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APPROXIMATION BY MULTIPLE REFINABLE FUNCTIONS

R. Q. JA, S. D. RIEMENSCHNEIDER, AND D. X. ZHOU

ABSTRACT.  We consider the shift-invariant space, S(®), generated by aset ® =
{¢1,..., ¢} of compactly supported distributions on R when the vector of distributions
¢ = (¢1,...,¢r)T satisfiesasystem of refinement equations expressed in matrix form
as

o= a)¢2 - —a)

ac”

where ais afinitely supported sequence of r x r matrices of complex numbers. Such
multiple refinable functions occur naturally in the study of multiple wavelets.

The purpose of the present paper is to characterize the accuracy of @, the order
of the polynomial space contained in S(®), strictly in terms of the refinement mask
a. The accuracy determines the Lp-approximation order of S(®) when the functions
in ® belong to Lp(R) (see Jia [10]). The characterization is achieved in terms of the
eigenvalues and eigenvectors of the subdivision operator associated with the mask a.
In particular, they extend and improve the results of Heil, Strang and Strela [7], and
of Plonka [16]. In addition, a counterexample is given to the statement of Strang and
Strela[20] that the eigenvalues of the subdivision operator determine the accuracy. The
results do not require the linear independence of the shifts of ¢.

1. Introduction. In this paper we investigate approximation by integer translates
of multiple refinable functions. Multiple functions ¢4, ..., ¢, on R are said to be refin-
ableif they are linear combinations of the rescaled and translated functions ¢;(2 - —«),
j =1,...,rand o € Z. The coefficientsin the linear combinations determine the re-
finement mask. It is desirable to characterize the approximation order provided by the
multiple refinable functions in terms of the refinement mask. This study isimportant for
our understanding of multiple wavelets.

Our study of multiple refinable functions is based on shift-invariant spaces. Let Sbe
alinear spaceof distributionson R. If f € Simpliesf(- — «) € Sforal « € Z, then Sis
said to beinvariant under integer translates, or simply, Sis shift-invariant.

Let ¢ be acompactly supported distribution on R, and let b: Z — C be a sequence.
The semi-convolution of ¢ with b, denoted ¢ *" b, is defined by

6+ b= 3 ¢( — a)b(a).
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Given afinite collection ® = {¢1,..., ¢} of compactly supported distributions on R,
we denote by S(®) the linear space of all distributions of the form 35_, ¢ ' by, where
by, ..., by are sequenceson Z. Clearly, S(®) is shift-invariant.

The linear space of all sequencesfrom Z to C is denoted by £(Z). The support of a
sequence b on Z is defined by

suppb:={« € Z : b(a) # 0}.

The sequenceb is said to be finitely supported if suppb is afinite set. The symbol of bis
the Laurent polynomial

b2 := 3 bla)z%, zecC)\{0}.
ael

For an integer k > 0, Ny will denote the set of all polynomials of degree at most k.
We also agree that M_; = {0}. An element u of £(Z) is called a polynomial sequence
if there exists a polynomial p such that u(a) = p(«) for all « € Z. Such p is uniquely
determined by u. The degree of u is the same as the degree of p.

For a positiveinteger r, C" denotesthe linear space of r x 1 vectors of complex num-
bers. By ¢(Z — C") we denote the linear space of all sequencesof r x 1 vectors. As
usual, the transpose of amatrix A will be denoted by AT.

The Fourier transform of an integrable function f on R is defined by

fe) = /R fe ™ dx, ¢ eR.

The Fourier transform has a natural extension to compactly supported distributions.
We will consider approximation in the space L,(R) (1 < p < oo) with the p-norm of

afunction f in Lp(R) denoted by ||f||,. The distance between two functionsf, g € Ly(R)

isdisty(f,g) := ||f — g||p, while the distance from f to asubset G of L,(R) is

distp(f, G) := Inf [[f — gllp.

For any p, 1 < p < oo, and afinite collection, ®, of compactly supported functions
in Lp(R), set S := S(®) N Lp(R), and §' := {g(-/h) : g € S} for h > 0. Given areal
number s > 0, S(P) is said to provide Lp-approximation order sif, for each sufficiently
smooth function f € Lp(R),

dist, (f, S") < Ch®,

where C is apositive constant independent of h (C may depend on f).

In [8] Jia characterized the L.,-approximation order provided by S(®) as follows:
S(®P) providesL,-approximationorder kif and onlyif thereexistsa compactly supported
function ¢ € S(®) such that

1.1) > U —a)gla) =g Vge M.

ael
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It follows from the Poisson summation formula that (1.1) is equivalent to the following
conditions:

(1.2) WO @2rB) = 6jodso for j=10,1,...,k—1andB € Z,

where ¢0) denotesthej-th derivative of the Fourier transform of . Thisequivalencewas
observed by Schoenberg in his celebrated paper [18]. The conditions in (1.2) are now
referred to asthe Strang-Fix conditions (see[19]). When @ consistsof asingle generator
¢, Ron [17] proved that S(¢) provides L,-approximation order k if and only if S(¢)
contains My_s. IN[10] Jiaproved that, for 1 < p < oo, S(P) provides L,-approximation
order k if and only if S(®) contains NMy_;. We caution the reader that this result is no
longer true for shift-invariant spaceson RY, d > 1. See the counterexamplesgivenin [2]
and [3].

Following [7], we say that ® has accuracy K if My_; C S(®P). Thus, S(P) provides
Lp-approximation order k for any p, 1 < p < oo, if and only if @ is a subset of Ly(R)
and has accuracy k. However, the concept of accuracy does not require the membersin
® to belong to any Ly(R).

Thus, from now onwe allow @ to be afinite collection of compactly supported distri-
butions ¢1, .. ., ¢, on R. For simplicity, wewrite ¢ for the (column) vector (¢1, ..., ¢r)T,
and write S(¢) for S({ 1, ..., ¢r }). We say that ¢ hasaccuracy kif {¢1,..., ¢} does.

Let K(¢) bethe linear space defined by

(L.3) K(9) = { b€ (Z = €)1 Foey (@) 6( — ) = 0},

Since K(¢) clearly representslinear dependency relations among the shiftsof ¢, .. ., ¢,
we say that the shifts of ¢, ..., ¢ arelinearly independent when K(¢) = {0}.

Now assumethat ¢ = (¢4, ..., ¢r)" satisfiesthe following refinement equation:
(1.4) o= Ax)p2 —a),

ael

where each a(a) isanr x r matrix of complex numbersand a(«)) = 0 except for finitely
many «. Thus, aisafinitely supported sequenceof r x r matrices. We call atherefinement
mask.

The subdivision operator S, associated with a is the linear operator on £(Z — C')
defined by

Su(@) == > ala—28)"u(@), « €z,

BeL

whereu € ((Z — C"). For the scalar case (r = 1), the subdivision operator was studied
by Cavaretta, Dahmen, and Micchelli in [4].

When ¢4, ..., ¢ areintegrablefunctions on R and the shiftsof ¢, ..., ¢ arelinearly
independent, Strang and Strela[20] proved: ¢ hasaccuracyk implies that the subdivision
operator S, haseigenvalues1,1/2,...,1/2< In[16] Plonkaobtained asimilar result.
However, they did not give any criterion to check linear independence of the shifts of
®1, ..., ¢ interms of the refinement mask.

In Section 2 we will establish the following theorem without any condition imposed
on the finitely supported mask.
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THEOREM 1.1. Suppose ¢ isa vector of compactly supported distributions on R sat-
isfying the refinement equation in (1.4) with mask a. If ¢ hasaccuracyk, then1,1/2, .. .,
(1/2)%"* are eigenvalues of the subdivision operator S,. Moreover, if a is supported in
[N1, N2], where N; and N, are integers, then a nonzero complex number ¢ is an eigen-
value of S, if and only if ¢ is an eigenvalue of the block matrix

(a—a+ 26)T)N1§0(ﬂ§N2.

In[7], Hell, Strang, and Strelaraised the question about whether the existence of the
eigenvalues1,1/2,...,1/2< for S, issufficient to ensure that ¢ has accuracy k. They
conjectured that thiswould betruefor thescalar case (r = 1) if the shiftsof ¢ arelinearly
independent. The following counterexample, which will be verified in Section 2, givesa
negative answer to their conjecture and disprovesthe statement of Strang and Strela [20]
that the eigenvalues of the subdivision operator determine the accuracy.

COUNTEREXAMPLE. Let a be the sequenceon Z given by

a(0)=1/2, a(1) =3/4, a(2) =1/2, a(3) =1/4, and
a(a) =0fora €2\{0,1,2,3}.

Then the subdivision operator S, has eigenvalues1,1/2,1/4. Let ¢ be the solution of
the refinement equation ¢ = Y,z a(a)¢(2 - —a) subject to {é(O) = 1 Thengisa
compactly supported continuous function with linearly independent shifts. But ¢ does
not have accuracy 2.

This example shows that the mere existence of the eigenvalues 1,1/2,...,1/2%1
for S, does not guarantee that ¢ has accuracy k. In order to characterize the accuracy of
¢ in terms of the subdivision operator S,, we will need to know information about the
corresponding eigenvectors of S,.

In Section 3 we will prove the following theorem.

THEOREM 1.2. Let ¢ = (¢1,...,¢r)" bea vector of compactly supported distribu-
tions on R satisfying the refinement equation (1.4) with mask a. Then ¢ has accuracyk,
provided that there exist polynomial sequencesus, ..., U, of degreeat most k — 1 satis-
fying the following two conditions:

(@) Swu = (1/2)<*u, whereuisgivenby u(e) = (u(a), ... ,ur(oz))T, o €7, and

(b) I, #(0)y; has degreek — 1.

Under the conditions on linear independence or stability of the shifts of the func-
tions ¢1, ..., ¢r, Heil, Strang, and Strelain [7], Plonka in [16], and Lian in [14] gave
methods to check the accuracy of ¢. In contrast to their methods, Theorem 1.2 only re-
quires information about eigenvectors of the subdivision operator S, corresponding to
one eigenvalue.

Theorem 1.2 providesalower bound for the accuracy of avector of multiple refinable
functions. In some cases, however, it fails to give the optimal accuracy. For example, let
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¢ be the characteristic function of the interval [0,2). Then ¢ satisfies the refinement
equation

o) = d(2) +9(2x—2), xeR,

with themask agiven by a(0) = a(2) = 1anda(e) = Oforal o € Z\ {0,2}.Letubea
sequenceon Z. Then the subdivision operator S, hasthe property that S,u(2j +1) = Ofor
al j € Z.If uisapolynomial sequence such that S;u = ou for some nonzero complex
number o. Then u vanishesat every odd integer; henceuisidentically 0. This showsthat
there is no polynomial sequencethat isan eigenvector of S, corresponding to a nonzero
eigenvalue. But ¢ has accuracy 1. Theorem 1.2 fails to give the optimal accuracy of ¢,
so do the methods discussed in [7], [14], and [16].

Tofill this gap, wewill establishin Section 4 the following result which givesa char-
acterization for the accuracy of a vector of multiple refinable functions in terms of the
refinement mask.

THEOREM 1.3. Let ¢ = (¢1,...,¢r)" bea vector of compactly supported distribu-
tions on R satisfying the refinement equation (1.4). Then ¢ has accuracy k if and only if
there exist polynomial sequencesuy, ..., U on Z such that the elementu € ((Z — C")
given by u(@) = (Ux(@), .., (), a € Z, satisfies

ué K@) and Swu—(1/2%tueK().

Our theory will be applied to an analysisof the accuracy of a classof doublerefinable
functions. Suppose ¢ = (¢1, #»)" satisfies the refinement equation

¢= 2 a)p2 —a),
acl
where the mask is supported on [0, 2]. If we require that ¢; be symmetric about x = 1
and ¢, anti-symmetric about x = 1, thenit is natural (see[12]) to assumethat the mask
ahasthe following form: a(a) = 0 fora € Z \ {0, 1,2} and

a(0) — {1{2 sﬁz} A= [(1) 2} Ca@) = {1/t2 _SA/Z} ,

wheres, t, A, p arereal numbers. If |2 + | < 2, then by aresult of Heil and Colella[6],
the above refinement equation has a unique distributional solution ¢ = (¢1, #,)" subject
to the condition 3)1(0) = land &52(0) = 0. Such a solution is said to be the normalized
solution. In Sections 3 and 4, we will give a detailed analysis of the accuracy of ¢. In
particular, we will show that ¢ has accuracy 3 if and only if t # 0, u = 1/2, and
A = 1/4+ 2st. Furthermore, ¢ has accuracy 4 if and only if A = —1/8, p = 1/2, and
st=—3/16.
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2. The Eigenvalue Condition. In this section we show that if a vector of multi-
ple refinable functions has accuracy k, then the corresponding subdivision operator has
eigenvalues1,1/2,...,(1/2)«1.

Let ¢ = (é1,...,¢)" be avector of compactly supported distributions on R. Sup-
pose ¢ satisfies the refinement equation (1.4) with the mask a being afinitely supported
sequenceof r x r matrices. Let K(¢) be the linear space defined in (1.3).

Let S, be the subdivision operator associated with a. For b € ((Z — C"), we have

(2.1) > b(e) o —a) = ZZ (Sib(a))" $(2- —0).

ael

Indeed, since ¢ satisfies the refinement equation (1.4), we have
Sb(@)To(-— @) = 3 ble)" Y a@)g2 - —2a —B) = 3 c(1) ¢(2- ),

acl acl BeL Yez

where
e = > a(y —2a)"b(a), Y€EZ.

acl

Hencec = Sb. Thisverifies (2.1). It follows that K(¢) is invariant under S..

THEOREM 2.1. Suppose ¢ isa vector of compactly supported distributionson R sat-
isfying the refinement equation in (1.4) with mask a. If ¢ hasaccuracyk, then1,1/2, .. .,
(1/2)%"* are eigenvalues of the subdivision operator S,. Moreover, if a is supported in
[N1, N2], where N; and N, are integers, then a nonzero complex number ¢ is an eigen-
value of S, if and only if o is an eigenvalue of the block matrix

Ay = (a(—a+ Zﬁ)T)nga”@SNZ-

PrROOF. Let us provethe second statement first. For u € £(Z — C'), we have

22  SU(-a)=> a(—a—28)"u@) = > a(—a+28)'u(-p), «a€cZ

Bez Bez

For o € [N1,Nz] and 8 € Z \ [N, N2], we have —a + 23 € Z \ [N, N2], for otherwise
onewould have 3 = (a« —a+23)/2 € [N1, No]. Thus, for a € [Ny, No], a(—a+23) # 0
only if 8 € [Ny, N2]. Hence

2.3) SUCa) = 3 al—a+2)TUF), Ny <a <Ny,
B=Ny

Let P be the linear mapping defined by
Pu = [u(~N), u(~Ny — 1),...,u(~Np)|", ue ¢z — ).
It follows from (2.3) that

(2.9 PS: = ANy P
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Suppose o # 0 is an eigenvalue of the subdivision operator S,. Then there exists a
nonzero element u € ((Z — C") such that S;u = ou. It follows that PS;u = oPu. This
in connection with (2.4) gives

AN ;] (Pu) = a(Pu).

But Pu # 0, for otherwise u would be 0 by (2.2). This showsthat ¢ is an eigenvalue of
the matrix A, n,]-

Conversely, suppose [V(N1), V(N1 + 1),...,V(N2)]" is an eigenvector of A, n, COr-
responding to an eigenvalue o # 0. For o > Ny, let v(a) be determined recursively

by
a—1
V@) = 2 3 a(—a+28)Tv(),
0 g=N;
and, for a < Ny, let
N,
V@)1= > al-a+ 29)v(s).

f=a+l
Let u be the element in £(Z — C') given by u(e) = v(—), « € Z. Then uis an
eigenvector of the subdivision operator S, corresponding to the eigenvalue .

Now suppose ¢ is a vector of compactly supported distributions on R satisfying the
refinement equation in (1.4) with mask a. If ¢ has accuracy k, then S(¢) contains the
monomials 1,%, ...,x<"1. Let p be the monomial x — X, wherej € {0,1,...,k — 1}.
Then there exists anonzero vector b in ¢(Z — C") such that
(2.5) p= % b(e)"¢(- — ).

By (2.1), it follows that
p(-/2) = ZZ (Sab() 6(- — @).

Notethat p(x/2) = (1/2)'p(x), x € R. We deduce from the above two equations that
> [8b(@) — (1/2b(e)] " o(- — @) = 0.

ac’l
Consequently,
(2.6) Sib— (1/2) b € K(¢).
Applying thelinear operator P to Sib— (1/ 2)| b and taking (2.4) into account, we obtain
(2.7) A, (Pb) — (1/2) (Pb) € P(K(9)).

WeclaimPb ¢ P(K(¢)). Indeed, if Pb € P(K(¢)), then there existssomec € K(¢) such
that Pb = Pc, i.e, b(—a) = c(—a) for Np < o < Np. Since ¢ is supported in [Nz, Nz],
¢(- + o) vanisheson (—1,1) for o« < Ny or o > N,. Consequently,

> b(@) o( — @)1y = X b(—=a) d(- + @)1

acl acl
=Y ()¢ + @)1y = 3 (@) (- — @)1 = O,
ael acl
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which contradicts (2.5). This verifies our claim that Pb ¢ P(K(¢)). Thus, (2.7) tells us
that (1/2) isan eigenvalueof A, n,j- Thisistrueforj = 0,1,...,k— 1. Therefore, we
concludethat S, haseigenvalues1,1/2,...,(1/2)*, provided ¢ hasaccuracy k. =

The following example demonstrates that the mere existence of the eigenvalues
1,1/2,...,1/2%1 of the corresponding subdivision operator is not sufficient to ensure
that ¢ has accuracy k even when the shifts of ¢ are linearly independent.

ExAMPLE 2.2. Let a be the sequenceon Z given by
a(0) =1/2, a(1) =3/4, a(2) =1/2, a(3) =1/4, and
a(a) =0fora €2\{0,1,2,3}.

Then the subdivision operator S, has eigenvalues1,1/2,1/4. Let ¢ be the normalized
solution of the refinement equation ¢ = Y ,c7 a(a)p(2 - —a). Then ¢ is a compactly
supported continuous function with linearly independent shifts. But ¢ does not have ac-
curacy 2.

PrROOF.  First, ¢ isacompactly supported continuousfunction. Thiscan beproved by
using theresultsin [15] and [5]. The reader isalso referred to [9, Theorems§.3 and 4.1].
Indeed, we observe that the symbol of a can be factorized as a(z) = (1 + 2)b(z), where

b2 ;= 2+z+2)/4.
Thus, b(0) = 1/2,b(1) = 1/4,b(2) = 1/4, and b(r) = Ofor o € Z \ [0, 2]. We have

' 1/2 O
Bo:= (b2 —1— k))lgj,kgz - {1?4 1/4}

and

B := (b(2j — K) 1/4 1/2} .

1<jk<2 — [ 0 1/4
The maximum row sum norms of By and B; arelessthan 1. Therefore, the uniform joint
spectral radius of By and B, islessthan 1, and ¢ is continuous.

Second, the shifts of ¢ arelinearly independent. Indeed, a(z) does not have symmetric
zeros. Moreover, if m > 1isan odd integer and w is an mth root of unity, then &(w) # 0.
Therefore, by [13, Theorem 2], the shifts of ¢ are linearly independent.

Third, since &(2) is divisible by 1 + zbut not by (1 + 2)?, and since the shifts of ¢ are
linearly independent, we concludethat My C S(¢) but My ¢ S(#) (see [4] and [5]).

Finaly, by Theorem 2.1, S; and the matrix Ajg3 = (a(—a + 25)) 0<a <3 have the
same nonzero eigenvalues. But the eigenvalues of the matrix o

( 1/2 1/2 0 0
| 0 3/4 1/4 0
Aoa = | ¢ 1/2 1/2 0
\ 0 0 3/4 1/4
arel,1/2,1/4,and 1/4. Hencethe subdivision operator S, haseigenvalues1,1/2,1/4.
To summarize, al the statements in Example 2.2 have been verified. ]
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3. The Eigenvector Condition. In this section we give a method to test the accu-
racy of a vector of multiple refinable functions in terms of eigenvectors of the corre-
sponding subdivision operator.

For afunctionf on R, we use Df to denoteits derivative. For h > 0, V,f isdefined by
Vif :=f —f(- —h). In particular, we write V for V1. For asequenceb on Z, we define
Vb:=b—b(-—1).Forn=2,3,..., define V" := V(V"1).

THEOREM 3.1. Let ¢ = (¢1,...,¢r)" be a vector of compactly supported distribu-
tions on R satisfying the refinement equation (1.4) with mask a. Then ¢ has accuracyk,
provided that there exist polynomial sequencesus, ..., U, of degreeat most k — 1 satis-
fying the following two conditions:

(8) Swu = (1/2)<'u, whereuisgiven by u(a) = (u(a), ... ,ur(oz))T, a €7, and

(b) =_; ¢;(0)y; hasdegreek — 1.

If thisis the case, then

(3.1) L= T u(@dx—a), xR,

j=lac?
wherec = X_; ¢;(0)V¥ "y (0)/ (k — 1)! # 0.
PROOF. Supposeuy, ..., U, are polynomial sequencesof degree at most k — 1 satis-
fying conditions (@) and (b). Set

r

3.2 pi= ZZU(a)T¢(~ —a) = Zl ZZ Uj(a)e(- — o),
[e4S] 1=lae
whereu € ((Z — C") isgiven by u(a) = (ul(a), e ur(oz))T, o € Z. Since ¢ sdtisfies
the refinement equation (1.4), by (2.1) we have
pP= 2 (SU(@) ¢(2- —a) = (1/2) 3" u(@)'¢(2- —a) = (1/2)*p(2).

ael ael
An induction argument gives
p=(1/2" DS u@) ¢ —a), n=12,....
ac”l

Let m be an integer greater than k — 1. Since uy, ..., Uy are polynomial sequences of
degreeat most k — 1, wehave V™y; = Oforj = 1,...,r. It follows that

YES (1/2)"D i STV (a)p (2" —a) =0, n=1,2,....

j=lacZ

Thus, we have proved that p = (1/2)*p(2-) and V’ln/znp = Ofor al positive integers
n. We shall derive from these two facts that p(x) = ¢cx*~ for some constant c.
For this purpose, we consider the convolution of p with afunction iy € C°(R). Since

pisadistribution on R, we havef := pxy € C*(R) (see[1, p. 97]). Moreover,
Viinf = (VI)mp)* =0, n=1,2,....
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Consequently,
me _ |; nymy—om _
D = lim (2")"Vy)f = 0.

It follows that (D™p)+xy = O for al ¢ € C°(R). Choose ¢v € C2°(R) such that
JrY()dx = 1. Forn = 1,2,..., let ¥ := ¥(-/n)/n. Then (D™p)*yn converges to
D™p asn — oo in the following sense:

Nim ((D"p)*¢n, ) = (D"p,g) Vg < CI(R).
But (D™p)*yy, = Oforn = 1,2,.... Therefore D™p = 0, and so p is a polynomial of
degree less than m (see [1, p. 68]). Suppose p(X) = Co + c1x + - - - + X for x € R with
¢ # 0. Then we deducefrom p = (1/2)%1p(2-) that

Co+Cix+---+GX = (co+2ex+--- +2gxX) /2T, xeR.

This happensonly ifj = k—landco = ¢; = - -+ = ¢_1 = 0. Therefore, p(x) = cx<1
for some constant ¢. Thisin connection with (3.2) yields (3.1).

It remainsto determine c. We observe that, for each j, V¥~1u; is a constant sequence.
Let \j := VK14 (0)/(k— 1), j = 1,...,r. It follows from (3.1) that

0= V¥ ip/ = Dt = 33 o — @)V (@) (k- 2! = 55 rl/\jéj)( —a).

j=lacz acl \j=

By the Poisson summation formula we obtain
o= (X6 )0 = X 5OV )/ K- 1) = V(33,00 @)/ k- 1.
=1 =1 j=1

Since ©j_; fz)j (O)y; has degree k — 1, ¢ must be nonzero.
We have proved that S(¢) contains the monomial X<, Since S(¢) is shift-invariant,
it contains 1, , ..., X1, Therefore, we concludethat ¢ has accuracy k. ]
Theorem 3.1 suggeststhe following algorithm to test the accuracy of avector of mul-
tiple refinable functions.

ALGORITHM. Leté = (¢1,...,é,)" beavector of compactly supported distributions
on R satisfying the refinement equation (1.4) with mask a supported in [0, No], where Ng
isapositive integer. Let k be a positiveinteger and N := max{Np, 2k — 1}.
Step 1. Find an eigenvector [v(0), v(1), ..., V(N)]" of the matrix (a(—a +23)")

corresponding to the eigenvalue (1/ 2)k-1,

Step 2. Supposev(a) = (va(«), ... ,vr(oc))T for 0 < a < N. Find the Lagrangeinterpo-
lating polynomialsuy, . .., u; of degree at most k — 1 such that uj(—ca) = vj(«)
for0<a<k—landj=1,...,r.

Step 3. Check whether uj(—a) = vi(a) foral 0 < o« < Nandj = 1,...,r, and check
whether >7_; 5),- (O)u; hasdegreek—1. If theanswer isyes, then ¢ hasaccuracy k.

0<a,3<N
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Let usjustify our algorithm. Write o for (1/2) . For 0 < o < N, a(—a +26) # 0
only if 0 < 8 < N. Hencewe have

@) = 3 al—a+25)v(5) = 3 a(—a+2)Tv(5), 0<a <N,

£6=0 BeL

It follows that, for —N < o <0,

ou(a) = ov(—a) = 3 ala +268)(B) = HZZa(Ot —20)"u(B) = Sw(@).

ez
Suppose Suu(a) = (wi(a), ... ,wr(oc))T for o € Z. We observe that

Su2e) = 3 a2 —26)"u(@) = Y a@2d) @ — ), «€Z.
pez pez
This shows that (w; (Za))ael (i =1,...,r) are polynomial sequencesof degree at most
k — 1. But Su(2a) = ou(2a) for —(k — 1) < o < 0. Therefore, Su(2a) = ou(2x)
fordl a € Z. Smilarly, S;u(2a — 1) = ou(2a — 1) for al o« € Z. In other words,
S = ou = (1/2)*"1u. By Theorem 3.1, we conclude that ¢ has accuracy k.
Let us apply our theory to the example mentioned in the introduction. Let a be the
sequence of 2 x 2 matrices given by a(o) = Ofor o € 72\ {0, 1,2} and

ey ao=|Y7 %P aw=[g 0] w@=[Y2 7.

where A, i1, S, and t are real numbers.

EXAMPLE 3.2. Let a be the mask given by (3.3), and let ¢ = (¢1, $2)" be avector
of compactly supported distributions that satisfies the refinement equation

2
(3.4) ¢ = Zoa(a)¢(2' —a)
subject to the condition ¢, (0) = 1 and ¢»(0) = 0. Supposest # 0. Then

(@) ¢ hasaccuracy 3if andonly if y = 1/2and A = 1/4+ 2st, and
(b) ¢ hasaccuracy 4if andonly if A = —1/8, = 1/2,and st = —3/16.

PROOF.  Thematrix Az = (a(—a+28)7) _ 4, Nestheform
1/2 t 1/2 —t
s/2 A —s/2 )
1 0
(3.5) o .
12 t 1/2 -t

s/2 X —s/2 )\

Sincest # 0, Ajpy haseigenvalues1,1/2,1/4if andonlyif u = 1/2and A = 1/4+2st.
Moreover, Ajgz has eigenvalues1,1/2,1/4,1/8if andonly if A = —1/8, . = 1/2,
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andst = —3/16.Inthiscase, 1,1/2,1/4,1/4,1/8,1/8areall the eigenvaluesof Ay ;.
Thus, by Theorem 2.1, ¢ does not have accuracy 5 for any choice of the parameters.

Let usshow that ¢ hasaccuracy 3if p = 1/2and A = 1/4+2st. Inthis case, we have
No = 2,k = 3,and N = max{No, 2k — 1} = 5. Wefind an eigenvector [v(0), v(1), v(2)]"
of Aoz corresponding to the eigenvalue o := 1/4 asfollows:

- 4] -3 (1]

To find v(«) for o > 2, we may use the formula

a—1
3.6 V@) = = 5" al—a+29)V(0).
=0
In this way we obtain
@[] wo0-[ ). o-[7]
Choose uy(X) = t(x + 1)? and up(x) = —(x + 1)/4 for x € R and set u(a) =

[us(@), Up(@)]" for a € Z. Then u(—a) = v(a) for 0 < o < 5. Moreover,
2 ~
Z;qu(O)Vzuj 0)/2! =t#0.
J:

Therefore, by Theorem 3.1, ¢ has accuracy 3 and

(3.7) =3 [(a FDPor(x— ) — L g0 a)], x € R.

ae” 4t
Itis proved in [12] that ¢ is continuousif p = 1/2, A = 1/4+2st, and [2)\ + p| < 2.
Thus, ¢ provides approximation order 3.
Now consider thecase A = —1/8, u = 1/2,and st = —3/16. In this case, we have
No = 2,k = 4,and N = max{No, 2k — 1} = 7. Wefind an eigenvector [v(0), v(1), v(2)]"
of Ajoz corresponding to the eigenvalueo := 1/8 asfollows:

1 0 -1
Using formula (3.6) to find v(«) for o > 2, we obtain

_[Aa—1?
V() = {25(01 —1)2

}, for 3<a<7.

Chooseuy(x) := (x+1)% and up(x) = 28(x+1)? for x € R and set u(a) := [uy(a), uz()]”
for o € Z. Thenu(—a) = v(&) for 0 < o« < 7. Moreover,

2 ~
> OVA(0)/3t = 1
Z
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Therefore, by Theorem 3.1, ¢ provides approximation order 4 and

= 3 [(a+ 1(x — o) + 25(a + DPholx— @), xER.

acl

Infact, in this case, ¢ = (¢1, #2)" can be solved explicitly:

x?(—2x + 3) foro<x<1,
P10 =< (2—x?(2x—1) forl<x<2,
0 elsewhere,
and
X2(x — 1)3/(29) foro<x <1,
6200 = ¢ 2—x?(x—1)3/(29) forl<x<?2,
0 elsewhere.
The special case A = —1/8, u = 1/2,s = 3/2,andt = —1/8 was discussed
in[7). .

4. A Characterization of Accuracy. In this section we give a complete charac-
terization for the accuracy of a vector of multiple refinable functions in terms of the
refinement mask. We also complete our study of the example discussed in the previous
section.

THEOREM 4.1. Let ¢ = (¢1,..., )" bea vector of compactly supported distribu-
tions on R satisfying the refinement equation (1.4). Then ¢ has accuracy k if and only if
there exist polynomial sequencesuy, ..., U on Z such that the element u € ((Z — C")
given by u(e) = (ug(@), ..., u (o))", o € Z, satisfies

(4.1) ué K(g) and Swu—(1/2%ueK().

Consequently, if the shifts of ¢4, ..., ¢ arelinearly independent, then ¢ has accuracy k
if and only if there exist polynomial sequencesuy, . . ., U, of degreeat most k— 1 such that
the vector u: o — (us(a), ... ,ur(oz))T (a € Z) is an eigenvector for S, corresponding
to the eigenvalue (1/2)<1.

PROOF. First observe that if the shifts of ¢4, ..., ¢, are linearly independent, then
the first condition in (4.1) reducesto u # O becauseu # O impliesu ¢ K(¢) = {0}.
Suppose u satisfies the conditionsin (4.1). Set

4.2) p= 3 o) o(- ~ ) = zl > (@)~ )
ac J=1lae

Evidently, u ¢ K(¢) impliesp # 0. Since u, ..., u, are polynomial sequences, there
exists a positive integer m such that V™y; = Oforj = 1,...,r. Applying V™ to both
sides of (4.2), we obtain

4.3) V=3 3 V() — ) = 0.

j=lac?
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Since ¢ satisfiesthe refinement equation (1.4), by (2.1) and (4.1) we have
4.4) p= 2 (SU@) ¢2- —a) = (1/2 3 u(@) é(2- —a) = (1/2)*p(2").

acl acl
From these two facts we deduce that p(x) = cx¥~! for some constant ¢ (see the proof
of Theorem 3.1). Thus, S(¢) contains the monomial X<~1, and so ¢ has accuracy k. This
establishes the sufficiency part of the theorem.

If ¢ has accuracy k, then S(¢) contains the monomial p:x — X1, x € R. There
exist sequencesuy, ..., U, on Z such that (4.2) holds true. Obviously, u ¢ K(¢). Also, p
satisfies (4.4). It follows that

> [Su(e) — 2 ()] 42 —a) = 0.

ac
Hence S.u—(1/2)%"tu € K(¢). Thus, in order to provethe necessity part of the theorem,
it suffices to show that there exist polynomial sequences uy, ..., U, that satisfy (4.2).
Choosing mto be k in (4.3), we obtain VKp = 0. If the shifts of ¢1,..., ¢, arelinearly
independent, then it followsthat Vu, = Oforj = 1,...,r. Henceeachy; isapolynomial
sequenceof degreeat most k— 1. In general, thiswill be provedin thefollowing lemma. m

LEMMA 4.2. Let ® = {¢1,...,¢r} be afinite collection of compactly supported
distributions on R. If p is a polynomial in S(®), then there exist polynomial sequences
di, - - -, 0 suchthat

4.5) p= zl > ()i —a)
1=1lac

PROCF. Since p lies in S(®P), there exist sequencesqs, ..., q: on Z such that (4.5)
holdstrue. If the shiftsof ¢4, . . ., ¢, arelinearly independent, then each g isapolynomial
sequence, as was proved above.

In general, we shall prove the lemma by induction on the length of ®. Let ¢ be
a nonzero compactly supported distribution on R. Let [s,, ;] be the smallest integer-
bounded interval containing the support of ¢. The length of ¢ is defined to bet, — s,
and denoted by 1(¢). The length of ® is defined by I(P) = X ,co I(¢). For each ¢;, let
§ = s andtj = t,,. After shifting ¢; appropriately, we may assumethat al 5 = 0.

If I(®) = 0, then ¢4, ..., ¢, are al supported at 0; hence the shifts of ¢4, ..., ¢ are
linearly independent if and only if ¢1,. .., ¢, arelinearly independent. Choosealinearly
independent spanning subset W of ®. Then S(®) = S(W) and the shifts of the elements
in Y are linearly independent. Note further that the elements of S(®) are supported only
on the integers so that S(®) cannot contain a non-zero polynomial. Therefore, in what
follows we may assume without |loss of any generality that theset {¢ € ® : I(¢) = O} is
linearly independent.

Suppose [(®) > 1. If the shiftsof ¢4, ..., ¢ arelinearly dependent, then we can find
somef € C\ {0} and(cy,...,c) € C"\ {0} suchthat

(€260,...,c00)" € K(®),
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where 60 denotes the sequencek — 6%, k € Z (see[11, Theorem 3.3]). In other words,
r 00
(4.6) PP G6“si(- —K) = 0.
j=lk=—00

Let| := max{l(¢;) : ¢; # O}. Sincetheset {¢ € ® : I(¢) = 0} islinearly independent,
we havel > 1. For simplicity, we assumethat c; # 0 andl(¢1) = I. Let

r o0
p=>c¢ and o= 0 — K.

j:l k=0

By our choice of p, we deduce from (4.6) that
S (- — k) = 0.
k=—00
Since p(- — K)|g-1,.0) = 0for k < 0, it follows that
Yl-100) = kzoekp(' —K)|g-100) = kZ 0 p(- — K)|g-1,00) = O.

Als0, |(—s0,0) = 0. Consequently, ¢ is supported on [0, | — 1]. Moreover,

V=06 —1) =3 0p( —K) = > 68p( —k—1) = p.
k=0 k=0

LetW:= {y, ¢,..., ¢ }. Clearly, S(d) C S(W¥) and (W) < [(D).

Suppose p is a nonzero polynomial in S(®). If I(®) = 1, then the shifts of ¢4, ..., ¢
arelinearly independent. For otherwise, |(W) = Oand p € S(W), whichisacontradiction.

Now suppose I(®) > 1. We have verified the lemma if the shifts of ¢4, ..., ¢, are
linearly independent. Otherwise, we can find W = {1, ¢», ..., ¢ } with [(¥) < I(P) and
all the propertiesstated in the above. By theinduction hypothesis, there exist polynomials
J1,02, - - -, gr Such that

p= 3 Q@ — )+ 3 gle)éi( — o).

acl j=2ac?

If we can find apolynomial g such that

r

(4.7) P= 2 a(@p( — )+ > g(@)ei(- —a),

o€l j=2 €’
then the induction procedure will be complete, because p is a linear combination of
@1, ..., ¢r. But p = ¢ — 6y(- — 1). Hence we have

> d(@p(- — a) = 3 [ale) — b — D]u(- — a).

ac’l acl

It is easily seen that there exists a polynomial g such that g — 6q(- — 1) = ou. For this g,
(4.7) holdstrue. The proof of the lemma.is complete. L]
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Now we are in aposition to discuss the exceptional case st = 0in Example 3.2.

EXAMPLE4.3. Leta:Z — R?*? bethemask givenin (3.3). Assumethat |2\ +u| < 2.
Let ¢ = (¢1,$2)" bethe normalized solution of the refinement equation (3.4). Suppose
st = 0. For any choice of the parameterss, t, A, and i (subject to the condition st = 0),
¢ has accuracy 2 but does not have accuracy 4. Moreover, ¢ has accuracy 3 if and only
ift#£0,A=1/4andp =1/2.

PrROOF. Thecaset = Oistrivial. Indeed, in this case, ¢, = 0 and

X for0<x<1,
(4.8) P =¢2—x for1<x<2,
0 otherwise.

So ¢ has accuracy 2 but does not have accuracy 3.

Inwhat follows, weassumethat s = Oandt # 0. Inthiscase, ¢; isthe function given
in (4.8). Thus, ¢ hasaccuracy at least 2.

Let usfirst discuss the case where the shifts of ¢; and ¢, are linearly dependent. We
observe that the shifts of ¢; are linearly independent. Let @ := {¢1, ¢2}. If the shifts
of ¢1, ¢, are linearly dependent, then from the proof of Lemma 4.2 we see that there
exists a compactly supported distribution ¢ € S(®) such that W := {¢1,1} satisfies
(W) < (@) < 4andS(W) = S(P). Thus, S(W)|0.1) has dimension at most 3. Hence
S(P) = S(W) does not contain M3. This shows that ¢ does not have accuracy 4. If ¢
has accuracy 3, then S(W) = S(®) 2 M. But the dimension of M| 1) is 3. Hence
D)0y = W)y = M2|@y- This shows that ¢|0 1 is a quadratic polynomial.
Suppose

$2(X) = P+ Cix+Cp, for 0 < x < 1,

where the leading coefficient ¢g # 0. Since ¢ is anti-symmetric about 1, we have
$2(X) = —Co(2 —X)? —c1(2—X) — ¢, for 1<x< 2.
For 0 < x < 1/2, the refinement equation (3.4) reads as ¢(x) = a(0)$(2x), that is,

- 210

It follows that
Cox + C1X + Cp = A(4CoX? + 261X + Cp) + t(2X).

Comparing the corresponding coefficients of the two sides of this equation, we obtain
A=1/4,c1 =4t andc, = 0. For 1/2 < x < 1, the refinement equation (3.4) reads as

follows:
?(x) = a(0)¢(2x) +a(1)p(2x — 1),
that is,
bR S| e R | et
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It follows that
X’ +CaX = (2 — 2X) + A[—Co(2 — 2% — €1(2 — 29| + p[Co(2x — 1)” + cy(2x — 1)].

Comparing the corresponding coefficients of the two sides of this equation, we obtain
p=1/2andcg = —4t. Thisshowsthat ¢ hasaccuracy 3only if A = 1/4andp = 1/2.
If thisis the case, then the proof of Example 3.2 shows that ¢ has accuracy 3 and (3.7)
holds true. In addition,

Atx(1 — X) for0 <x< 1,
P2(X) = ¢ —4t(2—x)(x—1) forl<x<2,
0 otherwise.

Since both ¢, and ¢, are continuous, we concludethat ¢ provides approximation order
3.

We claim that the shifts of ¢, are linearly dependent if = 2\. Indeed, it follows
from the refinement equation (3.4) that

02 = Ap2(2°) + pd2(2- —1) + A2(2- —2) +11(2°) — t$1(2- —2).

Taking the Fourier transform of both sides of the above equation, we obtain
$2(6) = (A + pe P+ X&) ga(¢/2) [2+ (t—te )du(¢/2) /2 VEER.

For k € Z, setting ¢ = 2k in the above equation gives ¢»(2kr) = 0, provided = 2).
This verifies our claim.

It remainsto deal with the case where the shifts of ¢, and ¢, arelinearly independent.
In this case, if ¢ has accuracy 3, then Theorem 4.1 tells us that there exist polynomials
u; and u, of degree at most 2 such that u: o — (ul(oc), U2((X)>T, a € Z, satisfiesu # 0
and S,u = (1/4)u. It follows that

(4.9) U@ =4> ala@—23)"u@) YVaeZ

peL
Suppose u(1) = [by, by]". From (4.9) we deduce that

4 0

u@™ —1) = 4a(1)"u@" - 1) = {0 a4

}U(Z”—l), for n=1,2,....

An induction argument gives
4"by
(41)"b2

It follows from (4.10) that uy (2™ — 1) = 4"b; forn = 0,1, .. .. Since u; isapolynomial
of degree at most 2, we have

(4.10) u(2”+1—1):{ } for n=0,1,....

ur(x) = bi(x+1)%/4 VYxeR.
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Likewise, since u; isapolynomial of degreeat most 2, (4.10) holdstrueonly if u = 1,
1/2,0r1/4:

bo(x +1)?/4, if u=1,
(4.12) Up(X) = ¢ bo(x+1)/2, ifu=1/2,
b, if p=1/4.

Setting o« = 2in (4.9), we obtain
u(2) = 4a(0)"u(1) + 4a(2)"u(0),

or,

(4.12) {9'01/4 b1}+4{1/2 —t} {bl/ﬂ |

uz(2) b2 0 X ][u0)

If o = 1/4 and uy(x) = by, then the equation for the second component in (4.12)
impliesthat either A\ = 1/80r b, = uy(x) = 0. Inthefirst case, p = 2) and the shifts of
¢, are linearly dependent; a contradiction. In the second case, the equation for the first
component of (4.12) yields 9b; /4 = 5b; /2 which impliesb; = 0. But thenu; = 0, in
contradiction to the fact that u # 0.

For the remaining casesin (4.11), we observethat, for the case s = 0, the eigenvalues
of the matrix Aoz givenin (3.5) are1,1/2,1/2, X\, A, p. Thus, if 1 # 1/4, then ¢ has
accuracy 3 implies A = 1/4, by Theorem 2.1. Hence, when n = 1or p = 1/2, the
equation for the second component of (4.12) becomes u,(2) = b, + uy(0) which implies
b, = Ofor the u, givenin (4.11), and this would lead to a contradiction as before. ]

-3
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