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NONEXPANSIVE PROJECTIONS
ONTO TWO-DIMENSIONAL SUBSPACES

OF BANACH SPACES

BRUCE CALVERT AND SIMON FITZPATRICK

We show that if a three dimensional normed space X has two lineally independent smooth
points e and / such that every two-dimensional subspace containing e or / is the range
of a nonexpansive projection then X is isometrically isomorphic to £p(3) for some p,
1 < p Sj oo. This leads to a characterisation of the Banach spaces co and lp , 1 < p ^ oo,
and a characterisation of real Hilbert spaces.

1 INTRODUCTION

In 1969, Ando [1] showed that a real three dimensional Banach lattice is isometri-
cally isomorphic to ^,(3) for some p € [l,oo] if and only if all sublattices are ranges of
positive nonexpansive projections. This and other results on characterising Lp spaces
can be found in the books [6] and [8]. In recent work [3] and [4] we characterised
£p(3) by only requiring sublattices through two of the coordinate axes to be ranges of
nonexpansive projections. This allowed us to characterise the Banach lattices ip(n),
Co and £p by requiring planes through Re; to be ranges of nonexpansive projections
for certain disjoint elements ei.

In this work we show that those results generalise to Banach spaces which are
not endowed with lattice structure and to e; which are not necessarily orthogonal.
In Theorem A we take two linearly independent smooth points e and / in a three-
dimensional normed space X such that every two-dimensional subspace which intersects
{e, / } is the range of a nonexpansive projection and conclude that X is ^p(3). If e
and / are not orthogonal then we have p = 2.

We extend this result to higher dimensions in Theorems B and C. This yields a
characterisation of iv and c<> which requires only a small number of planes to be ranges
of nonexpansive projections. In Theorem D we use this to characterise Hilbert spaces.

Let X be a Banach space. Recall that duality mapping J from X to subsets of
X* is denned by x* £ Jx provided x*{x) = ||x|| = ||a;*|| . The norm is smooth at x,
or x is a smooth point, provided Jx is a singleton. By projection we mean a linear
map P: X —> X such that P2 = P. A point x is orthogonaJ %to a point y provided
||x + <3/|| ^ ||z|| for all t g R .
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150 B. Calvert and S. Fitzpatrick [2]

2 THREE-DIMENSIONAL NORMED SPACES

The following result is basically by Blaschke [2] and appears in a form like this in
Ando [1]. We give a different proof.

LEMMA 1. Let X be a real three-dimensional normed space with basis {ei,e2,e3}

where ej is a unit vector. Suppose every two-dimensional subspace which contains e\

is the range of a nonexpansive projection along a vector in span{e2, 63}. Then there is

a function F: R2 —» R such that

+ x2e2 +2:3631| = ^(xx, ||x2e2 + x3e3\\) for all X{ 6 R.

PROOF: Let y(t), 0 < t < T, be a parametrization of the unit circle \\y{t)\\ — 1
in span{e2,e3}, such that

M * « + * )
h

and j/(0) = y(T) = ||e2||~ e2. Then from the existance of a nonexpansive projection
onto span{ei,j/(< + h)} along a vector u(t + h) in span{e2,e3} for each t we see by
taking the limit as h —* 0+ that the projection along p(t) is nonexpansive, so that
\\x1e1 + y(t) + sp(t)\\ > Hxjei +2/(<)|| for all xa , 5 and t. Now for h > 0,

y{t + h)\\ = \\Xlei + y(t) + y{t + h) - y{t)\\

> ||xic, + y{t) + hp{t)\\ - \\y(t + h) - y(t) - hp(t)\\

>\\x1e1+y(t)\\-\\y(t + h)

so that the right-hand derivative of ||a;jei + y(t)\\,

h-.0+ h ^

Since y(0) = y(T) we see that \\x1e1 +y(t)\\ = F(xltl) does not depend on t. The
result follows by homogeneity of the norm. fl

Now we introduce some standing assumptions for this Section.

Standing assumptions. Let X be a real three-dimensional normed space with
two linearly independent smooth points of norm 1, e and / , such that every two-
dimensional subspace which intersects {e, / } is the range of a nonexpansive projec-
tion. Let ej = e, f\ = / , choose unit vectors e2 and / 2 in span{e,/} such that
Je(e2) = 0 = Jf{f2) and let e3 be a unit vector such that Je{e3) = 0 = Jf(e3), and
e3 i span{e,/}.
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[3] Nonexpansive projections 151

PROPOSITION 2. For all numbers X\ , x2 and x3 we have

(1)
t = l

PROOF: For any two-dimensional subspace M containing e, the nonexpansive
projection onto M is in a direction p tangent to e so that Je(p) = 0. Thus all such
p are in span{e2,es}.

By Lemma 1 we have for all xi,

| e3|| .(2) ||siei + x2e2 + x3e3\\ = \\xiet ± ||x2e2 +

Now to show (1) we only have to show

(3) ||a;2e2 + a=3e3|j = ||x2e2 — x3e3|

for all x3 and a;2.

Considering / instead of e we have

(4) Ill/i/i + I/2/2 + ys/sll = II2/1/1 ± \\v2f2 + 3/3MI e,| | ,

for all 1/1, 2/2 and y3 .

Now let

(5) /j

Thus for any t,

+ f3e2, so (3 ^ 0, and / 2 = -ye^ + 6e2.

<e3|| by (4)

+/3e2+<e3| | by (5)

= | |ae1+| | J9e2+<e, | |e s | | by (2).

But

| | / i - * / 2 | | by (4)

= ||aei -I- \\/3e2 - te3\\ e3|| as above.

Suppose for purposes of obtaining a contradiction that

(6) ||/3e2 + te31| + ||/3e2 - te31| for some t.
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Then

fe,| | e,|| = | |ae, - ||/?e2 + te

and the convexity of the norm implies that | |aej + ^e31| is constant, and hence equal to

| |aei | | = | a | , fo r \s\ < max{||/?e2 + <e31|, ||/?e2 -<e 3 | | } = r . Thus ||aei + x2e2 + x3e3\\

— \a\ whenever \\x2e2 + a;3e31| < r.

Thus for s ^ t we have

(7) | | / , + «e,| | = \\ae-, + (3c2 + se3\\ = |« |

and putt ing s = 0 we see that \a\ = 1. Now

= \\aei + ^e2 + »{ye1 + Se3)\\

= \\{a + sf)e1+(f3 + sS)e2\\

= \a + sf\ ae! + (a + sj)'1^ +

= |a + 57I whenever |(a + 57)" (/3 + s6)\ ^ r.

The convexity of the norm and (6) show that at least one of \\/3e2 +<e3 | | and

| | /3e 2 -<e 3 | | is greater than ||/3e2|| = |/?|. Since \(a + sj)'1 (/3 + sS)\ is equal to |/?|

when s — 0, by continuity \(a + sj)~ ((1 + s6)\ < r for s near 0. Using (7) we see

that I a + S7I = \a\ — 1 for s near 0, thus 7 = 0.

If necessary taking f\ to be —/ instead of / we have /1 — e, + /3e2 and f2 =

6e2 — e2 without loss of generality. Thus | | / i — /?e2|| = ||ei|| = 1 so that \\f% +/3e2| | =
1 by (4). This means ||e3 +2/?e2 | | = l,"so ||ej — 2/3e21| = 1 by (2), which means
||/1 — 3/?e2|| = 1. By induction ||ei + nf}e2\\ = 1 for all n G N , giving /? = 0, so that
e and / are not linearly independent. This contradiction shows that (6) is false and
hence ||/?e2 + te31| = ||/?e2 — te31| for all <. This yields (3) and completes the proof. |

We will need the following result from [3] or [4].

PROPOSITION 3. Let X be a real three-dimensionaJ Banach lattice with unit basis

{ e i , e 2 , e 3 } suci that e; A ej = 0 if i ^ j . Suppose every subspa.ee which intersects

{ e i i e 2} i s the range of a nonexpasisive projection on X. Then X is isometrically

isomorphic to £p(3) for some p 6 [ l ,oo].

PROPOSITION 4. Under our standing assumptions, either X is isometrically iso-
morphic to £p(3) for some p G [ljoo] or t iere is an isometry R: X —> X such that
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Re3 = e3 and for some t > 0 and some odd integer m > 2, letting $ = vrra 1 we iiave

Rei = cosOei + i"1 sin#e2 and Re2 = cos0e2 — <sin#ei .

PROOF: If f\ = ±e2 then by Proposition 2, if we order X by the cone generated by
{^i, e2, 63} then the hypotheses of Proposition 3 hold and X is isometrically isoinorphic
to lp(3) for some p G [l,oo]. Thus we assume that /1 = aej + f3e2 ; a,/3 > 0
without loss of generality (replacing ej or e2 by its negative if necessary). Recall that
f2 = -yei + 6e2 • If f> = 0 then /2 = ±ei and as above the required conclusion holds by
Propositions'2 and 3, so we take 6 > 0 without loss of generality, changing the sign of
f2 if necessary. |

Now suppose 7 = 0. Then f2 = e2 so that for all t, | |/i + te2\\ = | |/i — te2\\. Thus
Haej + (/3 + t)e2\\ = \\aei + (/? - t)e2\\ and taking t = n/3 we have ||aei + (n + l)/?e2||
= ||aei + (n — I)fle2\\ and for even integers m we get ||aei + 7n/3e2|| = a, so /3 = 0
giving a contradiction which shows that 7 ^ 0 . It will be seen later that 7 < 0.

Since \\yifi + y2f2 + x3e3\\ — \y\f\ -y2f2 + x3e3\\ for all 3/1 , y2 and x3 , we have
||(s/ia + j/27)ei + (ViP + 3/2*)e2 + ̂ 3e3|| = ||(i/ia - ^27)^1 + {ViP ~ V2^)e2 + x3e3\\.

Let Si = t/ia + 3/27 and X2 = 3/1/? + 1/2̂  so we have j/i = (a^ — /$7)~ (6KI — 7x2)
and 2/2 = (f*̂  — ^7) (Q:c2 — /^^l) j &£ — P~f 7̂  0 since j \ and /2 are independent.
Thus

~*||xiej +K2C2 +K3e3|| = \Ka6x! - ayx2 - a-yx2 + ffix^aS - f3-y)

+ (PSX-L - /3-rx2 - a6x2 + /36Xl)(a6 -

= \\{a6 + (3f)(a8 - /?7)"^iei - 2a7(a5 -

+ 2/3S{aS - P~iflx->.e2 - (aS + 0-y)(a6 -

+ x3e3\\.

That means the reflection whose matrix with respect to {e\,e2, e3} is

x3e3\

• aS+ab+Pt -2e»7 n
a6-/3y a6-p-r "

a6-pi al~p-f

0 0 1

is an isometry. Also by Proposition 2 the reflection whose matrix with respect to the
basis {ej, e2,e3} is

Tl 0 0"
0 - 1 0
0 0 1

is an isometry and thus the composition of these reflections yields an isometry R whose
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matrix with respect to {ei,e2,e3} is

aS-0y

0

To show that y < 0 note that

lay
aS-0y
aS+0y
a6—0y
0

- /2

+/3e2) + 7ei

that

- 6e2

and hence

- 1 + 8)e2 \\ = || ( T ^ Q " 1 - S)e2 \\ = \ ^ a ^ - S\.

Now ||27ei + (y/3a~1 + S)e2\\ ^ \-ff3a~1 + S\ so that 6 has opposite sign to •y/3a~1

and hence to 7. Thus 7 < 0 as claimed, and —1 < (aS + )3f)(aS — f3-f)~ < 1. Let

6 = cos"1 ((aS + (3-y)(a6 - fay1) and define t by tsinO = -2ai(a6 - fa)'1; since

0 < 0 < 7T we have t > 0. The matrix for the isometry R is

(8)

costf -isintf 0
^sinO cosO 0

0 0 1

and by an easy induction, for all integers n, the matrix for Rn is

cos(nfl) -<sin(n0) 0"
^sinine) cos(nO) 0

0 0 1.

Now if 0ir~1 is irrational then there is a sequence (ray) of integers such that cos (rij
0 and sin (rijO) —* 1 • Then we have the matrices for R"' converging to

(9)
0

-t 0
0 0
0 1

This limit isometry takes e\ to t 1e2 and hence to e2 (and t = 1) so we have nonexpan-
sive projections onto every two-dimensional subspace containing e2 and by Proposition
3 the required conclusion holds.

Otherwise there are co-prime integers k and m so that ni6 = kir. We take
integers i and j such that ik +jm = 1 so that the isometry ( — 1)JR' has matrix (8)
with 0 = •nm~i . We replace R by this isometry and we may assume that rn is odd,
for otherwise rn = 26 and Rb has matrix (9) and as above we can apply Proposition 3.

The next stage is to show that the existence of such an R leads to a Euclidean
norm.
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PROPOSITION 5. Suppose under our standing assumptions that there is an isome-
try R: X —* X such that Re3 = e3 and for some t > 0 and some odd integer m > 2,
letting 0 = TTTO"1 we iiave Re\ — cosflei + t*1 sin#e2 and Re2 = cos#e2 — tfsinfoi.
Then t = 1 and X is isometrically isomorphic to ^ (3) .

PROOF: For each v there is a nonexpansive projection onto span{ei,e3 + i/e2}
along a vector p{y) in span{e2,e3}. We can take p{y) = e2 — g{v)e3 unless p(v) is in
Re3 in which case take p{v) = e3, in fact we will see this case cannot occur.

For each a, v and s we have

+ uRe2 + e3 = (acosO — utsin6)ei + (i/cos0 + at*1 sin#)e2 + e3

so that if g{y cosO + at*1 sin^) exists we have

\\aRei +vRe2 + e3\\ ^ ||aiiei + vRe2 + e3 + 3(e2 - g(vcos$ + at'1 sinfl)c

and applying the isometry R*1 we get

\\aet + ve2 + e3|| < | |aei + ve2 + e3 + s(R~1e2 — g(vcos0 + at*1 s in^)e3) | |

= | |ae! + ve2 + e3 + s[cos0e2 + tsin^ei — g(y cosO + at*1 sin^)

and using R*1 instead of R, we have

||aei +ue2 + e3\\

^ ||o:ei + ue2 + e3 + s(cos0e2 — tsinflei — g(u cos 6 — at*1 sin0)e3)||

provided g{y cos $ — at'1 sin 6) exists.
Now if x = aei + ve2 + e3 is a smooth point then Jx(p(u)) — 0 and

Jx(cos#e2 + fsinflej — g(ycos0 + at*1 sin0)e3) = 0 and hence we have that
Jx(cos0e2 — isin^ej — g(vcos$ — at*1 sin#)e3) = 0 so that the vectors p(v), cos#e2
+ fsin^ej — g(vcos0 + at*1 sin^)e3 and cos#e2 — fsin^ei — g(y cos0 — at*1 sin#)e3

are linearly dependent. So if g{u) exists then

1 g(v)
g(y cos0 + at*1 sin#) = 0 .
g(ycos0 — at*1 sin0)

That means

(10) 2cos0g{u) = g(ucos0 + at*1 sin0) + g{vcos0 -at'1 sintf).

On the other hand if g[u) ever fails to exist then since 0 < cos# < 1 we can
choose a smooth point aej + ue2 + e3 so that p(u) — e3 while g{y cos0 + at*1 sinfl)
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and g(y cos0 —at 'sinfl) both exist. But the vectors e j , cos#e2 + tsn\0ei —
g(v cos 0 + at~l sin 0}e3 and cos0e2 — tsin0ei — g(vcos0 — at*1 sin0)e3 are linearly
independent, contradicting the linear dependence noted above. Thus g(y) exists for all
v and (10) holds for almost all (a,v) in R2 since almost all points in X are smooth.

Since g is monotone increasing we may assume that g is continuous from the right
and it then follows that (10) holds for all a and u. Putting a = 0 gives cos 0 g{u) =
g(cos0v) so we have for all v, y in R ,

(11) 2g{u)=g{V + y)+g(V-y).

It is known (see [9], §72) that the only monotone solutions of (11) are the affine
functions^!/) = kv + r and r = 0 since cos6 g(y) — g(cos0is). Thus g{u) = kv for
all v, so for each v there is a nonexpansive projection onto span{ej,e3 + ve2} along
the vector e2 — kve3 . It follows that the convex function N(x,y) = \\xe2 -J- 3/631| has
VN(x,y) ± (y,—kx) almost everywhere and the solutions of the differential equation

^ = -kX-
dx y

give curves with N(x,y) constant. Thus y2 + kx2 = c are curves with N(x,y) constant
and evaluating at (1,0) and (0,1) we find that if y2 + x2 = 1 then N(x,y) = 1. Thus

+ ye31| = (y2 + x2) 7 and so

|xei+j/e2+ze3|| = Lei + (y2 + * 2 ) ^ 3 = Lifei + (y2 +

+ t-1 sin(9e2) + (y2 + z2)K3

x cos 0e! + (t~2 sin2 0 x2 + y2 + z2) 7 e3

x cos2 0e\

+ ((l + cos2 0)r2 s\n20x2 + y2 + z2)

+ ((1 + cos2 0+.-. + cos2""2 0)t~2 sin2 0 x2 + y2 + z2) *
e ,

by an easy induction, so that letting n-» 00 we therefore have 11a;e 1 + 3/62 + ~e3||

( i - 2 z 2 + t / 2 + z 2 ) J e 3 . Evaluating at ej gives t = 1 and ||.xe3 + ye2 + ze3\\
1

{x2 +y2 + z2y as required.

Putting these propositions together we have proved the following result.
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THEOREM A. Let X be a 3-dimensional normed space with linearly independent

smooth points e and f such that every 2-dimensional subspace which intersects {e>/}

is the range of a nonexpansive projection. Then there is p £ (l,oo] such that X is

isometrically isomorphic to £p(3) •

PROOF: Using Propositions 4 and 5 we see that X is isomorphic to ^p(3) for some

p £ [1, oo]. But ^i(3) does not have any smooth points e such that every 2-dimensional

subspace containing e is the range of a nonexpansive projection. |

COROLLARY. Let X be a 3-dimensional normed space with basis {ei,e2,e3} of
smooth points such that every 2-dimensional subspace which intersects {ei,e2,e2} is
the range of a nonexpansive projection. Then there is p £ (l,oo] such that X is
isometrically isomorphic to ^p(3) .

3 SPACES OF HIGHER DIMENSION

We first need to record which points in £p(n) have the property we are interested

in.

PROPOSITION 6. If e £ LP(n), n > 2, p ^ 2 is a smooth point such that every
two-dimensional subspace containing e is the range of a nonexpansive projection then
e has exactly one nonzero coordinate.

PROOF: Let e = (1,0:2,0:3,. . . ,an) where 02 ^ 0 and |a;| < 1 for each i.

Let x = ( 0 , 1 , - 1 , 0 , . . . , 0) if ct2.a3 > 0 and x - (0 ,1 ,1 ,0 , . . . ,0) otherwise. Then
span{e,x} is not the range of a nonexpansive projection. For p finite this is a conse-
quence of [7], Theorem 2.a.4. If p = oo then smoothness at e implies that jctf j ^ 1;
then suppose that P is a nonexpansive projection onto span{e,a;}. Since, for j = 1,2
and 3 , span{e, x} intersects the interior of the face of the unit sphere in (.oo{n) on
which the j t h coordinate is 1, we have dimP~1(0) ^ n — 3. But that means the range
of P is at least 3-dimensional, giving a contradiction.

The smoothness at e is needed in the case of tooij1) because for example every
2-dimensional subspace containing e = ( 1 , 1 , . . . , 1) is the range of a nonexpansive
projection. |

THEOREM B. Let X be a n-dimensional normed space and let {e2, e 3 , . . . , en}
be a linearly independent set of smooth points in X such that every 2-dimensional

subspace intersecting {e2, e^,..., en} is the range of a nonexpansive projection. Then

X is isometrically isomorphic to ip(n) for some p £ ( l ,oo].

PROOF: This is true for n — 3 by Theorem A. Let k > 3 and assume that it is true
for n = k — 1. Suppose {e2, e$,..., e/t} is a linearly independent set of smooth points
in X such that every 2-dimensional subspace intersecting {e2, e3,..., e/t} is a the range
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of a nonexpansive projection. We choose e\ such that e\ f. span{e2, e$,..., ej,} and
Ja(ei) = 0 for 2 ^ i ^ k and we also suppose that ||e;|| = 1 for 1 < i < k.

Let xi be scalars, 1 ^ i ^ k, with zi ^ 0. By our inductive hypothesis there are
p,q and r in (l,oo] such that

span{e2,e3, . . . , ek} is isometrically isomorphic to £p(k — 1),

span{ei, e 2 , . . . , e^_j} is isometrically isomorphic to £q(k — 1), and

span{a;iei + a;2e2>e3> • • ••> ek} is isometrically isomorphic to tr(k — 1).

Now span{e2, e 3 , . . . , ek-i} is isometrically isomorphic to £p(k — 2) by Proposition
6 if p ^ 2 and by subspaces of Euclidean spaces being isometrically isomorphic to
Euclidean spaces if p — 2 . Similarly span{e2, e j , . . . , ej._i} is isometrically isomorphic
to £q(k — 2) , so we have p = q. Considering span{e3, . . . , ejt} we see similarly that
p = r.

If p ^ 2 then Proposition 6 and our choice of ej show that ê  is orthogonal to

+ x2e2 for 3 < i < k, giving

= \\(\\xiei +x2e2\\,x3,...,Xk)\\I

i-l

and similarly + a;2e21| = (xi,x2) so that, as required

t = l

If p = 2 then Je2(e i ) = 0 implies that ||xiei +X2e2||2 = x\ + x\. Since
span{a;iei + E2e2, e^,..., e^} is isometrically isomorphic to £2(k — 1) we have

t = i t = l

x2e2\\
2

k

U = 3 t = 3

fc-1 *•

i=3

fc-1 *

t=3 j=i
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which shows that the norm of span{ei, e2 , . . . , e*} is Euclidean, as required to complete
the proof by induction. I

Note that the corollary to Theorem A does not suffice to prove the corresponding
weaker form of Theorem B with {e2, e 3 , . . . , en} replaced by {ej, e2, e 3 , . . . , en} . This
theorem extends to infinite dimensional spaces as follows.

THEOREM C. Let E be a Banach space of dimension at least 3 over R and let
{ei : i € / } be a linearly independent set of smooth points with span{ej : i £ / } dense
in E. Suppose that every two-dimensional subspace intersecting {ej : i £ 7} is the
range of a nonexpansive projection. Then either

(a) E is isometrically isomorphic to Co(I) or to ip(I) for some p ^ 2, in
such a way that each ei corresponds to an element of the canonical basis
or

(b) E is isometrically isomorphic to a Hilbert space.

PROOF: If / is finite then this follows from Theorem B and Proposition 6. Other-
wise there is p such that for each finite subset F of I, span{ej : i £ F} is isometrically
isomorphic to ip{F), with each ej , i £ F, corresponding to an element of the canonical
basis in ip(F) if p / 2. For p = oo it follows that E is isometrically isomorpliic to
co(/), while for finite p ^ 2 it follows that E is isometrically isomorphic to tP(I), in
both cases the elements ej corresponding to canonical basis elements.

In the case p = 2 let x,y £ E and let xn,yn be elements of span{ej : i £ / } such

that ||a: — xn\\ and ||i/ — yn\\ are less than n~1 . Then

(xn,yn) = 4 - 1 (!!*„ + yn\\
2 - \\xn - yn\\

2) -> 4" 1 (||x + y\\2 - \\x - y\\2)

so we define (x,y) to be

+ y | | 2 - | | i - y | | 2 ) = l i m ( x n > y B ) .

Then ( , ) is a bilinear form such that ||x|| = {x,x) and E is a Hilbert space. |

Remark. The difference between this result and our previous work [3], [4] and [5] is
that the Banach space does not need to be a lattice and the points e; do not need to
be orthogonal. We do require the norm to be smooth at the points e, ; without this
some other spaces satisfy our standard hypotheses.

The condition that span{e; : i £ / } is dense in E can be weakened to span{e; :
i £ / } being dense in some hyperplane in E. A similar modification is possible in our
final result which is a characterisation of real Hilbert spaces.
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THEOREM D. Let E be a. real Ba.na.ch space of dimension at least 3. Then E is a

Hilbert space if and only if there is a linearly independent set A of smooth points in E

such that the linear span of A is dense in E, every 2-dimensional subspace intersecting

A is the range of a nonexpansive projection and \\x + ty\\ < \\x\\ for some distinct

x,y G A and t G R.

PROOF: In Co and £p, p ^ 2, the elements of A must be mutually orthogonal. |
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