setting R =10;0, and S =4,;, and writting simply
(,)s=0(,) and [A,B] = AB — BA, we can compute as follows:
(RTu,Sq,Tu) = (Ru, T*Sq.Tu) + (IR, T1u, Sq,Tw)
= (Ru, T*Sq.K"'KTu) + (IR, Tlu, Sq.,Tw)
= (Ru,Sq K'T*KTu) + (Ru,[T*,Sq.K'1KTw)
+ (R, Tu, Sq,Tw)
= (Ru,Sq.K'T*KTu) + (Ru, [T*, Slq.Tw)
+ (IR, Tlu, Sq.Tw) + (Ru, S[T*, ¢, K~1KTu) .
Thus
I[Tu, Tul — Ilu, K'T*KTul < C(|ull,,z [0(q.Tw o, > + llulf 2)

l
+ Z b”alu * aﬂ)dy ’

I5,7=1

14

where we put v = [T*, q. K ']1KTu. Now

(Ru, Sv) + (Rv,Su) = (Ru, [T*, ¢ K'1IKTSu) + (Ru, [S, [T*, ¢.K'1KT]u)
+ ((T*, ¢ K 1KTRu, Sw) + (R, [T*, ¢ K '1KT1u, Suw)
= (Ru, {(IT*, ¢ K-'IKT + T*K[q.K, T)iSu) + O(ulL.;) ,

which implies
[(Ru, Sv) + (Bv, Sw)| < Culf, 5 -
This together with (14) and the fact b,; = b,; implies
I[Tu, Tul — Ilu, K T*KTu] < Cy(|ul,, s 10(qTw) o, > + |4l 5) -
(II) Next

1I[Tu, Tul = (Tou, KTw), + ([, Tlu, KTu).
= (ou, KK-'T*KTu), + ({5, Tlu, KTu), .
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Therefore we have
(15) [T, Tu] — uw, K7*T*KTul = ({9, Tlu, KTw). < Cyy ||,
(III) By the same way as (II) we have
III[Tu, Tul — 1w, K'T*KTul < Cllwlle_r 1T,
(IV) Finally
IVITu, Tu] — IV, K'T*KTu] = 0 .

Thus (D), (ID), (III) and (IV) conclude the proposition.
Now, by using (8), we shall estimate the term Pi[u, K-*T*KTu] with
1 = 4, which was introduced in Proposition 2. That is,

ProprosSITION 4. We have, with a suitable constant C > 0,
[Pilu,, K7 T*KTu,]| < C(|p.07 [ llo,x 00K T [, 2
F I bz s [ Tl s + ol 2 1 T, -
Proof. For the sake of simplicity, we write u, = . Then

Pilu, K'T*KTul = (Jq.f, K'T*KTu); + (o, KK'T*KTu),
= (K Jq.f,0'KTu)y + (o, T*KTu),
= (K Jq (=) f,0KTu); + (=), (K Jq.lf, o(KTw),
+ (o, T*KTu)., (0" = 0"0)
= (K Ip (=) f, po(KTu) s
— @l(=o), K~ Jq.lf, KTw; + (9, T*KTw). ,

from which we easily obtain the proposition.
PROPOSITION 5. There exists a constant C, > 0 such that

lpo w0 + 4 + DIk -
< Colflel? 0 + gilpeasfllﬁ,g + 1 22 [l irz,0 + @l
+ Cn Hus“i,[‘) .

Proof. Using (13) and Proposition 3 with « = u,, we can obtain,
with the aid of Proposition 4.

IPpoTwu 5, + 2Tl + A + DI Tu.l3,.
< Culwellr, o + :Zj::llpﬁ‘“fﬂﬁ,g 1S M2 120 1%l s12,0 + @l
+ Cu(lulfr, ) (=CF).
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Noting that this remains valid for any p = (o, - -+, p;_) With |p| <7, we
have, with a suitable constant C,,

st; (Ip2raCu) i, s + IpLulis,: + A + Do Cul i) < CF .

" With the aid of (11), we can assert that 9%(Cu,) can be written by a
linea’r Conbination of ajal(cue), ajak(cue) (.7’ k = 1’ Tty l— 1), aj(C%) (.7 = 1’
co D, Cu, Cf and [A,{Ju,. Hence we have

2 oo Cu)lis + A + 8 HZISTIIB"(C%)II?L, < GF .

lol<r-1
Repeating this process if r > 1, we finally obtain
0" (Cu)lis,> + A + 0 “ﬁzrlla”(Cus)Hﬁ,, < CF.
Clearly this remains also valid for ¢ = {,. Therefore applying this for
t=¢ (G=0,---,N) and using >V ,{, = 1l on 2, we obtain
D0 w50 + A + DIl < CF .
This completes the proof.

PROPOSITION 6. For every integer k > 2, we can find two constant
C, >0 and t, > 0 such that

D%, 15,0 + | %lfi-1/,0 < CellDI*f 0 + | fi-2m1r200 + l@lli-r,r)
18 valid for all ¢ and t > t,.

Proof. Using the preceding proposition in the case k=7 + 1 and
t > C,Cy (=t,), we have

”psakue ”g,l) + ” us”?z—l,l’

(16) 2 ks2 2 2
< Clulfi-1,0 + gollpﬁ“fﬂo,g + 1 le-2-172,0 1%lle-12,0 + l@lli-ir) -

From (11) and the coercive inequality for Dirichlet problem it fol-
lows

aam C U i-rz,0 — 1 -2m1/20 < N %elfiovr -

The interpolation inequality says that for any 6 > 0 there exists a
constant C; > 0 such that

18 lulfi-r,0 < 0 llUlfi-r/2,0 + Csllull,q » ueC=(2) .
Thus, the inequalities (16), (17) and (18) together with (9) immedi-
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ately imply the proposition.

In the below, Theorem 1 will be proved. We begin with the proof
in case feC~(Q) and pe C~(I'). So that we can use Propositions 1-6.
Proposition 6 becomes, by using the notation (12),

s plle < Cell S5 Pelli—e + l@lles,r) -

The theorem of Banach-Sacks guarantees that there exists a sequence
g > ¢ > -+ converging to zero such that, as n — co,

U, + - Fu
n

V, = Y in H¥Q; p) .

From (8) we have, setting B,[u,v] = Blu,v] + i(u,v),

Qz,:[’vm v] + Bz[elun + -0+ enum’v]
n

= (qf, )0 + (@0 + %ﬂ(ﬂ V), .

Noting that v, — u and e,u,, — 0 in H*"}(Q) as n — oo, we can derive

19) Q,:lu, v]1 = (@ f,v)g + (0, V)1, veC=(Q),

and hence the u satisfies (4). Moreover

1003 Dlle < %(uu“;puk b (s Dl

< C(175 Dl + lpllcrr + Ve + . Ven 19 ) -

Accordingly, we obtain (5) as n— co. It is easily seen that the unique-
ness of solution of (4) follows from (19) and Proposition 1.

Suppose now that f and ¢ are in H**®2;p) and H*'(I"), respec-
tively. Let f;€C~(2) and ¢;eC~(I") (j =1,2,---) such that f;— f in
H**(p;p) and ¢; — ¢ in H*'([') as j— co. For each j, we can find
u; € H*(2; p) whose existence has just been proved, satisfying (4) and (5)
with f = f; and ¢ = ¢;. We can immediately see that u; converges to
u in H*(Q;p) an j — . Thus we finally obtain that u is the unique
solution of (4) and satisfies (5).

§3. Proof of Corollary.

Assume that there exists an open neighbourhood U, of I'y in R' such
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that y =0 in V,=I"N U,, and that (I' — V) N U; is transformed by «;
to 5 C r;. Then we have instead of (15)

(15) [([9, T1u, KTu).| < Cu | ul?, -

Hence we can change, in Proposition 5, the term (.||, into ||«.|l, r_v,.
By the well known inequalities:

lllr, r-vy < const. ||2]lrs1,0-0,

< ol ullys1,0-00 + C, V]l 0
< C@|pa " ulle,o + Cslltllr,0) »

we obtain Proposition 5 with C; = 0. In this case we have ¢, = 0 in
Proposition 6. Thus we can assert Corollary.

§4. Proof of Theorem 2.

We asgume that I, = {x e l"; a(x) = 0} is a C~ manifold of dimen-
sion I — 2 and r is transversal to I, Let U, &;, 2, 7;,J;, K; and {; be
the same in §1. Here we further assume that for every j such that
U,NT,+@, the set U, N I, is transformed onto an open portion 7% of
¥, =0,y, =0 and y is altered to 4, =9, by «;, and 7({;(®)) =0 in a
neighbourhood V, of I,

LEMMA 4. There exists o positive C~ function h on I' such that
%7*(1@) +ph>0 onT,.

Proof. By Lemma 1, we have only to find & such that —yh +
@+ 20h>0 on I, For every j such that U; N I',+0, let k; be satis-
fying —o,h; + (b + 2p)h; =1. Then h = X{;h; is a desired one, since
16, =0o0n I,

Using this lemma, we can easily prove

LemMa 2. We can find a function q(x) e C=(2) satisfying
(i) ¢>0in 2 and q = ha on I
(ii) ({1 of Lemma 2.

(iii) There exists a positive constant ¢, such that

%ayq + %r*(h) +ph>ec, onlI.

If we define as
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Qlu, v] = Blu, qv] + L (hyu + hpwvds ,

then Propositions 1 and 2 with ¢ = 0 remain valid. We shall now show
that Proposition 3 also holds if Pilu, K"'T*KTu] and Cyllu|}. are re-
placed with Pi[u, (hK)'T*hKTu] and Cy | u| ., where ¢/ denotes the same
notation as in §3. In (I) of the proof of Proposition 3 we have only
to replace K with hK. In this case, the forms II and III become

II[u, v] = f o, hKvdo
and
T1I[w, v] = j pu-hKvdo .

Therefore we have

II[Tu, Tul = (3, Tu, hKTu),
= (To,u, hKTw), + ([0, T1u, hKTu),
= (@u, hK(WK)"'T*hKTu), + ([8,, Tlu, hKTu).
= Il{u, (hK)*T*hKTu] + (8, T1u, hKTw), .

Hence
II[Tw, Tu] — 11w, (hK)'T*hKTu] < Cy||ul? . ,
gince 9,{ = 0 in V,. It is obvious that
II[Tu, Tu] — II[u, (RK)'T*RKTu] < Cug || %oy, | T% |, -

Thus, Proposition 3 can be concluded in our case.

By the same argument as in §3, we obtain Proposition 5 with
Cy = 0. Finally we can complete the proof of Theorem 2 by the same
argument as in the proof of Theorem 1.
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