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Abstract

We construct an explicit set of algebraically independent generators for the center of the universal
enveloping algebra of the centralizer of a nilpotent matrix in the general linear Lie algebra over a field of
characteristic zero. In particular, this gives a new proof of the freeness of the center, a result first proved
by Panyushev, Premet and Yakimova.
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1. Introduction

Let λ= (λ1, . . . , λn) be a composition of N such that either λ1 ≥ · · · ≥ λn or λ1 ≤

· · · ≤ λn . Let g be the Lie algebra glN (F), where F is an algebraically closed field
of characteristic zero. Let e ∈ g be the nilpotent matrix consisting of Jordan blocks of
sizes λ1, . . . , λn in order down the diagonal, and write ge for the centralizer of e in g.
Panyushev et al. [PPY] have recently proved that S(ge)

ge , the algebra of invariants for
the adjoint action of ge on the symmetric algebra S(ge), is a free polynomial algebra
on N generators. Moreover, viewing S(ge) as a graded algebra as usual so that ge is
concentrated in degree one, they show that if x1, . . . , xN are homogeneous generators
for S(ge)

ge of degrees d1 ≤ · · · ≤ dN , then the sequence (d1, . . . , dN ) of invariant
degrees is equal to

(

λ1 1’s︷ ︸︸ ︷
1, . . . , 1,

λ2 2’s︷ ︸︸ ︷
2, . . . , 2, . . . ,

λn n’s︷ ︸︸ ︷
n, . . . , n) if λ1 ≥ · · · ≥ λn ,

(1, . . . , 1︸ ︷︷ ︸
λn 1’s

, 2, . . . , 2︸ ︷︷ ︸
λn−1 2’s

, . . . , n, . . . , n︸ ︷︷ ︸
λ1 n’s

) if λ1 ≤ · · · ≤ λn .
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2 J. Brown and J. Brundan [2]

This is just one instance of the following conjecture formulated in this generality by
Premet: for any semisimple Lie algebra g and any element e ∈ g the invariant algebra
S(ge)

ge is free. In [PPY] this conjecture has already been verified in many other
situations besides the type A case discussed here.

Returning to our special situation, let Z(ge) denote the center of the universal
enveloping algebra U (ge). The standard filtration on U (ge) induces a filtration on
the subalgebra Z(ge) such that the associated graded algebra gr Z(ge) is canonically
identified with S(ge)

ge ; see [D, Section 2.4.11]. We can lift the algebraically
independent generators x1, . . . , xN from gr Z(ge) to Z(ge) to deduce (without
resorting to Duflo’s theorem [D, Theorem 10.4.5]) that Z(ge) is also a free polynomial
algebra. The purpose of this note is to derive an explicit formula for a set z1, . . . , zN
of algebraically independent generators for Z(ge), generalizing the well-known set
of generators of Z(g) itself (the special case e = 0) that arise from the Capelli
identity. We call these the elementary generators for Z(ge). Passing back down
to the associated graded algebra, one can easily obtain from them an explicit set of
elementary invariants that generate S(ge)

ge .
To formulate the main result precisely, we must first introduce some notation

for elements of ge. Let ei, j denote the i j-matrix unit in g. Draw a diagram with
rows numbered 1, . . . , n from top to bottom and columns numbered 1, 2, . . . from
left to right, consisting of λi boxes on the i th row in columns 1, . . . , λi , for each
i = 1, . . . , n. Write the numbers 1, . . . , N into the boxes along rows, and use the
notation row(i) and col(i) for the row and column number of the box containing the
entry i . For instance, if λ= (4, 3, 2) then the diagram is

1 2 3 4
5 6 7
8 9

and the nilpotent matrix e of Jordan type λ is equal to

e1,2 + e2,3 + e3,4 + e5,6 + e6,7 + e8,9.

For 1≤ i, j ≤ n and λ j −min(λi , λ j )≤ r < λ j , define

ei, j;r :=
∑

1≤h,k≤N
row(h)=i,row(k)= j

col(k)−col(h)=r

eh,k . (1.1)

The vectors

{ei, j;r | 1≤ i, j ≤ n, λ j −min(λi , λ j )≤ r < λ j }

form a basis for ge; see [BK2, Lemma 7.3]. Write µ⊆ λ if µ= (µ1, . . . , µn) is a
composition with 0≤ µi ≤ λi for each i = 1, . . . , n. Also let |µ| := µ1 + · · · + µn
and `(µ) denote the number of nonzero parts of µ. Recall that (d1, . . . , dN ) are
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[3] Centralizers of nilpotent matrices 3

the invariant degrees as defined above. Given 0 6= µ⊆ λ such that `(µ)= d|µ|,
suppose that the nonzero parts of µ are in the entries indexed by 1≤ i1 < · · ·< id ≤ n.
Define the µth column determinant

cdet(µ) :=
∑
w∈Sd

sgn(w)ẽiw1,i1;µi1−1ẽiw2,i2;µi2−1 . . . ẽiwd ,id ;µid−1, (1.2)

where ẽi, j;r := ei, j;r − δr,0δi, j (i − 1)λi . We note by Lemma 3.8 below that all of
the ei, j;r ’s appearing on the right-hand side of (1.2) necessarily satisfy the inequality
λ j −min(λi , λ j )≤ r < λ j , so cdet(µ) is well-defined. For r = 1, . . . , N , define

zr :=
∑
µ⊆λ

|µ|=r,`(µ)=dr

cdet(µ). (1.3)

MAIN THEOREM. The elements z1, . . . , zN are algebraically independent genera-
tors for Z(ge).

In the situation that λ1 = · · · = λn , our Main Theorem was proved already by
Molev [M], following Rais and Tauvel [RT] who established the freeness of S(ge)

ge in
that case. Our proof for general λ follows the same strategy as Molev’s proof, but we
need to replace the truncated Yangians with their shifted analogs from [BK2]. We have
also included a self-contained proof of the freeness of S(ge)

ge , although as we have
said this was already established in [PPY]. Our approach is similar to the argument
in [RT] and different from [PPY].

One final comment. In this introduction we have formulated the Main Theorem
assuming either that λ1 ≥ · · · ≥ λn or that λ1 ≤ · · · ≤ λn . Presumably most readers
will prefer the former choice. However in the remainder of the article we will only
actually prove the results in the latter situation, since that is the convention adopted
in [BK2, BK3, BK4]. This is justified because the two formulations of the Main
Theorem are simply equivalent, by an elementary argument involving twisting with an
antiautomorphism of U (g) of the form ei, j 7→ −ei ′, j ′ + δi, j c.

The remainder of the article is organized as follows. In Section 2, we derive a new
‘quantum determinant’ formula for the central elements of the shifted Yangians. In
Section 3 we descend from there to the universal enveloping algebra U (ge) to prove
that the elements zr are indeed central. Then, in Section 4, we prove the freeness of
S(ge)

ge by restricting to a carefully chosen slice.

2. Shifted quantum determinants

The shifted Yangian Yn(σ ) is defined in [BK2]. Here are some of the details. Let
σ = (si, j )1≤i, j≤n be an n × n shift matrix, that is, all of its entries are nonnegative
integers and si, j + s j,k = si,k whenever |i − j | + | j − k| = |i − k|. Then Yn(σ ) is the
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associative algebra over F defined by generators

{D(r)
i | 1≤ i ≤ n, r > 0},

{E (r)i | 1≤ i ≤ n, r > si,i+1},

{F (r)i | 1≤ i ≤ n, r > si+1,i }

subject to certain relations. See [BK2, Section 2] for the full set.
For 1≤ i < j ≤ n and r > si, j , define elements E (r)i, j ∈ Yn(σ ) recursively by

E (r)i,i+1 := E (r)i , E (r)i, j := [E
(r−s j−1, j )

i, j−1 , E
(s j−1, j+1)
j−1 ]. (2.1)

Similarly, for 1≤ i < j ≤ n and r > s j,i define elements F (r)i, j ∈ Yn(σ ) by

F (r)i,i+1 := F (r)i , F (r)i, j := [F
(s j, j−1+1)
j−1 , F

(r−s j, j−1)

i, j−1 ]. (2.2)

As in [BK3, Section 2], we introduce a new set of generators for Yn(σ ). For
1≤ i < j ≤ n define the power series Ei, j (u), Fi, j (u) ∈ Yn(σ )[[u−1

]] by

Ei, j (u) :=
∑

r>si, j

E (r)i, j u−r , Fi, j (u) :=
∑

r>s j,i

F (r)i, j u−r , (2.3)

and set Ei,i (u)= Fi,i (u)= 1 by convention. Also define

Di (u) :=
∑
r≥0

D(r)
i u−r

∈ Yn(σ )[[u
−1
]],

for 1≤ i ≤ n, where D(0)
i = 1 by convention. Let D(u) denote the n × n diagonal

matrix with i i-entry Di (u) for 1≤ i ≤ n, let E(u) denote the n × n upper triangular
matrix with i j-entry Ei, j (u) for 1≤ i ≤ j ≤ n, and let F(u) denote the n × n lower
triangular matrix with j i-entry Fi, j (u) for 1≤ i ≤ j ≤ n. Consider the product

T (u)= F(u)D(u)E(u)

of matrices with entries in Yn(σ )[[u−1
]]. The i j-entry of the matrix T (u) defines a

power series

Ti, j (u)=
∑
r≥0

T (r)i, j u−r
:=

min (i, j)∑
k=1

Fk,i (u)Dk(u)Ek, j (u) (2.4)

for some new elements T (r)i, j ∈ Yn(σ ). Note that T (0)i, j = δi, j and T (r)i, j = 0 for 0<
r ≤ si, j .

If the matrix σ is the zero matrix, we denote Yn(σ ) simply by Yn . The algebra Yn is
the Yangian associated with the Lie algebra gln(F); see [MNO, Section 1] for its usual
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definition. In general, by [BK2, Corollary 2.2], there exists an injection Yn(σ ) ↪→ Yn

which sends the elements D(r)
i , E (r)i , and F (r)i in Yn(σ ) to the elements with the same

name in Yn . However, this injection usually does not send all of the elements E (r)i, j ,

F (r)i, j , and T (r)i, j of Yn(σ ) to the elements with the same name in Yn . For the remainder
of this section we use this injection to identify Yn(σ )with a subalgebra of Yn . To avoid
confusion the elements E (r)i, j , F (r)i, j , and T (r)i, j of Yn(σ ) will be denoted σE (r)i, j , σF (r)i, j ,

and σ T (r)i, j , respectively, while E (r)i, j , F (r)i, j , and T (r)i, j will refer to the elements of Yn .
Similarly we write σEi, j (u), σFi, j (u) and σ Ti, j (u) for the power series (2.3)–(2.4)
computed in Yn(σ )[[u−1

]] to distinguish them from their counterparts in Yn[[u−1
]].

For an n × n matrix A = (ai, j )1≤i, j≤n with entries in some associative (but not
necessarily commutative) algebra, we define its column determinant

cdet A :=
∑
w∈Sn

sgn(w)aw1,1aw2,2 . . . awn,n. (2.5)

For 1≤ j ≤ n, we define a left j -minor of A to be a j × j submatrix of the form
ai1,1 ai1,2 · · · ai1, j
ai2,1 ai2,2 · · · ai2, j
...

...
. . .

...

ai j ,1 ai j ,2 · · · ai j , j


for 1≤ i1 < i2 < · · ·< i j ≤ n. The following lemma is an easy exercise.

LEMMA 2.1. If, for a fixed 1≤ j ≤ n, the column determinant of every left j -minor
of an n × n matrix A with entries in some associative algebra is zero, then cdet A = 0.

By [MNO, Theorem 2.10], it is known that the coefficients of the power series

Cn(u) := cdet


T1,1(u) T1,2(u − 1) · · · T1,n(u − n + 1)
T2,1(u) T2,2(u − 1) · · · T2,n(u − n + 1)
...

...
. . .

...

Tn,1(u) Tn,2(u − 1) · · · Tn,n(u − n + 1)

 (2.6)

belong to the center of Yn . Define

σCn(u) := cdet


σ T1,1(u) σ T1,2(u − 1) · · · σ T1,n(u − n + 1)
σ T2,1(u) σ T2,2(u − 1) · · · σ T2,n(u − n + 1)

...
...

. . .
...

σ Tn,1(u) σ Tn,2(u − 1) · · · σ Tn,n(u − n + 1)

 . (2.7)

The goal in the remainder of the section is to prove the following theorem. Note this
result is false without the assumption that σ is upper triangular.
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6 J. Brown and J. Brundan [6]

THEOREM 2.2. Assuming that the shift matrix σ is upper triangular, that is, si, j = 0
for i > j , we have that σCn(u)= Cn(u), equality in Yn[[u−1

]]. In particular, the
coefficients of the power series σCn(u) belong to the center of Yn(σ ).

For the proof, assume from now on that σ is upper triangular. For 0≤ j ≤ n, let
X j be the n × n matrix whose first j columns are the same as the first j columns
of the matrix in (2.6) and whose last (n − j) columns are the same as the last
(n − j) columns of the matrix in (2.7). In this notation, the theorem asserts that
cdet X0 = cdet Xn . So we just need to check for each j = 1, . . . , n that

cdet X j−1 = cdet X j . (2.8)

To see this, fix j and let v := u − j + 1 for short. Given a column vector Ea of height
n, let X (Ea) be the matrix obtained from X j by replacing the j th column by Ea. For
1≤ k ≤ j , introduce the following column vectors:

Ea :=


σ T1, j (v)
σ T2, j (v)

...
σ Tn, j (v)

 , Ebk :=


T1,k(v)

T2,k(v)
...

Tn,k(v)

 , Eck :=



0
...

0
Dk(v)

Fk,k+1(v)Dk(v)
...

Fk,n(v)Dk(v)


.

Also define
d1,k
d2,k
...

dk−1,k

 :=


T1,1(v) T1,2(v) · · · T1,k−1(v)

T2,1(v) T2,2(v) · · · T2,k−1(v)
...

...
. . .

...

Tk−1,1(v) Tk−1,2(v) · · · Tk−1,k−1(v)


−1 

T1,k(v)

T2,k(v)
...

Tk−1,k(v)


and set ek :=

σEk, j (v). In particular, e j = 1.

LEMMA 2.3. We have Ea =
∑ j

k=1 Eckek .

PROOF. In view of the assumption that σ is upper triangular, we have by (2.2)–
(2.3) that σFi, j (v)= Fi, j (v) for all 1≤ i ≤ j ≤ n. Now the lemma follows from the
definition (2.4). 2

LEMMA 2.4. For 1≤ k ≤ j , we have that Eck = Ebk −
∑k−1

l=1
Ebldl,k .

PROOF. Take 1≤ i ≤ n and consider the i th entry of the column vectors on either side
of the equation. If i ≥ k then we need to show that

Fk,i (v)Dk(v)= Ti,k(v)−

k−1∑
l=1

Ti,l(v)dl,k,
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[7] Centralizers of nilpotent matrices 7

which is immediate from the identity [BK1, (5.4)]. If i < k then we need to show that
0= Ti,k(v)−

∑k−1
l=1 Ti,l(v)dl,k . To see this, note by the definition of dl,k that

k−1∑
l=1

Ti,l(v)dl,k

is equal to the matrix product

(Ti,1(v) · · · Ti,k−1(v))


T1,1(v) T1,2(v) · · · T1,k−1(v)

T2,1(v) T2,2(v) · · · T2,k−1(v)
...

...
. . .

...

Tk−1,1(v) Tk−1,2(v) · · · Tk−1,k−1(v)


−1

T1,k(v)

T2,k(v)
...

Tk−1,k(v)

.
The left-hand row vector is the i th row of the matrix being inverted, so this product
does indeed equal Ti,k(v). 2

LEMMA 2.5. For any 1≤ k ≤ j − 1 and any f , we have that cdet X (Ebk f )= 0.

PROOF. We apply Lemma 2.1. Take 1≤ i1 < · · ·< i j ≤ n. The corresponding left
j-minor of X (Ebk f ) is equal to

Ti1,1(u) Ti1,2(u − 1) · · · Ti1, j−1(u − j + 2) Ti1,k(u − j + 1) f
Ti2,1(u) Ti2,2(u − 1) · · · Ti2, j−1(u − j + 2) Ti2,k(u − j + 1) f
...

...
. . .

...
...

Ti j ,1(u) Ti j ,2(u − 1) · · · Ti j , j−1(u − j + 2) Ti j ,k(u − j + 1) f

 .
The column determinant of this matrix is zero by [BK1, (8.4)]. 2

Now we can complete the proof of Theorem 2.2. Since the column determinant is
linear in each column, we have by Lemmas 2.3–2.5 that

cdet X (Ea)=
j∑

k=1

cdet X (Ebkek)−

j∑
k=1

k−1∑
l=1

cdet X (Ebldl,kek)= cdet X (Eb j ).

Since X j−1 = X (Ea) and X j = X (Eb j ), this verifies (2.8) and, hence, the theorem.

3. The central elements zr

For the remainder of the article, λ= (λ1, . . . , λn) denotes a fixed composition of
N such that λ1 ≤ · · · ≤ λn and σ = (si, j )1≤i, j≤n denotes the upper triangular shift
matrix defined by si, j := λ j −min(λi , λ j ). Let g= glN (F) and e ∈ g be the nilpotent
matrix consisting Jordan blocks of sizes λ1, . . . , λn down the diagonal. Recall from
the introduction that the centralizer ge of e in g has basis

{ei, j;r | 1≤ i, j ≤ n, si, j ≤ r < λ j } (3.1)
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8 J. Brown and J. Brundan [8]

where ei, j;r is the element defined by (1.1). We view ge as a Z-graded Lie algebra by
declaring that the basis element ei, j;r is of degree r . There is an induced Z-grading on
the universal enveloping algebra U (ge).

In this section we are going to prove that the elements z1, . . . , zN of U (ge)

from (1.3) actually belong to the center Z(ge) of U (ge) by exploiting the relationship
between U (ge) and the finite W -algebra W (λ) associated with e. According to the
definition followed here, W (λ) is the quotient of the shifted Yangian Yn(σ ) by the two-
sided ideal generated by the elements {D(r)

1 | r > λ1}. This is not the usual definition
of the finite W -algebra, but it is equivalent to the usual definition thanks to the main
result of [BK2]. The notation T (r)i, j will from now on denote the canonical image

in the quotient algebra W (λ) of the element T (r)i, j ∈ Yn(σ ) from (2.4) (which was

also denoted by σ T (r)i, j in the previous section). Recall that T (r)i, j = 0 for 0< r < si, j .
In addition, now that we have passed to the quotient W (λ), the following holds by
[BK3, Theorem 3.5].

LEMMA 3.1. We have T (r)i, j = 0 for all r > λ j .

So the power series

Ti, j (u) :=
∑
r≥0

T (r)i, j u−r
∈W (λ)[[u−1

]]

is actually a polynomial and uλ j Ti, j (u) belongs to W (λ)[u]. Hence

cdet


uλ1 T1,1(u) (u − 1)λ2 T1,2(u − 1) · · · (u − n + 1)λn T1,n(u − n + 1)
uλ1 T2,1(u) (u − 1)λ2 T2,2(u − 1) · · · (u − n + 1)λn T2,n(u − n + 1)

...
...

. . .
...

uλ1 Tn,1(u) (u − 1)λ2 Tn,2(u − 1) · · · (u − n + 1)λn Tn,n(u − n + 1)


gives us a well-defined polynomial Z(u) ∈W (λ)[u]. We have that

Z(u)= uN
+ Z1uN−1

+ · · · + Z N−1u + Z N (3.2)

for elements Z1, . . . , Z N ∈W (λ).

LEMMA 3.2. The elements Z1, . . . , Z N belong to the center Z(W (λ)) of W (λ).

PROOF. This follows from Theorem 2.2, because Z(u) is equal to the canonical image
of the power series from (2.7) multiplied by uλ1(u − 1)λ2 . . . (u − n + 1)λn . 2

We define a filtration F0W (λ)⊆ F1W (λ)⊆ · · · on W (λ), which we call the loop
filtration, by declaring that each generator T (r+1)

i, j is of filtered degree r . In other

words, Fr W (λ) is the span of all monomials of the form T (r1+1)
i1, j1

. . . T (rk+1)
ik , jk

such
that r1 + · · · + rk ≤ r . For an element x ∈ Fr W (λ), we write grr x for the canonical
image of x in the r th graded component of the associated graded algebra gr W (λ).
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[9] Centralizers of nilpotent matrices 9

Applying the PBW theorem for W (λ) from [BK3, Lemma 3.6], it follows that the
loop filtration as defined here coincides with the filtration defined at the beginning
of [BK4, Section 3]. So we can restate [BK4, Lemma 3.1] as follows.

LEMMA 3.3. There is a unique isomorphism of graded algebras

ϕ : gr W (λ)
∼
−→U (ge)

such that ϕ(grr T (r+1)
i, j )= (−1)r ei, j;r for all 1≤ i, j ≤ n and si, j ≤ r < λ j .

Let (d1, . . . , dN ) be the sequence of invariant degrees defined in the first paragraph
of the introduction. Recall also the elements z1, . . . , zN of U (ge) defined by (1.3).
The goal in the remainder of the section is to prove the following theorem.

THEOREM 3.4. For r = 1, . . . , N, the element Zr ∈ Z(W (λ)) belongs to Fr−dr W (λ)

and ϕ(grr−dr
Zr )= (−1)r−dr zr . In particular, the elements z1, . . . , zN belong to the

center Z(ge) of U (ge).

To prove the theorem, we begin with several lemmas.

LEMMA 3.5. For r = 1, . . . , N, we have that

Zr =
∑
µ⊆λ
|µ|=r

∑
ν⊆µ

[( n∏
i=1

(1− i)µi−νi

(
λi − νi

λi − µi

))
×

( ∑
w∈Sn

sgn(w)T (ν1)
w1,1 . . . T (νn)

wn,n

)]
.

PROOF. Before we begin, we point out that when i = 1 the term (1− i)µi−νi in
the product on the right-hand side should be interpreted as 1 if ν1 = µ1 and as 0
otherwise. Write coeffr ( f (u)) for the ur -coefficient of a polynomial f (u). By the
definitions (2.5) and (3.2), we have that

Zr =
∑
w∈Sn

sgn(w) coeffN−r (u
λ1 Tw1,1(u)× · · · × (u − n + 1)λn Twn,n(u − n + 1))

=

∑
µ⊆λ
|µ|=r

∑
w∈Sn

sgn(w) coeffλ1−µ1(u
λ1 Tw1,1(u))

× · · · × coeffλn−µn ((u − n + 1)λn Twn,n(u − n + 1)).

Moreover, for i = 1, . . . , n we have that

coeffλi−µi ((u − i + 1)λi Twi,i (u − i + 1))=
µi∑
νi=0

(1− i)µi−νi

(
λi − νi

λi − µi

)
T (νi )
wi,i .

Substituting into the preceding formula for Zr gives the conclusion. 2

LEMMA 3.6. Suppose that µ= (µ1, . . . , µn) and ν = (ν1, . . . , νn) are composi-
tions with ν ⊆ µ. We have that |ν| − `(ν)≤ |µ| − `(µ) with equality if and only if
for each i = 1, . . . , n either νi = µi or νi = 0= µi − 1.
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PROOF. This is obvious. 2

LEMMA 3.7. For r = 1, . . . , N, we have that dr =min{`(µ) | µ⊆ λ, |µ| = r}.

PROOF. Set d := dr and

s := r − λn − λn−1 − · · · − λn−d+2.

By the definition of dr , we have that 1≤ s ≤ λn−d+1. The sum of the (d − 1) largest
parts of λ is λn + λn−1 + · · · + λn−d+2, which is <r . Hence, we cannot find µ⊆ λ
with |µ| = r and `(µ) < d . On the other hand,

µ := (0, . . . , 0, s, λn−d+2, . . . , λn−1, λn)

is a composition with µ⊆ λ with |µ| = r and `(µ)= d . 2

LEMMA 3.8. Given 0 6= µ⊆ λ with `(µ)= d|µ|, let 1≤ i1 < · · ·< id ≤ n index the
nonzero parts of µ. Then for any w ∈ Sd and j = 1, . . . , d we have that µi j >

λi j −min(λiw j , λi j ).

PROOF. If w j ≥ j , this is clear since the right-hand side of the inequality is zero.
So suppose that w j < j , when the right-hand side of the inequality equals λi j − λiw j .
Assume for a contradiction that µi j ≤ λi j − λiw j . Then we have that

|µ| =

d∑
k=1

µik ≤

( d∑
k=1

λik

)
− λiw j .

Since iw j = ik for some k = 1, . . . , d , this implies that there exists a composition
ν ⊆ λ with |ν| = |µ| and `(ν)= d − 1. This contradicts Lemma 3.7. 2

Now we can prove the theorem. The term T (ν1)
w1,1 . . . T (νn)

wn,n in the expansion of Zr
from Lemma 3.5 belongs to F|ν|−`(ν)W (λ). If ν ⊆ µ⊆ λ and |µ| = r , Lemmas 3.6
and 3.7 imply that

|ν| − `(ν)≤ |µ| − `(µ)= r − `(µ)≤ r − dr .

This shows that Zr belongs to Fr−dr W (λ). Moreover, to compute grr−dr
Zr we just

need to consider the terms in the expansion of Zr that have `(µ)= dr and for each
i = 1, . . . , n either νi = µi or νi = 0= µi − 1. We deduce from Lemma 3.5 that

grr−dr
Zr =

∑
µ⊆λ

|µ|=r,`(µ)=dr

∑
w∈Sn

sgn(w) grr−dr
(T̃ (µ1)
w1,1 . . . T̃ (µn)

wn,n)

where

T̃ (r)i, j := T (r)i, j + δi, jδr,1(1− i)λi .
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Since T̃ (0)wi,i = 0 unless wi = i , we can further simplify this expression as follows. Let
d := dr for short and given µ⊆ λ with `(µ)= d define 1≤ i1 < · · ·< id ≤ n so that
µi1, . . . , µid 6= 0. Then

grr−d Zr =
∑
µ⊆λ

|µ|=r,`(µ)=d

∑
w∈Sd

sgn(w)(grµi1−1 T̃
(µi1 )

iw1,i1
) . . . (grµid−1 T̃

(µid )

iwd ,id
).

Finally, applying the isomorphism ϕ from Lemma 3.3, we obtain that

ϕ(grr−d Zr ) =
∑
µ⊆λ

|µ|=r,`(µ)=d

∑
w∈Sd

sgn(w)(−1)µi1−1

× ẽiw1,i1;µi1−1 . . . (−1)µid−1ẽiwd ,id ;µid−1

where ẽi, j;r := grr T̃ (r+1)
i, j . The right-hand side is (−1)r−d zr according to the

definitions in the introduction. Noting finally that, since Zr is central in W (λ) by
Lemma 3.2, the element grr−d Zr is central in gr W (λ), this completes the proof
of Theorem 3.4.

4. Proof of the Main Theorem

Now we consider the standard filtration on the universal enveloping algebra U (ge)

and the induced filtration on the subalgebra Z(ge). By the PBW theorem, the
associated graded algebra gr U (ge) is identified with the symmetric algebra S(ge)

(generated by ge in degree one). For r = 1, . . . , N , it is immediate from the
definition (1.3) that the central element zr ∈U (ge) is of filtered degree dr . Let
xr := grdr

zr ∈ S(ge)
ge . Explicitly,

xr =
∑
µ⊆λ

|µ|=r,`(µ)=dr

∑
w∈Sd

sgn(w)eiw1,i1;µi1−1 . . . eiwd ,id ;µid−1 ∈ S(ge) (4.1)

where as usual 1≤ i1 < i2 · · ·< id ≤ n denote the positions of the nonzero entries
of µ.

THEOREM 4.1. The elements x1, . . . , xN are algebraically independent generators
for S(ge)

ge .

For the proof, let us from now on identify S(ge) with F[g∗e ], the coordinate algebra
of the affine variety g∗e . Let

{ fi, j;r | 1≤ i, j ≤ n, si, j ≤ r < λ j } (4.2)

be the basis for g∗e that is dual to the basis (3.1). By convention, we interpret fi, j;r as
zero if r < si, j . The coadjoint action ad∗ of ge on g∗e is given explicitly by the formula

(ad∗ei, j;r )( fk,l;s)= δ j,l fk,i;s−r − δi,k f j,l;s−r . (4.3)
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The induced action of ge on F[g∗e ] is defined by

(x · θ)(y)=−θ((ad∗x)(y))

for x ∈ ge, y ∈ g∗e , θ ∈ F[g∗e ]. It is for this action that the invariant subalgebra S(ge)
ge

is identified with F[g∗e ]
ge . Introduce the affine subspace

S := f + V (4.4)

of g∗e , where

f := f1,2;λ2−1 + f2,3;λ3−1 + · · · + fn−1,n;λn−1

and V is the N -dimensional linear subspace spanned by the vectors

{ fn,i;r | 1≤ i ≤ n, 0≤ r < λi }.

Let
ρ : F[g∗e ]

ge → F[S] (4.5)

be the homomorphism defined by restricting functions from g∗e to the slice S.

LEMMA 4.2. The elements ρ(x1), . . . , ρ(xN ) are algebraically independent genera-
tors of F[S].

PROOF. Take an arbitrary vector

v = f1,2;λ2−1 + f2,3;λ3−1 + · · · + fn−1,n;λn−1 +

n∑
j=1

λ j−1∑
t=0

a j,t fn, j;t ∈ S.

Since S ∼=AN , the algebra F[S] is freely generated by the coordinate functions
p j,t : v 7→ a j,t for 1≤ j ≤ n and 0≤ t < λ j − 1. Also note for any 1≤ i, j ≤ n and
si, j ≤ r < λ j that

ei, j;r (v)=

a j,r if i = n,
1 if j = i + 1 and r = λ j − 1,
0 otherwise.

(4.6)

Now fix 1≤ r ≤ N . Let

d := dr and s := r − λn − λn−1 − · · · − λn−d+2,

so that 1≤ s ≤ λn−d+1. We claim that xr (v)= (−1)d−1an−d+1,s−1, hence ρ(xr )=

(−1)d−1 pn−d+1,s−1. Since every coordinate function p j,t arises in this way for a
unique r , the lemma clearly follows from this claim.

To prove the claim, suppose we are given w ∈ Sd and µ⊆ λ such that |µ| = r ,
the nonzero parts of µ are in positions 1≤ i1 < · · ·< id ≤ n, and the monomial
eiw1,i1;µi1−1 . . . eiwd ,id ;µid−1 from the right-hand side of (4.1) is nonzero on v. For
at least one j = 1, . . . , d , we must have that w j ≥ j , and for such a j the fact
that eiw j ,i j ;µi j−1(v) 6= 0 implies by (4.6) that w j = d and id = n. For all other
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j 6= k ∈ {1, . . . , d}, we have that wk 6= d hence iwk 6= n. But then the fact that
eiwk ,ik ;µik−1(v) 6= 0 implies by (4.6) that ik = iwk + 1 and µik = λik . So w j = d and
wk = k − 1 for all k 6= j , which means thatw = (d d−1 . . . 1) and j = 1. Moreover,

i2 = i1 + 1, i3 = i2 + 1, . . . , id = id−1 + 1= n,

which means that

(i1, . . . , id)= (n − d + 1, . . . , n − 1, n).

Hence,

µ= (0, . . . , 0, s, λn−d+2, . . . , λn−1, λn).

For this w and µ it is indeed the case that

eiw1,i1;µi1−1 . . . eiwd ,i1;µid−1(v)= an−d+1,s−1

by (4.6) once more. Since `(w)= d − 1 this and the definition (4.1) implies
the claim. 2

LEMMA 4.3. We have that ρ is an isomorphism.

PROOF. Lemma 4.2 implies that ρ is surjective, so it just remains to prove that it
is injective. Let G := GL N (F) acting naturally on g by conjugation. Let Ge be
the centralizer of e in G and identify ge with the Lie algebra of Ge, that is, the
tangent space Tι(Ge) to Ge at the identity element ι, as usual. Considering the
coadjoint action Ad∗ of Ge on g∗e , we have that F[g∗e ]

Ge = F[g∗e ]
ge . To prove that

ρ : F[g∗e ]
Ge → F[S] is injective, it suffices to prove that (Ad∗Ge)(S) is dense in g∗e ,

that is, that the map φ : Ge × S→ g∗e , (g, x) 7→ (Ad∗g)(x) is dominant. This follows
if we can check that its differential dφ(ι, f ) at the point (ι, f ) is surjective; see, for
example, [S, Theorem 4.3.6(i)]. Identify the tangent spaces T f (S) and T f (g

∗
e) with

V and g∗e . Then the differential dφ(ι, f ) : ge ⊕ V → g∗e is given explicitly by the map
(x, v) 7→ (ad∗x)( f )+ v. We show that it is surjective by checking that every basis
element fi, j;r from (4.2) belongs to its image.

To start with, it is easy to see each fn,i;r belongs to the image of dφ(ι, f ), since
each of these vectors belongs to V . Next, suppose that 1≤ i ≤ j < n and 0≤ r < λi .
By (4.3), we have that

(ad∗ei, j+1;λ j+1−r−1)( f )= f j,i;r − f j+1,i+1;λi+1−λ j+1+r .

Using this, we get that all f j,i;r with i ≤ j belong to the image of dφ(ι, f ). Finally,
suppose that n ≥ i > j ≥ 1 and λi − λ j ≤ r < λi . By (4.3) again, we have that

(ad∗ei−1, j;λi−r−1)( f )=

{
− f j,i;r if j = 1

f j−1,i−1;λ j−λi+r − f j,i;r if j > 1.

From this we see that all f j,i;r ’s with i > j belong to the image of dφ(ι, f ) too. This
completes the proof. 2
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By Lemma 4.2, ρ(x1), . . . , ρ(xN ) are algebraically independent generators for
F[S]. By Lemma 4.3, ρ is an isomorphism. Hence x1, . . . , xN are algebraically
independent generators of F[g∗e ]

ge . This completes the proof of Theorem 4.1. Now
we can deduce the Main Theorem from the introduction.

COROLLARY 4.4. The elements z1, . . . , zN are algebraically independent genera-
tors for Z(ge).

PROOF. It is obvious that gr Z(ge)⊆ S(ge)
ge . We have observed already that

z1, . . . , zN ∈ Z(ge) are of filtered degrees d1, . . . , dN , respectively, and by
Theorem 4.1 the associated graded elements are algebraically independent generators
for S(ge)

ge . By a standard filtration argument (see, for example, the proof of [MNO,
Theorem 2.13]), this is enough to deduce that z1, . . . , zN are themselves algebraically
independent generators for Z(ge). At the same time, we have reproved the well-known
equality gr Z(ge)= S(ge)

ge . 2

To conclude the article, we give one application; see [BK3, Theorem 6.10], [PPY,
Remark 2.1] and the footnote to [P, Question 5.1] for other proofs of this result. Recall
the central elements Z1, . . . , Z N of W (λ) from Lemma 3.2.

COROLLARY 4.5. The elements Z1, . . . , Z N are algebraically independent genera-
tors for the center of W (λ).

PROOF. The loop filtration on W (λ) induces a filtration on Z(W (λ)). Clearly
we have that gr Z(W (λ))⊆ Z(gr W (λ)). By Theorem 3.4, we know that
Z1, . . . , Z N ∈ Z(W (λ)) are of filtered degrees 1− d1, . . . , N − dN respectively,
and by Corollary 4.4 the associated graded elements are algebraically independent
generators for Z(ge). Hence, Z1, . . . , Z N are algebraically independent generators
for Z(W (λ)). At the same time, we have proved that gr Z(W (λ))= Z(ge). 2
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