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APPROXIMATION BY MULTIPLE REFINABLE FUNCTIONS

R. Q. JIA, S. D. RIEMENSCHNEIDER, AND D. X. ZHOU

ABSTRACT. We consider the shift-invariant space, S(Φ), generated by a set Φ ≥
fû1, . . . ,ûrg of compactly supported distributions on Rwhen the vector of distributions
û :≥ (û1, . . . ,ûr)T satisfies a system of refinement equations expressed in matrix form
as

û ≥
X

ã2Z

a(ã)û(2 Ð �ã)

where a is a finitely supported sequence of r ð r matrices of complex numbers. Such
multiple refinable functions occur naturally in the study of multiple wavelets.

The purpose of the present paper is to characterize the accuracy of Φ, the order
of the polynomial space contained in S(Φ), strictly in terms of the refinement mask
a. The accuracy determines the Lp-approximation order of S(Φ) when the functions
in Φ belong to Lp(R) (see Jia [10]). The characterization is achieved in terms of the
eigenvalues and eigenvectors of the subdivision operator associated with the mask a.
In particular, they extend and improve the results of Heil, Strang and Strela [7], and
of Plonka [16]. In addition, a counterexample is given to the statement of Strang and
Strela [20] that the eigenvalues of the subdivision operator determine the accuracy. The
results do not require the linear independence of the shifts of û.

1. Introduction. In this paper we investigate approximation by integer translates
of multiple refinable functions. Multiple functions û1, . . . ,ûr on R are said to be refin-
able if they are linear combinations of the rescaled and translated functions ûj(2 Ð �ã),
j ≥ 1, . . . , r and ã 2 Z. The coefficients in the linear combinations determine the re-
finement mask. It is desirable to characterize the approximation order provided by the
multiple refinable functions in terms of the refinement mask. This study is important for
our understanding of multiple wavelets.

Our study of multiple refinable functions is based on shift-invariant spaces. Let S be
a linear space of distributions on R. If f 2 S implies f (Ð � ã) 2 S for all ã 2 Z, then S is
said to be invariant under integer translates, or simply, S is shift-invariant.

Let û be a compactly supported distribution on R, and let b:Z ! C be a sequence.
The semi-convolution of û with b, denoted û Ł0 b, is defined by

û Ł0 b :≥
X
ã2Z

û(Ð � ã)b(ã).
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MULTIPLE REFINABLE FUNCTIONS 945

Given a finite collection Φ ≥ fû1, . . . ,ûrg of compactly supported distributions on R,
we denote by S(Φ) the linear space of all distributions of the form

Pr
j≥1 ûj Ł0 bj, where

b1, . . . , br are sequences on Z. Clearly, S(Φ) is shift-invariant.
The linear space of all sequences from Z to C is denoted by ‡(Z). The support of a

sequence b on Z is defined by

supp b :≥ fã 2 Z : b(ã) Â≥ 0g .

The sequence b is said to be finitely supported if supp b is a finite set. The symbol of b is
the Laurent polynomial

b̃(z) :≥
X
ã2Z

b(ã)zã, z 2 C n f0g.

For an integer k ½ 0, Πk will denote the set of all polynomials of degree at most k.
We also agree that Π�1 ≥ f0g. An element u of ‡(Z) is called a polynomial sequence
if there exists a polynomial p such that u(ã) ≥ p(ã) for all ã 2 Z. Such p is uniquely
determined by u. The degree of u is the same as the degree of p.

For a positive integer r, Cr denotes the linear space of rð 1 vectors of complex num-
bers. By ‡(Z ! Cr) we denote the linear space of all sequences of r ð 1 vectors. As
usual, the transpose of a matrix A will be denoted by AT.

The Fourier transform of an integrable function f on R is defined by

f̂ (ò) ≥
Z
R

f (x)e�ixò dx, ò 2 R.

The Fourier transform has a natural extension to compactly supported distributions.
We will consider approximation in the space Lp(R) (1 � p � 1) with the p-norm of

a function f in Lp(R) denoted by kfkp. The distance between two functions f , g 2 Lp(R)
is distp(f , g) :≥ kf � gkp, while the distance from f to a subset G of Lp(R) is

distp(f , G) :≥ inf
g2G

kf � gkp.

For any p, 1 � p � 1, and a finite collection, Φ, of compactly supported functions
in Lp(R), set S :≥ S(Φ) \ Lp(R), and Sh :≥ fg(ÐÛh) : g 2 Sg for h Ù 0. Given a real
number s ½ 0, S(Φ) is said to provide Lp-approximation order s if, for each sufficiently
smooth function f 2 Lp(R),

distp (f , Sh) � Chs,

where C is a positive constant independent of h (C may depend on f ).
In [8] Jia characterized the L1-approximation order provided by S(Φ) as follows:

S(Φ) provides L1-approximation order k if and only if there exists a compactly supported
function † 2 S(Φ) such that

(1. 1)
X
ã2Z

†(Ð � ã)q(ã) ≥ q 8q 2 Πk�1.
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It follows from the Poisson summation formula that (1.1) is equivalent to the following
conditions:

(1. 2) †̂(j)(2ôå) ≥ éj0éå0 for j ≥ 0, 1, . . . , k � 1 and å 2 Z,

where †̂(j) denotes the j-th derivative of the Fourier transform of†. This equivalence was
observed by Schoenberg in his celebrated paper [18]. The conditions in (1.2) are now
referred to as the Strang-Fix conditions (see [19]). When Φ consists of a single generator
û, Ron [17] proved that S(û) provides L1-approximation order k if and only if S(û)
contains Πk�1. In [10] Jia proved that, for 1 � p � 1, S(Φ) provides Lp-approximation
order k if and only if S(Φ) contains Πk�1. We caution the reader that this result is no
longer true for shift-invariant spaces on Rd, d Ù 1. See the counterexamples given in [2]
and [3].

Following [7], we say that Φ has accuracy k if Πk�1 � S(Φ). Thus, S(Φ) provides
Lp-approximation order k for any p, 1 � p � 1, if and only if Φ is a subset of Lp(R)
and has accuracy k. However, the concept of accuracy does not require the members in
Φ to belong to any Lp(R).

Thus, from now on we allow Φ to be a finite collection of compactly supported distri-
butions û1, . . . ,ûr on R. For simplicity, we write û for the (column) vector (û1, . . . ,ûr)T ,
and write S(û) for S(fû1, . . . ,ûrg). We say that û has accuracy k if fû1, . . . ,ûrg does.

Let K(û) be the linear space defined by

(1. 3) K(û) :≥
²

b 2 ‡(Z ! Cr) :
X

ã2Z b(ã)Tû(Ð � ã) ≥ 0
¦

.

Since K(û) clearly represents linear dependency relations among the shifts of û1, . . . ,ûr,
we say that the shifts of û1, . . . ,ûr are linearly independent when K(û) ≥ f0g.

Now assume that û ≥ (û1, . . . ,ûr)T satisfies the following refinement equation:

(1. 4) û ≥
X
ã2Z

a(ã)û(2 Ð �ã),

where each a(ã) is an rð r matrix of complex numbers and a(ã) ≥ 0 except for finitely
manyã. Thus, a is a finitely supported sequenceof rðr matrices. We call a the refinement
mask.

The subdivision operator Sa associated with a is the linear operator on ‡(Z ! Cr)
defined by

Sau(ã) :≥
X
å2Z

a(ã � 2å)Tu(å), ã 2 Z,

where u 2 ‡(Z ! Cr). For the scalar case (r ≥ 1), the subdivision operator was studied
by Cavaretta, Dahmen, and Micchelli in [4].

When û1, . . . ,ûr are integrable functions on R and the shifts of û1, . . . ,ûr are linearly
independent, Strang and Strela [20] proved:û has accuracy k implies that the subdivision
operator Sa has eigenvalues 1, 1Û2, . . . , 1Û2k�1. In [16] Plonka obtained a similar result.
However, they did not give any criterion to check linear independence of the shifts of
û1, . . . ,ûr in terms of the refinement mask.

In Section 2 we will establish the following theorem without any condition imposed
on the finitely supported mask.
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THEOREM 1.1. Suppose û is a vector of compactly supported distributions on R sat-
isfying the refinement equation in (1.4) with mask a. If û has accuracy k, then 1, 1Û2, . . . ,
(1Û2)k�1 are eigenvalues of the subdivision operator Sa. Moreover, if a is supported in
[N1, N2], where N1 and N2 are integers, then a nonzero complex number õ is an eigen-
value of Sa if and only if õ is an eigenvalue of the block matrix�

a(�ã + 2å)T
�

N1�ã,å�N2
.

In [7], Heil, Strang, and Strela raised the question about whether the existence of the
eigenvalues 1, 1Û2, . . . , 1Û2k�1 for Sa is sufficient to ensure that û has accuracy k. They
conjectured that this would be true for the scalar case (r ≥ 1) if the shifts of û are linearly
independent. The following counterexample, which will be verified in Section 2, gives a
negative answer to their conjecture and disproves the statement of Strang and Strela [20]
that the eigenvalues of the subdivision operator determine the accuracy.

COUNTEREXAMPLE. Let a be the sequence on Z given by

a(0) ≥ 1Û2, a(1) ≥ 3Û4, a(2) ≥ 1Û2, a(3) ≥ 1Û4, and

a(ã) ≥ 0 for ã 2 Z n f0, 1, 2, 3g.

Then the subdivision operator Sa has eigenvalues 1, 1Û2, 1Û4. Let û be the solution of
the refinement equation û ≥

P
ã2Z a(ã)û(2 Ð �ã) subject to û̂(0) ≥ 1. Then û is a

compactly supported continuous function with linearly independent shifts. But û does
not have accuracy 2.

This example shows that the mere existence of the eigenvalues 1, 1Û2, . . . , 1Û2k�1

for Sa does not guarantee that û has accuracy k. In order to characterize the accuracy of
û in terms of the subdivision operator Sa, we will need to know information about the
corresponding eigenvectors of Sa.

In Section 3 we will prove the following theorem.

THEOREM 1.2. Let û ≥ (û1, . . . ,ûr)T be a vector of compactly supported distribu-
tions on R satisfying the refinement equation (1.4) with mask a. Then û has accuracy k,
provided that there exist polynomial sequences u1, . . . , ur of degree at most k � 1 satis-
fying the following two conditions:

(a) Sau ≥ (1Û2)k�1u, where u is given by u(ã) ≥
�
u1(ã), . . . , ur(ã)

�T
, ã 2 Z, and

(b)
Pr

j≥1 û̂j(0)uj has degree k � 1.

Under the conditions on linear independence or stability of the shifts of the func-
tions û1, . . . ,ûr, Heil, Strang, and Strela in [7], Plonka in [16], and Lian in [14] gave
methods to check the accuracy of û. In contrast to their methods, Theorem 1.2 only re-
quires information about eigenvectors of the subdivision operator Sa corresponding to
one eigenvalue.

Theorem 1.2 provides a lower bound for the accuracy of a vector of multiple refinable
functions. In some cases, however, it fails to give the optimal accuracy. For example, let
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û be the characteristic function of the interval [0, 2). Then û satisfies the refinement
equation

û(x) ≥ û(2x) + û(2x � 2), x 2 R,

with the mask a given by a(0) ≥ a(2) ≥ 1 and a(ã) ≥ 0 for all ã 2 Znf0, 2g. Let u be a
sequence on Z. Then the subdivision operator Sa has the property that Sau(2j+1) ≥ 0 for
all j 2 Z. If u is a polynomial sequence such that Sau ≥ õu for some nonzero complex
number õ. Then u vanishes at every odd integer; hence u is identically 0. This shows that
there is no polynomial sequence that is an eigenvector of Sa corresponding to a nonzero
eigenvalue. But û has accuracy 1. Theorem 1.2 fails to give the optimal accuracy of û,
so do the methods discussed in [7], [14], and [16].

To fill this gap, we will establish in Section 4 the following result which gives a char-
acterization for the accuracy of a vector of multiple refinable functions in terms of the
refinement mask.

THEOREM 1.3. Let û ≥ (û1, . . . ,ûr)T be a vector of compactly supported distribu-
tions on R satisfying the refinement equation (1.4). Then û has accuracy k if and only if
there exist polynomial sequences u1, . . . , ur on Z such that the element u 2 ‡(Z ! Cr)

given by u(ã) ≥
�
u1(ã), . . . , ur(ã)

�T
, ã 2 Z, satisfies

u Û2 K(û) and Sau � (1Û2)k�1u 2 K(û).

Our theory will be applied to an analysis of the accuracy of a class of double refinable
functions. Suppose û ≥ (û1,û2)T satisfies the refinement equation

û ≥
X
ã2Z

a(ã)û(2 Ð �ã),

where the mask is supported on [0, 2]. If we require that û1 be symmetric about x ≥ 1
and û2 anti-symmetric about x ≥ 1, then it is natural (see [12]) to assume that the mask
a has the following form: a(ã) ≥ 0 for ã 2 Z n f0, 1, 2g and

a(0) ≥
"

1Û2 sÛ2
t ï

#
, a(1) ≥

"
1 0
0 ñ

#
, a(2) ≥

"
1Û2 �sÛ2
�t ï

#
,

where s, t,ï,ñ are real numbers. If j2ï+ñj Ú 2, then by a result of Heil and Colella [6],
the above refinement equation has a unique distributional solution û ≥ (û1,û2)T subject
to the condition û̂1(0) ≥ 1 and û̂2(0) ≥ 0. Such a solution is said to be the normalized
solution. In Sections 3 and 4, we will give a detailed analysis of the accuracy of û. In
particular, we will show that û has accuracy 3 if and only if t Â≥ 0, ñ ≥ 1Û2, and
ï ≥ 1Û4 + 2st. Furthermore, û has accuracy 4 if and only if ï ≥ �1Û8, ñ ≥ 1Û2, and
st ≥ �3Û16.
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2. The Eigenvalue Condition. In this section we show that if a vector of multi-
ple refinable functions has accuracy k, then the corresponding subdivision operator has
eigenvalues 1, 1Û2, . . . , (1Û2)k�1.

Let û ≥ (û1, . . . ,ûr)T be a vector of compactly supported distributions on R. Sup-
pose û satisfies the refinement equation (1.4) with the mask a being a finitely supported
sequence of r ð r matrices. Let K(û) be the linear space defined in (1.3).

Let Sa be the subdivision operator associated with a. For b 2 ‡(Z ! Cr), we have

(2. 1)
X
ã2Z

b(ã)Tû(Ð � ã) ≥
X
ã2Z

(Sab(ã))T û(2 Ð �ã).

Indeed, since û satisfies the refinement equation (1.4), we have
X
ã2Z

b(ã)Tû(Ð � ã) ≥
X
ã2Z

b(ã)T X
å2Z

a(å)û(2 Ð �2ã � å) ≥
X
ç2Z

c(ç)Tû(2 Ð �ç),

where
c(ç) ≥

X
ã2Z

a(ç � 2ã)Tb(ã), ç 2 Z.

Hence c ≥ Sab. This verifies (2.1). It follows that K(û) is invariant under Sa.

THEOREM 2.1. Suppose û is a vector of compactly supported distributions on R sat-
isfying the refinement equation in (1.4) with mask a. If û has accuracy k, then 1, 1Û2, . . . ,
(1Û2)k�1 are eigenvalues of the subdivision operator Sa. Moreover, if a is supported in
[N1, N2], where N1 and N2 are integers, then a nonzero complex number õ is an eigen-
value of Sa if and only if õ is an eigenvalue of the block matrix

A[N1,N2] :≥
�
a(�ã + 2å)T

�
N1�ã,å�N2

.

PROOF. Let us prove the second statement first. For u 2 ‡(Z ! Cr), we have

(2. 2) Sau(�ã) ≥
X
å2Z

a(�ã � 2å)Tu(å) ≥
X
å2Z

a(�ã + 2å)Tu(�å), ã 2 Z.

For ã 2 [N1, N2] and å 2 Z n [N1, N2], we have �ã + 2å 2 Z n [N1, N2], for otherwise
one would have å ≥ (ã�ã+ 2å)Û2 2 [N1, N2]. Thus, for ã 2 [N1, N2], a(�ã+ 2å) Â≥ 0
only if å 2 [N1, N2]. Hence

(2. 3) Sau(�ã) ≥
N2X
å≥N1

a(�ã + 2å)Tu(�å), N1 � ã � N2.

Let P be the linear mapping defined by

Pu :≥
h
u(�N1), u(�N1 � 1), . . . , u(�N2)

iT
, u 2 ‡(Z ! Cr).

It follows from (2.3) that

(2. 4) PSa ≥ A[N1,N2]P.
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Suppose õ Â≥ 0 is an eigenvalue of the subdivision operator Sa. Then there exists a
nonzero element u 2 ‡(Z ! Cr) such that Sau ≥ õu. It follows that PSau ≥ õPu. This
in connection with (2.4) gives

A[N1,N2](Pu) ≥ õ(Pu).

But Pu Â≥ 0, for otherwise u would be 0 by (2.2). This shows that õ is an eigenvalue of
the matrix A[N1,N2].

Conversely, suppose [v(N1), v(N1 + 1), . . . , v(N2)]T is an eigenvector of A[N1,N2] cor-
responding to an eigenvalue õ Â≥ 0. For ã Ù N2, let v(ã) be determined recursively
by

v(ã) :≥
1
õ

ã�1X
å≥N1

a(�ã + 2å)Tv(å),

and, for ã Ú N1, let

v(ã) :≥
1
õ

N2X
å≥ã+1

a(�ã + 2å)Tv(å).

Let u be the element in ‡(Z ! Cr) given by u(ã) ≥ v(�ã), ã 2 Z. Then u is an
eigenvector of the subdivision operator Sa corresponding to the eigenvalue õ.

Now suppose û is a vector of compactly supported distributions on R satisfying the
refinement equation in (1.4) with mask a. If û has accuracy k, then S(û) contains the
monomials 1, x, . . . , xk�1. Let p be the monomial x 7! xj, where j 2 f0, 1, . . . , k � 1g.
Then there exists a nonzero vector b in ‡(Z ! Cr) such that

(2. 5) p ≥
X
ã2Z

b(ã)Tû(Ð � ã).

By (2.1), it follows that

p(ÐÛ2) ≥
X
ã2Z

(Sab(ã))T û(Ð � ã).

Note that p(xÛ2) ≥ (1Û2)jp(x), x 2 R. We deduce from the above two equations that
X
ã2Z

h
Sab(ã) � (1Û2)jb(ã)

iT
û(Ð � ã) ≥ 0.

Consequently,

(2. 6) Sab � (1Û2)j b 2 K(û).

Applying the linear operator P to Sab� (1Û2)j b and taking (2.4) into account, we obtain

(2. 7) A[N1,N2](Pb)� (1Û2)j(Pb) 2 P (K(û)) .

We claim Pb Û2 P
�
K(û)

�
. Indeed, if Pb 2 P

�
K(û)

�
, then there exists some c 2 K(û) such

that Pb ≥ Pc, i.e., b(�ã) ≥ c(�ã) for N1 � ã � N2. Since û is supported in [N1, N2],
û(Ð + ã) vanishes on (�1, 1) for ã Ú N1 or ã Ù N2. Consequently,X

ã2Z
b(ã)Tû(Ð � ã)j(�1,1) ≥

X
ã2Z

b(�ã)Tû(Ð + ã)j(�1,1)

≥
X
ã2Z

c(�ã)Tû(Ð + ã)j(�1,1) ≥
X
ã2Z

c(ã)Tû(Ð � ã)j(�1,1) ≥ 0,
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which contradicts (2.5). This verifies our claim that Pb Û2 P
�
K(û)

�
. Thus, (2.7) tells us

that (1Û2)j is an eigenvalue of A[N1,N2]. This is true for j ≥ 0, 1, . . . , k� 1. Therefore, we
conclude that Sa has eigenvalues 1, 1Û2, . . . , (1Û2)k�1, provided û has accuracy k.

The following example demonstrates that the mere existence of the eigenvalues
1, 1Û2, . . . , 1Û2k�1 of the corresponding subdivision operator is not sufficient to ensure
that û has accuracy k even when the shifts of û are linearly independent.

EXAMPLE 2.2. Let a be the sequence on Z given by

a(0) ≥ 1Û2, a(1) ≥ 3Û4, a(2) ≥ 1Û2, a(3) ≥ 1Û4, and

a(ã) ≥ 0 for ã 2 Z n f0, 1, 2, 3g.

Then the subdivision operator Sa has eigenvalues 1, 1Û2, 1Û4. Let û be the normalized
solution of the refinement equation û ≥

P
ã2Z a(ã)û(2 Ð �ã). Then û is a compactly

supported continuous function with linearly independent shifts. But û does not have ac-
curacy 2.

PROOF. First, û is a compactly supported continuous function. This can be proved by
using the results in [15] and [5]. The reader is also referred to [9, Theorems 3.3 and 4.1].
Indeed, we observe that the symbol of a can be factorized as ã(z) ≥ (1 + z)b̃(z), where

b̃(z) :≥ (2 + z + z2)Û4.

Thus, b(0) ≥ 1Û2, b(1) ≥ 1Û4, b(2) ≥ 1Û4, and b(ã) ≥ 0 for ã 2 Z n [0, 2]. We have

B0 :≥
�
b(2j � 1 � k)

�
1�j,k�2

≥

"
1Û2 0
1Û4 1Û4

#

and

B1 :≥
�
b(2j � k)

�
1�j,k�2

≥

"
1Û4 1Û2

0 1Û4

#
.

The maximum row sum norms of B0 and B1 are less than 1. Therefore, the uniform joint
spectral radius of B0 and B1 is less than 1, and û is continuous.

Second, the shifts of û are linearly independent. Indeed, ã(z) does not have symmetric
zeros. Moreover, if m Ù 1 is an odd integer and ° is an mth root of unity, then ã(°) Â≥ 0.
Therefore, by [13, Theorem 2], the shifts of û are linearly independent.

Third, since ã(z) is divisible by 1 + z but not by (1 + z)2, and since the shifts of û are
linearly independent, we conclude that Π0 ² S(û) but Π1 Â² S(û) (see [4] and [5]).

Finally, by Theorem 2.1, Sa and the matrix A[0,3] :≥
�
a(�ã + 2å)

�
0�ã,å�3

have the
same nonzero eigenvalues. But the eigenvalues of the matrix

A[0,3] ≥

0
BBB@

1Û2 1Û2 0 0
0 3Û4 1Û4 0
0 1Û2 1Û2 0
0 0 3Û4 1Û4

1
CCCA

are 1, 1Û2, 1Û4, and 1Û4. Hence the subdivision operator Sa has eigenvalues 1, 1Û2, 1Û4.
To summarize, all the statements in Example 2.2 have been verified.
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3. The Eigenvector Condition. In this section we give a method to test the accu-
racy of a vector of multiple refinable functions in terms of eigenvectors of the corre-
sponding subdivision operator.

For a function f on R, we use Df to denote its derivative. For h Ù 0,rhf is defined by
rhf :≥ f � f (Ð � h). In particular, we write r for r1. For a sequence b on Z, we define
rb :≥ b � b(Ð � 1). For n ≥ 2, 3, . . ., define rn :≥ r(rn�1).

THEOREM 3.1. Let û ≥ (û1, . . . ,ûr)T be a vector of compactly supported distribu-
tions on R satisfying the refinement equation (1.4) with mask a. Then û has accuracy k,
provided that there exist polynomial sequences u1, . . . , ur of degree at most k � 1 satis-
fying the following two conditions:

(a) Sau ≥ (1Û2)k�1u, where u is given by u(ã) ≥
�
u1(ã), . . . , ur(ã)

�T
, ã 2 Z, and

(b)
Pr

j≥1 û̂j(0)uj has degree k � 1.
If this is the case, then

(3. 1) cxk�1 ≥
rX

j≥1

X
ã2Z

uj(ã)ûj(x � ã), x 2 R,

where c ≥
Pr

j≥1 û̂j(0)rk�1uj(0)Û(k � 1)! Â≥ 0.

PROOF. Suppose u1, . . . , ur are polynomial sequences of degree at most k � 1 satis-
fying conditions (a) and (b). Set

(3. 2) p :≥
X
ã2Z

u(ã)Tû(Ð � ã) ≥
rX

j≥1

X
ã2Z

uj(ã)ûj(Ð � ã),

where u 2 ‡(Z ! Cr) is given by u(ã) ≥
�
u1(ã), . . . , ur(ã)

�T
, ã 2 Z. Since û satisfies

the refinement equation (1.4), by (2.1) we have

p ≥
X
ã2Z

(Sau(ã))T û(2 Ð �ã) ≥ (1Û2)k�1 X
ã2Z

u(ã)Tû(2 Ð �ã) ≥ (1Û2)k�1p(2 Ð).

An induction argument gives

p ≥ (1Û2)n(k�1) X
ã2Z

u(ã)Tû(2n Ð �ã), n ≥ 1, 2, . . . .

Let m be an integer greater than k � 1. Since u1, . . . , ur are polynomial sequences of
degree at most k � 1, we have rmuj ≥ 0 for j ≥ 1, . . . , r. It follows that

rm
1Û2n p ≥ (1Û2)n(k�1)

rX
j≥1

X
ã2Z

rmuj(ã)ûj(2n Ð �ã) ≥ 0, n ≥ 1, 2, . . . .

Thus, we have proved that p ≥ (1Û2)k�1p(2 Ð) and rm
1Û2n p ≥ 0 for all positive integers

n. We shall derive from these two facts that p(x) ≥ c xk�1 for some constant c.
For this purpose, we consider the convolution of p with a function † 2 C1

c (R). Since
p is a distribution on R, we have f :≥ pŁ† 2 C1(R) (see [1, p. 97]). Moreover,

rm
1Û2n f ≥

�
rm

1Û2n p
�
Ł† ≥ 0, n ≥ 1, 2, . . . .
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Consequently,

Dmf ≥ lim
n!1

(2n)mrm
1Û2n f ≥ 0.

It follows that (Dmp)Ł† ≥ 0 for all † 2 C1
c (R). Choose † 2 C1

c (R) such thatR
R †(x) dx ≥ 1. For n ≥ 1, 2, . . ., let †n :≥ †(ÐÛn)Ûn. Then (Dmp)Ł†n converges to

Dmp as n !1 in the following sense:

lim
n!1

h(Dmp)Ł†n, gi ≥ hDmp, gi 8 g 2 C1
c (R).

But (Dmp)Ł†n ≥ 0 for n ≥ 1, 2, . . .. Therefore Dmp ≥ 0, and so p is a polynomial of
degree less than m (see [1, p. 68]). Suppose p(x) ≥ c0 + c1x + Ð Ð Ð + cjxj for x 2 R with
cj Â≥ 0. Then we deduce from p ≥ (1Û2)k�1p(2 Ð) that

c0 + c1x + Ð Ð Ð + cjx
j ≥

�
c0 + 2c1x + Ð Ð Ð + 2jcjx

j
�
Û2k�1, x 2 R.

This happens only if j ≥ k � 1 and c0 ≥ c1 ≥ Ð Ð Ð ≥ cj�1 ≥ 0. Therefore, p(x) ≥ c xk�1

for some constant c. This in connection with (3.2) yields (3.1).
It remains to determine c. We observe that, for each j, rk�1uj is a constant sequence.

Let ïj :≥ rk�1uj(0)Û(k � 1)!, j ≥ 1, . . . , r. It follows from (3.1) that

c ≥ rk�1pÛ(k � 1)! ≥
rX

j≥1

X
ã2Z

ûj(Ð � ã)rk�1uj(ã)Û(k � 1)! ≥
X
ã2Z

 rX
j≥1

ïjûj

!
(Ð � ã).

By the Poisson summation formula we obtain

c ≥
� rX

j≥1
ïjûj

�
ˆ(0) ≥

rX
j≥1

û̂j(0)rk�1uj(0)Û(k � 1)! ≥ rk�1
� rX

j≥1
û̂j(0)uj

�
(0)Û(k � 1)!.

Since
Pr

j≥1 û̂j(0)uj has degree k � 1, c must be nonzero.
We have proved that S(û) contains the monomial xk�1. Since S(û) is shift-invariant,

it contains 1, x, . . . , xk�1. Therefore, we conclude that û has accuracy k.
Theorem 3.1 suggests the following algorithm to test the accuracy of a vector of mul-

tiple refinable functions.

ALGORITHM. Letû ≥ (û1, . . . ,ûr)T be a vector of compactly supported distributions
on R satisfying the refinement equation (1.4) with mask a supported in [0, N0], where N0

is a positive integer. Let k be a positive integer and N :≥ maxfN0, 2k � 1g.
Step 1. Find an eigenvector [v(0), v(1), . . . , v(N)]T of the matrix

�
a(�ã + 2å)T

�
0�ã,å�N

corresponding to the eigenvalue (1Û2)k�1.

Step 2. Suppose v(ã) ≥
�
v1(ã), . . . , vr(ã)

�T
for 0 � ã � N. Find the Lagrange interpo-

lating polynomials u1, . . . , ur of degree at most k � 1 such that uj(�ã) ≥ vj(ã)
for 0 � ã � k � 1 and j ≥ 1, . . . , r.

Step 3. Check whether uj(�ã) ≥ vj(ã) for all 0 � ã � N and j ≥ 1, . . . , r, and check
whether

Pr
j≥1 û̂j(0)uj has degree k�1. If the answer is yes, thenû has accuracy k.
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Let us justify our algorithm. Write õ for (1Û2)k�1. For 0 � ã � N, a(�ã + 2å) Â≥ 0
only if 0 � å � N. Hence we have

õv(ã) ≥
NX
å≥0

a(�ã + 2å)Tv(å) ≥
X
å2Z

a(�ã + 2å)Tv(å), 0 � ã � N.

It follows that, for �N � ã � 0,

õu(ã) ≥ õv(�ã) ≥
X
å2Z

a(ã + 2å)Tv(å) ≥
X
å2Z

a(ã � 2å)Tu(å) ≥ Sau(ã).

Suppose Sau(ã) ≥
�
w1(ã), . . . , wr(ã)

�T
for ã 2 Z. We observe that

Sau(2ã) ≥
X
å2Z

a(2ã � 2å)Tu(å) ≥
X
å2Z

a(2å)Tu(ã � å), ã 2 Z.

This shows that
�
wj(2ã)

�
ã2Z

(j ≥ 1, . . . , r) are polynomial sequences of degree at most
k � 1. But Sau(2ã) ≥ õu(2ã) for �(k � 1) � ã � 0. Therefore, Sau(2ã) ≥ õu(2ã)
for all ã 2 Z. Similarly, Sau(2ã � 1) ≥ õu(2ã � 1) for all ã 2 Z. In other words,
Sau ≥ õu ≥ (1Û2)k�1u. By Theorem 3.1, we conclude that û has accuracy k.

Let us apply our theory to the example mentioned in the introduction. Let a be the
sequence of 2 ð 2 matrices given by a(ã) ≥ 0 for ã 2 Z n f0, 1, 2g and

(3. 3) a(0) ≥
"

1Û2 sÛ2
t ï

#
, a(1) ≥

"
1 0
0 ñ

#
, a(2) ≥

"
1Û2 �sÛ2
�t ï

#
,

where ï,ñ, s, and t are real numbers.

EXAMPLE 3.2. Let a be the mask given by (3.3), and let û ≥ (û1,û2)T be a vector
of compactly supported distributions that satisfies the refinement equation

(3. 4) û ≥
2X

ã≥0
a(ã)û(2 Ð �ã)

subject to the condition û̂1(0) ≥ 1 and û̂2(0) ≥ 0. Suppose st Â≥ 0. Then
(a) û has accuracy 3 if and only if ñ ≥ 1Û2 and ï ≥ 1Û4 + 2st, and
(b) û has accuracy 4 if and only if ï ≥ �1Û8, ñ ≥ 1Û2, and st ≥ �3Û16.

PROOF. The matrix A[0,2] :≥
�
a(�ã + 2å)T

�
0�ã,å�2

has the form

(3. 5)

2
6666666664

1Û2 t 1Û2 �t
sÛ2 ï �sÛ2 ï

1 0
0 ñ

1Û2 t 1Û2 �t
sÛ2 ï �sÛ2 ï

3
7777777775

.

Since st Â≥ 0, A[0,2] has eigenvalues 1, 1Û2, 1Û4 if and only if ñ ≥ 1Û2 and ï ≥ 1Û4+2st.
Moreover, A[0,2] has eigenvalues 1, 1Û2, 1Û4, 1Û8 if and only if ï ≥ �1Û8, ñ ≥ 1Û2,
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and st ≥ �3Û16. In this case, 1, 1Û2, 1Û4, 1Û4, 1Û8, 1Û8 are all the eigenvalues of A[0,2].
Thus, by Theorem 2.1, û does not have accuracy 5 for any choice of the parameters.

Let us show that û has accuracy 3 if ñ ≥ 1Û2 and ï ≥ 1Û4+2st. In this case, we have
N0 ≥ 2, k ≥ 3, and N ≥ maxfN0, 2k�1g ≥ 5. We find an eigenvector [v(0), v(1), v(2)]T

of A[0,2] corresponding to the eigenvalue õ :≥ 1Û4 as follows:

v(0) ≥
"

t
�1Û4

#
, v(1) ≥

"
0
0

#
, v(2) ≥

"
t

1Û4

#
.

To find v(ã) for ã Ù 2, we may use the formula

(3. 6) v(ã) ≥
1
õ

ã�1X
å≥0

a(�ã + 2å)Tv(å).

In this way we obtain

v(3) ≥
"

4t
1Û2

#
, v(4) ≥

"
9t

3Û4

#
, v(5) ≥

"
16t
1

#
.

Choose u1(x) :≥ t(x + 1)2 and u2(x) ≥ �(x + 1)Û4 for x 2 R and set u(ã) :≥
[u1(ã), u2(ã)]T for ã 2 Z. Then u(�ã) ≥ v(ã) for 0 � ã � 5. Moreover,

2X
j≥1

û̂j(0)r2uj(0)Û2! ≥ t Â≥ 0.

Therefore, by Theorem 3.1, û has accuracy 3 and

(3. 7) x2 ≥
X
ã2Z

�
(ã + 1)2û1(x � ã) �

ã + 1
4t

û2(x � ã)
½
, x 2 R.

It is proved in [12] that û is continuous if ñ ≥ 1Û2, ï ≥ 1Û4 + 2st, and j2ï + ñj Ú 2.
Thus, û provides approximation order 3.

Now consider the case ï ≥ �1Û8, ñ ≥ 1Û2, and st ≥ �3Û16. In this case, we have
N0 ≥ 2, k ≥ 4, and N ≥ maxfN0, 2k�1g ≥ 7. We find an eigenvector [v(0), v(1), v(2)]T

of A[0,2] corresponding to the eigenvalue õ :≥ 1Û8 as follows:

v(0) ≥
"

1
2s

#
, v(1) ≥

"
0
0

#
, v(2) ≥

"
�1
2s

#
.

Using formula (3.6) to find v(ã) for ã Ù 2, we obtain

v(ã) ≥
"
�(ã � 1)3

2s(ã � 1)2

#
, for 3 � ã � 7.

Choose u1(x) :≥ (x +1)3 and u2(x) ≥ 2s(x +1)2 for x 2 R and set u(ã) :≥ [u1(ã), u2(ã)]T

for ã 2 Z. Then u(�ã) ≥ v(ã) for 0 � ã � 7. Moreover,

2X
j≥1

û̂j(0)r3uj(0)Û3! ≥ 1.
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Therefore, by Theorem 3.1, û provides approximation order 4 and

x3 ≥
X
ã2Z

�
(ã + 1)3û1(x � ã) + 2s(ã + 1)2û2(x � ã)

½
, x 2 R.

In fact, in this case, û ≥ (û1,û2)T can be solved explicitly:

û1(x) ≥

8><
>:

x2(�2x + 3) for 0 � x � 1,
(2 � x)2(2x � 1) for 1 � x � 2,
0 elsewhere,

and

û2(x) ≥

8><
>:

x2(x � 1)3Û(2s) for 0 � x � 1,
(2 � x)2(x � 1)3Û(2s) for 1 � x � 2,
0 elsewhere.

The special case ï ≥ �1Û8, ñ ≥ 1Û2, s ≥ 3Û2, and t ≥ �1Û8 was discussed
in [7].

4. A Characterization of Accuracy. In this section we give a complete charac-
terization for the accuracy of a vector of multiple refinable functions in terms of the
refinement mask. We also complete our study of the example discussed in the previous
section.

THEOREM 4.1. Let û ≥ (û1, . . . ,ûr)T be a vector of compactly supported distribu-
tions on R satisfying the refinement equation (1.4). Then û has accuracy k if and only if
there exist polynomial sequences u1, . . . , ur on Z such that the element u 2 ‡(Z ! Cr)
given by u(ã) ≥ (u1(ã), . . . , ur(ã))T, ã 2 Z, satisfies

(4. 1) u Û2 K(û) and Sau � (1Û2)k�1u 2 K(û).

Consequently, if the shifts of û1, . . . ,ûr are linearly independent, then û has accuracy k
if and only if there exist polynomial sequences u1, . . . , ur of degree at most k�1 such that

the vector u:ã 7!
�
u1(ã), . . . , ur(ã)

�T
(ã 2 Z) is an eigenvector for Sa corresponding

to the eigenvalue (1Û2)k�1.

PROOF. First observe that if the shifts of û1, . . . ,ûr are linearly independent, then
the first condition in (4.1) reduces to u Â≥ 0 because u Â≥ 0 implies u Û2 K(û) ≥ f0g.
Suppose u satisfies the conditions in (4.1). Set

(4. 2) p ≥
X
ã2Z

u(ã)Tû(Ð � ã) ≥
rX

j≥1

X
ã2Z

uj(ã)ûj(Ð � ã).

Evidently, u Û2 K(û) implies p Â≥ 0. Since u1, . . . , ur are polynomial sequences, there
exists a positive integer m such that rmuj ≥ 0 for j ≥ 1, . . . , r. Applying rm to both
sides of (4.2), we obtain

(4. 3) rmp ≥
rX

j≥1

X
ã2Z

rmuj(ã)ûj(Ð � ã) ≥ 0.
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Since û satisfies the refinement equation (1.4), by (2.1) and (4.1) we have

(4. 4) p ≥
X
ã2Z

(Sau(ã))Tû(2 Ð �ã) ≥ (1Û2)k�1 X
ã2Z

u(ã)Tû(2 Ð �ã) ≥ (1Û2)k�1p(2 Ð).

From these two facts we deduce that p(x) ≥ cxk�1 for some constant c (see the proof
of Theorem 3.1). Thus, S(û) contains the monomial xk�1, and so û has accuracy k. This
establishes the sufficiency part of the theorem.

If û has accuracy k, then S(û) contains the monomial p: x 7! xk�1, x 2 R. There
exist sequences u1, . . . , ur on Z such that (4.2) holds true. Obviously, u Û2 K(û). Also, p
satisfies (4.4). It follows thatX

ã2Z

h
Sau(ã) � (1Û2)k�1u(ã)

iT
û(2 Ð �ã) ≥ 0.

Hence Sau�(1Û2)k�1u 2 K(û). Thus, in order to prove the necessity part of the theorem,
it suffices to show that there exist polynomial sequences u1, . . . , ur that satisfy (4.2).
Choosing m to be k in (4.3), we obtain rkp ≥ 0. If the shifts of û1, . . . ,ûr are linearly
independent, then it follows thatrkuj ≥ 0 for j ≥ 1, . . . , r. Hence each uj is a polynomial
sequence of degree at most k�1. In general, this will be proved in the following lemma.

LEMMA 4.2. Let Φ ≥ fû1, . . . ,ûrg be a finite collection of compactly supported
distributions on R. If p is a polynomial in S(Φ), then there exist polynomial sequences
q1, . . . , qr such that

(4. 5) p ≥
rX

j≥1

X
ã2Z

qj(ã)ûj(Ð � ã).

PROOF. Since p lies in S(Φ), there exist sequences q1, . . . , qr on Z such that (4.5)
holds true. If the shifts ofû1, . . . ,ûr are linearly independent, then each qj is a polynomial
sequence, as was proved above.

In general, we shall prove the lemma by induction on the length of Φ. Let û be
a nonzero compactly supported distribution on R. Let [sû, tû] be the smallest integer-
bounded interval containing the support of û. The length of û is defined to be tû � sû,
and denoted by l(û). The length of Φ is defined by l(Φ) :≥

P
û2Φ l(û). For each ûj, let

sj :≥ sûj and tj :≥ tûj . After shifting ûj appropriately, we may assume that all sj ≥ 0.
If l(Φ) ≥ 0, then û1, . . . ,ûr are all supported at 0; hence the shifts of û1, . . . ,ûr are

linearly independent if and only if û1, . . . ,ûr are linearly independent. Choose a linearly
independent spanning subset Ψ of Φ. Then S(Φ) ≥ S(Ψ) and the shifts of the elements
in Ψ are linearly independent. Note further that the elements of S(Φ) are supported only
on the integers so that S(Φ) cannot contain a non-zero polynomial. Therefore, in what
follows we may assume without loss of any generality that the set fû 2 Φ : l(û) ≥ 0g is
linearly independent.

Suppose l(Φ) ½ 1. If the shifts of û1, . . . ,ûr are linearly dependent, then we can find
some í 2 C n f0g and (c1, . . . , cr) 2 Cr n f0g such that�

c1í
(), . . . , crí

()
�T
2 K(Φ),
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where í() denotes the sequence k 7! ík, k 2 Z (see [11, Theorem 3.3]). In other words,

(4. 6)
rX

j≥1

1X
k≥�1

cjí
kûj(Ð � k) ≥ 0.

Let l :≥ maxfl(ûj) : cj Â≥ 0g. Since the set fû 2 Φ : l(û) ≥ 0g is linearly independent,
we have l ½ 1. For simplicity, we assume that c1 Â≥ 0 and l(û1) ≥ l. Let

ö :≥
rX

j≥1
cjûj and † :≥

1X
k≥0

íkö(Ð � k).

By our choice of ö, we deduce from (4.6) that

1X
k≥�1

íkö(Ð � k) ≥ 0.

Since ö(Ð � k)j(l�1,1) ≥ 0 for k Ú 0, it follows that

†j(l�1,1) ≥
1X

k≥0
íkö(Ð � k)j(l�1,1) ≥

1X
k≥�1

íkö(Ð � k)j(l�1,1) ≥ 0.

Also, †j(�1,0) ≥ 0. Consequently, † is supported on [0, l � 1]. Moreover,

† � í†(Ð � 1) ≥
1X

k≥0
íkö(Ð � k)�

1X
k≥0

ík+1ö(Ð � k � 1) ≥ ö.

Let Ψ :≥ f†,û2, . . . ,ûrg. Clearly, S(Φ) � S(Ψ) and l(Ψ) Ú l(Φ).
Suppose p is a nonzero polynomial in S(Φ). If l(Φ) ≥ 1, then the shifts of û1, . . . ,ûr

are linearly independent. For otherwise, l(Ψ) ≥ 0 and p 2 S(Ψ), which is a contradiction.
Now suppose l(Φ) Ù 1. We have verified the lemma if the shifts of û1, . . . ,ûr are

linearly independent. Otherwise, we can find Ψ ≥ f†,û2, . . . ,ûrg with l(Ψ) Ú l(Φ) and
all the properties stated in the above. By the induction hypothesis, there exist polynomials
q1, q2, . . . , qr such that

p ≥
X
ã2Z

q1(ã)†(Ð � ã) +
rX

j≥2

X
ã2Z

qj(ã)ûj(Ð � ã).

If we can find a polynomial q such that

(4. 7) p ≥
X
ã2Z

q(ã)ö(Ð � ã) +
rX

j≥2

X
ã2Z

qj(ã)ûj(Ð � ã),

then the induction procedure will be complete, because ö is a linear combination of
û1, . . . ,ûr. But ö ≥ † � í†(Ð � 1). Hence we have

X
ã2Z

q(ã)ö(Ð � ã) ≥
X
ã2Z

h
q(ã) � íq(ã � 1)

i
†(Ð � ã).

It is easily seen that there exists a polynomial q such that q� íq(Ð � 1) ≥ q1. For this q,
(4.7) holds true. The proof of the lemma is complete.
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Now we are in a position to discuss the exceptional case st ≥ 0 in Example 3.2.

EXAMPLE 4.3. Let a:Z ! R2ð2 be the mask given in (3.3). Assume that j2ï+ñj Ú 2.
Let û ≥ (û1,û2)T be the normalized solution of the refinement equation (3.4). Suppose
st ≥ 0. For any choice of the parameters s, t, ï, and ñ (subject to the condition st ≥ 0),
û has accuracy 2 but does not have accuracy 4. Moreover, û has accuracy 3 if and only
if t Â≥ 0, ï ≥ 1Û4 and ñ ≥ 1Û2.

PROOF. The case t ≥ 0 is trivial. Indeed, in this case, û2 ≥ 0 and

(4. 8) û1(x) ≥

8><
>:

x for 0 � x Ú 1,
2 � x for 1 � x � 2,
0 otherwise.

So û has accuracy 2 but does not have accuracy 3.
In what follows, we assume that s ≥ 0 and t Â≥ 0. In this case, û1 is the function given

in (4.8). Thus, û has accuracy at least 2.
Let us first discuss the case where the shifts of û1 and û2 are linearly dependent. We

observe that the shifts of û1 are linearly independent. Let Φ :≥ fû1,û2g. If the shifts
of û1,û2 are linearly dependent, then from the proof of Lemma 4.2 we see that there
exists a compactly supported distribution † 2 S(Φ) such that Ψ :≥ fû1,†g satisfies
l(Ψ) Ú l(Φ) � 4 and S(Ψ) ≥ S(Φ). Thus, S(Ψ)j(0,1) has dimension at most 3. Hence
S(Φ) ≥ S(Ψ) does not contain Π3. This shows that û does not have accuracy 4. If û
has accuracy 3, then S(Ψ) ≥ S(Φ) � Π2. But the dimension of Π2j(0,1) is 3. Hence
S(Φ)j(0,1) ≥ S(Ψ)j(0,1) ≥ Π2j(0,1). This shows that û2j(0,1) is a quadratic polynomial.
Suppose

û2(x) ≥ c0x2 + c1x + c2, for 0 Ú x Ú 1,

where the leading coefficient c0 Â≥ 0. Since û2 is anti-symmetric about 1, we have

û2(x) ≥ �c0(2 � x)2 � c1(2 � x)� c2, for 1 Ú x Ú 2.

For 0 Ú x Ú 1Û2, the refinement equation (3.4) reads as û(x) ≥ a(0)û(2x), that is,
"
û1(x)
û2(x)

#
≥

"
1Û2 0

t ï

# "
û1(2x)
û2(2x)

#
.

It follows that
c0x2 + c1x + c2 ≥ ï(4c0x2 + 2c1x + c2) + t(2x).

Comparing the corresponding coefficients of the two sides of this equation, we obtain
ï ≥ 1Û4, c1 ≥ 4t, and c2 ≥ 0. For 1Û2 Ú x Ú 1, the refinement equation (3.4) reads as
follows:

û(x) ≥ a(0)û(2x) + a(1)û(2x � 1),

that is, "
û1(x)
û2(x)

#
≥

"
1Û2 0

t ï

# "
û1(2x)
û2(2x)

#
+
"

1 0
0 ñ

# "
û1(2x � 1)
û2(2x � 1)

#
.
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It follows that

c0x2 + c1x ≥ t(2 � 2x) + ï
h
�c0(2 � 2x)2 � c1(2 � 2x)

i
+ ñ

h
c0(2x � 1)2 + c1(2x � 1)

i
.

Comparing the corresponding coefficients of the two sides of this equation, we obtain
ñ ≥ 1Û2 and c0 ≥ �4t. This shows that û has accuracy 3 only if ï ≥ 1Û4 and ñ ≥ 1Û2.
If this is the case, then the proof of Example 3.2 shows that û has accuracy 3 and (3.7)
holds true. In addition,

û2(x) ≥

8><
>:

4tx(1 � x) for 0 � x Ú 1,
�4t(2 � x)(x � 1) for 1 � x � 2,
0 otherwise.

Since both û1 and û2 are continuous, we conclude that û provides approximation order
3.

We claim that the shifts of û2 are linearly dependent if ñ ≥ 2ï. Indeed, it follows
from the refinement equation (3.4) that

û2 ≥ ïû2(2 Ð) + ñû2(2 Ð �1) + ïû2(2 Ð �2) + tû1(2 Ð) � tû1(2 Ð �2).

Taking the Fourier transform of both sides of the above equation, we obtain

û̂2(ò) ≥ (ï + ñe�iòÛ2 + ïe�iò)û̂2(òÛ2)Û2 + (t � te�iò)û̂1(òÛ2)Û2 8 ò 2 R.

For k 2 Z, setting ò ≥ 2kô in the above equation gives û̂2(2kô) ≥ 0, provided ñ ≥ 2ï.
This verifies our claim.

It remains to deal with the case where the shifts of û1 and û2 are linearly independent.
In this case, if û has accuracy 3, then Theorem 4.1 tells us that there exist polynomials

u1 and u2 of degree at most 2 such that u:ã 7!
�
u1(ã), u2(ã)

�T
, ã 2 Z, satisfies u Â≥ 0

and Sau ≥ (1Û4)u. It follows that

(4. 9) u(ã) ≥ 4
X
å2Z

a(ã � 2å)Tu(å) 8 ã 2 Z.

Suppose u(1) ≥ [b1, b2]T . From (4.9) we deduce that

u(2n+1 � 1) ≥ 4a(1)Tu(2n � 1) ≥
"

4 0
0 4ñ

#
u(2n � 1), for n ≥ 1, 2, . . . .

An induction argument gives

(4. 10) u(2n+1 � 1) ≥
"

4nb1

(4ñ)nb2

#
, for n ≥ 0, 1, . . . .

It follows from (4.10) that u1(2n+1 �1) ≥ 4nb1 for n ≥ 0, 1, . . .. Since u1 is a polynomial
of degree at most 2, we have

u1(x) ≥ b1(x + 1)2Û4 8 x 2 R.
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Likewise, since u2 is a polynomial of degree at most 2, (4.10) holds true only if ñ ≥ 1,
1Û2, or 1Û4:

(4. 11) u2(x) ≥

8>><
>>:

b2(x + 1)2Û4, if ñ ≥ 1,
b2(x + 1)Û2, if ñ ≥ 1Û2,
b2, if ñ ≥ 1Û4.

Setting ã ≥ 2 in (4.9), we obtain

u(2) ≥ 4a(0)Tu(1) + 4a(2)Tu(0),

or,

(4. 12)
"

9b1Û4
u2(2)

#
≥ 4

"
1Û2 t

0 ï

# "
b1

b2

#
+ 4

"
1Û2 �t

0 ï

# "
b1Û4
u2(0)

#
.

If ñ ≥ 1Û4 and u2(x) ≥ b2, then the equation for the second component in (4.12)
implies that either ï ≥ 1Û8 or b2 ≥ u2(x) ≥ 0. In the first case, ñ ≥ 2ï and the shifts of
û2 are linearly dependent; a contradiction. In the second case, the equation for the first
component of (4.12) yields 9b1Û4 ≥ 5b1Û2 which implies b1 ≥ 0. But then u1 ≥ 0, in
contradiction to the fact that u Â≥ 0.

For the remaining cases in (4.11), we observe that, for the case s ≥ 0, the eigenvalues
of the matrix A[0,2] given in (3.5) are 1, 1Û2, 1Û2,ï,ï,ñ. Thus, if ñ Â≥ 1Û4, then û has
accuracy 3 implies ï ≥ 1Û4, by Theorem 2.1. Hence, when ñ ≥ 1 or ñ ≥ 1Û2, the
equation for the second component of (4.12) becomes u2(2) ≥ b2 + u2(0) which implies
b2 ≥ 0 for the u2 given in (4.11), and this would lead to a contradiction as before.
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