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ABSTRACT. A local two-dimensional flow model which accounts for the anisotropic
behaviourof polar ice andthe evolutionof its strain-induced anisotropy is briefly reviewed.
Due to its complexity, it is not yet possible to use this model to simulate the flow of a whole
ice sheet, and its potential applications are presently restricted to limited spatial domains
aroundexisting drilling sites. In order to calculate the local flow of ice, boundary conditions
must be applied on the lateral edges of the studied domain. Since these limits correspond to
fictitious sections of the ice sheet, the type of boundary condition to adopt is not obvious. In
the present paper, different kinds of boundaryconditions of the Dirichlet type, applied at the
lateral boundaryof an idealized ice sheet of simplified geometry, are discussed.This will serve
as a first step towards the coupling of the local flow model with a global ice-sheet flow model.

INTRODUCTION

In the frameworkof the interpretation of climatic and atmos-
pheric ice-core records, a better understanding of the flow of
ice in the vicinity of potential and existing drilling sites is
required.To this end, many glaciologicalmeasurements, such
as surface and bedrock topographies and surface velocities,
are performed at these locations, and borehole surveys are
carried out whenever possible.The spatial resolution of these
measurements is very high compared to that of results
derived from a global ice-sheet flow model which is relatively
poor (Savvin and others, 2000).Therefore, in order to achieve
a convenient accuracy, a local flow model which enables the
solution of the full stress-equilibrium equations while using
high-resolution topographic data, especially close to summits
and ice divides where the shallow-ice approximation (SIA) is
not valid, must be used. On the other hand, such a local flow
model can be sought to consider a better description of the

behaviour of polycrystalline ice than that used in current
global ice-sheet models, in particular as regards the strong
anisotropy of polar ice and the evolution of its fabric. Since,
by definition, a local model simulates the flow of ice in a
limited domain, the domain margins must be submitted to
boundary conditions which reproduce the action of the rest of
the ice sheet. When the local model is simply a higher-reso-
lution version of the global model, i.e. when both are solving
the same equations on a subgrid and a coarse grid, respective-
ly, the simplest way to apply the boundary conditions in the
local model is to interpolate the coarse-grid results at the
margin subgrid points (Savvin and others, 2000). Since
coarse-grid simulations of a whole ice sheet accounting for
ice evolving anisotropy are not yet available, the choice of
conditions to apply at the lateral boundary of the local flow
domain is no more straightforward.

The local flow model used in this study is a multi-scale
model: it provides the velocity and fabric fields correspond-
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Fig. 1. Problem description and notation. For clarity, the fixed reference frame used to define the grain-reference frame is drawn rotated.
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ing to an assumed stationary state, while the behaviour of
ice is obtained by a homogenizationprocedure which allows
us to derive the polycrystal behaviour from the knownbeha-
viour of its constituent grains.The present paper focuses on
the difficulties which arise when coupling this local model
for the flow of orthotropic ice with a global flow model. To
this end, different boundary conditions inferred from the
zero-order SIA solutions for isotropic and orthotropic ice
are applied at the lateral side of a two-dimensional ice sheet
with simple geometry (the other lateral boundary is the
dome axis), and the influence of these boundary conditions
on the local flow is discussed.

MODEL FOR THE ANISOTROPIC BEHAVIOUR OF
ICE

The mechanical behaviour of a polycrystal of ice is obtained
by homogenization. Therefore, the polycrystal response
depends on the behaviour of its grains and on their crystal-
lographic orientations.

Grain behaviour

Following Meyssonnier and Philip (1996), each grain is
assumed to behave as a linear transversely isotropic medium
with rotational symmetry axis in the direction of the grain c
axis (the plane of isotropy is the basal plane).The local refer-
ence frame attached to a grain, with its x3 axis along the
grain c axis, is denoted by {gR}. Since each grain is trans-
versely isotropic, its crystallographic orientation is given by
the two angles ³ and ’ which define the c-axis direction in
the global reference frame {R} (see Fig. 1). The grain consti-
tutive law is written in the objective form:

ˆ Á

2
‰­ ‡ …1 ¡ ­ †… 3 ‡ 3 ¡ 2tr… 3 † †Š ;

…1†
where 3 is the structure tensor defined by 3 ˆ « ;
being the grain c-axis unit vector …gc ˆ …0; 0; 1† in {gR}), and

and are the strain-rate and the deviatoric-stress tensors,
respectively. Written in the grain reference frame {gR}, the
objective expression (1) takes the more usual form:

dii ˆ Á

2
­ sii; i ˆ 1; 2; 3 ;

d23 ˆ Á

2
s23; d31 ˆ Á

2
s31; d12 ˆ Á

2
­ s12 :

…2†

The parameter Á is the fluidity, inverse of viscosity, for shear
parallel to the basal plane of the grain, and ­ is the ratio of
the shear fluidity in the basal plane to that parallel to the
basal plane. ­ acts as a measure of the grain anisotropy:
when ­ ˆ 0 the grain can deform only by basal glide, as
assumed in many models (Lliboutry, 1993; Van der Veen
and Whillans, 1994; Mangeney and others, 1997; Go« dert
and Hutter, 1998), while ­ ˆ 1 corresponds to an isotropic
grain. Since the ice single crystal deforms mainly by shear
parallel to its basal plane (Duval and others,1983), the value
of ­ should be significantly less than 1. Note that the grain
behaviour differs from the ice single crystal behaviour since
a grain in a polycrystal interacts with its neighbours. As a
consequence, the grain parameters differ from the single
crystal parameters which could be derived from direct
experiments. On the other hand, since the uniform-stress
model does not take into account grain-to-grain interactions
(it considers each grain as isolated) the grain parameters

have to be fitted so that the model for a polycrystal based
on the grain model reproduces experimental data.

Orthotropic polycrystal behaviour

The fabric of the ice polycrystal is described by an orientation
distribution function f…³; ’† (ODF) which gives the relative
density of grains whose c axes have the orientation …³; ’† in
the global reference frame {R}.The relative number of grains
with orientation …³; ’† is f…³; ’† sin ³. Since recrystallization
is not accounted for, fabric evolution is solely due to grain lat-
tice rotation, i.e. the net flux of grains entering or leaving the
interval d³; d’ at point …³; ’† equals the increase in the num-
ber of grains in this interval during time increment dt, that is

@f sin ³

@t
‡ @ _³f sin ³

@³
‡ @ _’f sin ³

@’
ˆ 0 : …3†

The grain rotation rates _³ and _’ in Equation (3) are deter-
mined from the decomposition of the spin of each grain into a
component due to its visco-plastic deformation (measured in
the grain reference frame {gR}) plus a component correspond-
ing to the rotationof thebasalplanes (Meyssonnier and Philip,
1996).Thehomogenizationprocedure to derive the polycrystal
behaviour is based on the assumption of a uniform state of
stress in the polycrystal, i.e. the stress in any grain is the same
as the stress in the aggregate considered as a homogeneous
medium (this model is often referred to as `̀ static model’’).
Using the overbar symbol to denote quantities defined at the
polycrystal (macroscopic) scale, this condition is expressed
simply as:

ˆ · : …4†

According to Gagliardini and Meyssonnier (1999a) and
assuming that the spin of each grain, expressed as in the
global reference frame fRg, equals the macroscopic spin of
the polycrystal · (Taylor-type assumption) the grain rotation
rates _³ and _’ corresponding to plane flow can be expressed in
terms of the macroscopic deviatoric-stress components
·s11; ·s22; ·s12 and of the macroscopic spin component ·w12 as

_³ ˆ¡ Á

8
sin 2³‰3…·s11‡·s22†‡…·s11¡·s22†cos 2’‡2·s12 sin 2’Š

_’ ˆ Á

4
‰…·s11 ¡ ·s22† sin 2’ ¡ 2·s12 cos 2’Š ¡ ·w12 : …5†

Equations (3) and (5) describe completely the evolution of
the ice fabric in the particular case of plane flow.

In what follows, we assume that the fabric can be
described by a parameterized ODF which was derived from
analytical calculations by Gagliardini and Meyssonnier
(1999a) under the assumptions that the principal stress
directions are fixed and that ·w12 ˆ 0. This parameterized
ODF is given by

f…³; ’; ·k1; ·k2;
o ·’† ˆ

©
sin2 ³‰k2

1 cos2…’ ¡ o ·’†

‡ ·k2
2 sin2…’ ¡ o ·’†Š ‡ ·k2

3 cos2 ³
ª¡3=2

:

…6†

Since the equation for the conservation of the total number
of grains,

1

2º

Z2º

0

Zº=2

0

f…³; ’† sin ³ d³ d’ ˆ 1 ; …7†
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implies
·k1

·k2
·k3 ˆ 1 ; …8†

the ODF (Equation (6)) depends only on three independent
parameters ·k1; ·k2 and o ·’. Relation (6) describes an ortho-
tropic fabric with planes of symmetry …ox1;

ox2†, …ox2; ox3†
and …ox3; ox1†. In the following, the plane …ox1;

ox2† coincides
with the plane …x1; x2† of the ice-sheet flow (see Fig.1). Each
parameter ·ki gives the strength of concentration of c axes in
the direction o

i of the material symmetry reference frame
foRg attached to the polycrystal (defined by the three
orthogonalplanes of orthotropy). A small value of ·ki corres-
ponds to c axes gathered along direction o

i. The angle o ·’
defines the rotation around the x3 axis (in the plane
…x1; x2†) of foRg with respect to the global reference frame
fRg (see Fig.1).

Taking Equation (4) into account, the constitutive law for
the orthotropic polycrystalwith a fabricgivenby Equation (6)
is obtained by expressing the macroscopic strain rate as the
weighted average of the grain strain rates given by Equation
(1), that is

· ˆ h i; …9†
where

h i ˆ 1

2º

Z2º

0

Zº=2

0

…³; ’†f…³; ’† sin ³ d³ d’ : …10†

For flow numerical solving, it is convenient to use the inverted
form of the constitutive law derived from Equation (9) which
is found as

· ˆ
X3

iˆ1

·²i tr…o ·
i
·†o · D

i ‡ ·²i‡3…·o ·
i ‡o ·

i
·†D

h i
;

…11†
where ·²i are macroscopic viscosities which are expressed in
terms of the grain rheologicalparameters Á and ­ and of fab-
ric parameters ·ki and o ·’ (see Gagliardini and Meyssonnier,
1999b, for these relations), and o ·

i ˆ o
i « o

i are three
structure tensors defined by the unit vectors o

i of foRg. For
isotropic ice, i.e. when f…³; ’† ²1and ·k1 ˆ ·k2 ˆ ·k3 ˆ1, ·²i ˆ
0 and ·²i‡3 ˆ1= ·B1 for i ˆ1, 2,3, so that Equation (11) reduces
to a linearly viscous law · ˆ ·B1·=2 corresponding to the
linear version of Glen’s law. The fluidity parameter ·B1 is
related to the grain rheological parameters by Gagliardini
and Meyssonnier (1999a):

·B1 ˆ Á

5
…3­ ‡ 2† : …12†

·B1, then Á according to Equation (12), are temperature-
dependent and follow the Arrhenius law

·B1…T † ˆ ·B1…T0†eQ…1=T0¡1=T †=R ; …13†
where Q is the activation energy, R is the gas constant and
T , T0 are temperatures in Kelvin.

FLOWAND FABRIC EVOLUTION PROBLEMS

At a given material point in the ice sheet the ice fabric is
given by Equation (6) in which parameters ·ki and o’ are -
dependent. In the following, taking Equation (8) into
account, the fabric is described by using the three-
component fabric vector ~·… † ˆ …·k1… †; ·k2… †; o ·’… ††.

Then, the problems to be solved are (i) for a given fabric
field ~·… †, the gravity-driven plane flow for fixed surface

and bedrock topographies, and (ii) for a given velocity field
·u… †, the fabric field assuming an isotropic fabric at the ice-
sheet surface and stationary flow. The velocity and fabric
fields corresponding to stationary flow are calculated by
iteratively solving the velocity problem and the fabric
problem, until convergence is achieved.

In this study we adopt a simplified ice-sheet geometry,
with a flat bedrock and a fixed surface elevation given by
Vialov’s profile (Vialov,1958):

h…x1†4 ˆ h4
0 1 ¡ x1

L

± ²2
µ ¶

; …14†

where h0 is the ice depth at the dome and L is the ice-sheet
length. Note that the local flow model is applied on a small
part of the ice sheet delimited by the dome x1 ˆ 0 and a
fictitious vertical boundary at x1 ˆ e.

Flow equations

For the flow problem, the micro^macro polycrystal law
(Equation (11)) is incorporated into a finite-element code
in order to solve the quasi-static stress-equilibrium equa-
tions corresponding to plane strain flow

@·s11

@x1
‡ @·s12

@x2
‡ @·p

@x1
ˆ 0;

@·s12

@x1
‡ @·s22

@x2
‡ @·p

@x2
ˆ »g ; …15†

where ·p ˆ tr…·†=3 is the isotropic pressure and »g is the grav-
ity force (per unit volume), and the incompressibility
equation

@·u1

@x1
‡ @·u2

@x2
ˆ 0 ; …16†

where ·ui is the velocity component in direction i of fRg.
Note that since the surface elevation is fixed, the accu-

mulation rate ·b must be considered as a variable depending
on the solution of the flow problem which derives from mass
conservation as

·b…x1† ˆ ·u1…x1; h† @h

@x1
¡ ·u2…x1; h† : …17†

The boundary conditions of the flow problem are:

No sliding at the ice^bedrock interface x2 ˆ 0, hence

·ui…x1; 0† ˆ 0 i ˆ 1; 2 : …18†
The vertical axis of symmetry of the two-dimensional
ice sheet is assumed to be at the dome x1 ˆ 0 (see Fig. 1)
which implies

·u1…0; x2† ˆ 0 and ·s12…0; x2† ˆ 0 : …19†
A boundary condition has to be imposed at the lateral
boundary x1 ˆ e.

Different kinds of Dirichlet boundary conditions are
studied below.

From a numerical point of view, the isotropic pressure is
used as a Lagrange multiplier in order to solve the incom-
pressibility equation (16). The mesh is made of six-node tri-
angular elements, with a quadratic interpolation of the
velocities and a linear interpolation of the isotropic pres-
sure. For the flow problem, the fabric parameters ·k1, ·k2

and o ·’ are given at each node of the mesh and interpolated
quadratically.

Fabric evolution

The problem is to find the fabric field ~·… † for a given
velocity field ·… †. The conservation equation for the grain
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orientations written in the form of Equation (3) supposes that
the polycrystal is followed along its trajectory (Lagrangian
point of view). From the Eulerian point of view adopted here
to solve the stationary problem, the term @…f sin ³†=@t is zero
and must be replaced by a convective term ‰@…f sin ³†=@xiŠ·ui

(at point the observed polycrystal comes from upstream).
Then the ODFevolution equation (3) becomes

X3

jˆ1

@f sin ³

@~·kj

@~·kj

@xi
·ui ‡ @ _³f sin ³

@³
‡ @ _’f sin ³

@’
ˆ 0 : …20†

Using Expressions (5) for _³ and _’ and (6) for f, Equation
(20) simplifies as

@f

@~·ki

Qi ‡ @ _³f

@³
‡ _£f cos ³ ‡ @ _’f

@’
ˆ 0 ; …21†

where Qi ˆ Q…~·ki† ˆ …@~·ki=@xj†·uj for i ˆ 1, 2, 3, and where
_£ is such that _³ ˆ _£ sin ³. That is, from Equation (5)1 ,

_£ ˆ ¡
Á

4
cos ³ …22†

¢ ‰3…·s11 ‡ ·s22† ‡ …·s11 ¡ ·s22† cos 2’ ‡ 2·s12 sin 2’Š :

Equation (21) is valid at each point whatever the grain
orientation …³; ’† considered. Three independent evolution
equations for the ODF parameters are obtained from Equa-
tion (21) by following the method proposed by Go« dert and
Hutter (2000). First, since @f=@ ·k2 and @f=@ o·’ are zero for
³ ˆ º=2 and ’ ˆ o ·’, replacing …³; ’† by …º=2; o ·’† in Equa-
tion (21) provides Q1 ˆ Q…·k1†. Second, @f=@ o·’ being zero
for ³ ˆ 0, making ³ ˆ 0 in Equation (21) provides Q1 ‡ Q2,
then using the first relation Q2 ˆ Q…·k2†. Finally Q3 ˆ Q… o·’†
is simply derived from Equation (21) by replacing Q1 and Q2

in Equation (21) by their expressions so obtained.The result-
ing three evolution equations for the ODF parameters are:

@ ·k1

@xi
·ui ¡ ·k1

Á

4

¢ ‰·s11 ‡ ·s22 ‡ …·s11 ¡ ·s22† cos 2 o·’ ‡ 2·s12 sin 2 o·’Š ˆ 0 ;

@ ·k2

@xi
·ui ¡ ·k2

Á

4

¢ ‰·s11 ‡ ·s22 ¡ …·s11 ¡ ·s22† cos 2 o·’ ¡ 2·s12 sin 2 o·’Š ˆ 0 ;

@o·’

@xi
·ui ¡ Á

4

1 ‡ …·k2=·k1†2

1 ¡ …·k2=·k1†2

¢ ‰2·s12 cos 2 o·’ ¡ …·s11 ¡ ·s22† sin 2 o·’Š ‡ ·w12 ˆ 0 : …23†

In a previous model (Gagliardini and Meyssonnier,
1999a, 2000) fabric evolution was calculated differently. On
the one hand, the ·ki parameters were obtained analytically
under the assumptions that the directions of the principal
stresses do not change significantly along a streamline
during the time-step dt. On the other hand, the increment
of rotation of the material symmetry reference do·’ was
taken as h _’i dt which required an integration over ³ and ’
at each time-step. Compared to this previous model, the
fabric evolution problem is now notably simplified and also
solved in a more rigorous way.

Numerically, Equation (23) is solved by using a second-
order Runge^Kutta method along the streamlines derived
from the solution of the flow problem. Since the ice depos-
ited on the ice-sheet surface is assumed to be isotropic, the
boundary conditions on fabric parameters ·ki are

·ki…x1; h† ˆ 1 i ˆ 1; 2; 3 ; …24†

while o·’…x1; h† is determined by the principal stress direc-
tions at the surface.

LATERAL BOUNDARY CONDITIONS

Different Dirichlet-type boundary conditions (i.e. given
values of ·ui…e; x2†) were applied at the lateral boundary
x1 ˆ e of the model. These conditions are inferred from
analytical developments of the zero-order SIA for isotropic
and orthotropic ice.

SIA formulation for orthotropic ice

In the framework of the SIA (see, e.g., Hutter, 1983), since
the length of the ice sheet L is much larger than its depth
h0 at the dome, the small parameter ° ˆ h0=L is used to
expand the flow Equations (11), (15) and (16) in power series
of °. Using capital letters for stretched variables, the actual
coordinates x1, x2 and surface elevation h transform
respectively into X1, X2 and H, such that:

X1 ˆ °x1 ; X2 ˆ x2 ; H ˆ h : …25†

According to Mangeney and Califano (1998) the stretched
velocities, strain-rate and deviatoric-stress components are
defined as:

·U1 ˆ °·u1 ; ·U2 ˆ ·u2 ;

·D11 ˆ ·d11 ; ·D22 ˆ ·d22 ; 2 ·D12 ˆ
1

°

@ ·U1

@X2
‡ °

@ ·U2

@X1
;

·P ˆ ·p ; ·Sij ˆ ·sij=° : …26†

The SIA equations are derived by using the linear orthotro-
pic law (Equation (11)). Following Mangeney and Califano
(1998), a coherent stretching of the viscosities ·²i in Equation
(11) is chosen as

·
i ˆ

·²i

°2
: …27†

FollowingPhilip and Meyssonnier (1999), taking into account
Equations (25^27), the equations of the flow problem (15) and
(16) at order O…°0† for orthotropic ice behaviour are

·S11 ˆ ·M1112
@ ·U2

@X1
; ·S22 ˆ ·M2212

@ ·U2

@X1
;

·S33 ˆ ·M3312
@ ·U2

@X1
; ·S12 ˆ ·M1212

@ ·U2

@X1
;

@ ·P

@X1
‡ @ ·S12

@X2
ˆ 0 ;

@ ·P

@X2
ˆ »g ;

@ ·U1

@X1
‡ @ ·U2

@X2
ˆ 0 ;

…28†

where ·Mij12 are the stretched polycrystal viscosities
expressed in the global reference frame {R}. For the orthotro-
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pic behaviour (Equation (11)) considered, they are found to be
of the form
·M1112 ˆ sin 2 o·’

¢ 3… ·M1 ‡ ·M2† cos2 o ·’ ¡ … ·M1 ‡ 2 ·M2 ¡ ·M4 ‡ ·M5†
6

;

·M2212 ˆ sin 2 o·’

¢ ¡3… ·M1 ‡ ·M2† cos2 o ·’ ‡ …2 ·M1 ‡ ·M2 ‡ ·M4 ¡ ·M5†
6

;

·M3312 ˆ sin 2 o·’
¡ ·M1 ‡ ·M2 ¡ 2 ·M4 ‡ 2 ·M5

6
;

·M1212 ˆ sin2 2 o·’… ·M1 ‡ ·M2† ‡ 4 ·M4 ‡ 4 ·M5

4
; …29†

where ·Mi is given by Equation (27).
Using Equations (28), (29) and (27), the form of the zero-

order solution is found as
·P ˆ »g…X2 ¡ H† ;

·S12 ˆ »gH
0 …X2 ¡ H† ;

@ ·U1

@X2
ˆ

»g
·M1212

H
0…X2 ¡ H† ;

@2 ·U2

@X2
2

ˆ ¡
»g

·M1212

‰H 00…X2 ¡ H† ¡ …H 0 †2Š ;

…30†

where H
0

and H
00

are the first and second derivative of H
with respect to X1, respectively.

Assuming that the viscosities ·²i in Equation (11), the tem-
perature T and the fabric parameters ~· are functions only of
the reduced depth z ˆ x2=h…x1†, Equations (30)3 and (30)4

are solved at the lateral boundary of the local model x1 ˆ e,
using a second-order Runge^Kutta method, with boundary
conditions ·ui…e; 0† ˆ 0 and @ ·u2=@x2…e; 0† ˆ 0.

The different boundary conditions

Three kinds of lateral boundary conditions at x1 ˆ e are
considered:

The `̀isotropic’’ boundary condition is derived from the SIA
solution of Equation (30) for ·ui…e; x2†, assuming isotropic
behaviour of ice. Then the viscosities in Equation (11) are
·²i ˆ 0 and ·²i‡3 ˆ 1= ·B1 for i ˆ 1, 2, 3, which implies that
·Mii12 ˆ 0 for i ˆ 1; 2; 3 and ·M1212 ˆ 1=…°2 ·B1† in Equa-

tion (30). Since we assume a non-uniform field of tempera-
ture of the form T ˆ T…z†, there is no analytical solution
for these velocities.

The `̀orthotropic’’ boundary condition is derived from the
SIA solution of Equation (30), assuming orthotropic beha-
viourof ice.The vertical fabric profile used to derive the ice
behaviour (Equation (11)) needed for the SIA calculations
is the one calculated at the lateral boundary of the local
flow model at x1 ˆ e, i.e. ~·…z† used in the SIA calculations
equals ~·…e; x2† resulting from the local flow model. Note
that, unlike the `̀ isotropic’’ boundary condition case, the
finite-element local flow problem and the SIA calculations
are coupled: the vertical fabric profile ~·…z† used in the SIA
calculation changes at each step of the coupled problem,
while the boundary condition at x1 ˆ e must be recalcu-
lated before each local flow computation.

The `̀enhanced isotropic’’ boundary condition is the same as
the `̀ isotropic’’one, but the imposed velocities are scaled by
an enhancement factor E, constant with depth, calculated
to match the horizontalvelocityof the `̀orthotropic’’ bound-

ary condition at the top of the lateral boundary. The SIA
solution is obtained by using the enhanced fluidity
E= ·M1212 instead of 1= ·M1212 in Equation (30).

LOCAL-FLOW MODEL RESULTS

Input data for numerical simulations

In order to assess the influence of the boundary condition
applied at the lateral boundary, the study is restricted to
results obtained on a simplified two-dimensional ice sheet.
All the calculations were performed under the following
common assumptions (see Fig.1):

The fixed surface elevation is given by Vialov’s profile
(Equation (14)) with ° ˆ 0.005 (L ˆ 200 h0), and the
bedrock is assumed to be perfectly flat.

The temperature field is deduced from the Greenland Ice-
core Project (GRIP) borehole measurements (Gundestrup
and others, 1993), assuming that the temperature is a
function of the reduced elevation z only (i.e. independent
of x1). The temperature increases by 23.3³C from the sur-
face (^31.7³C) to the bottom (^8.4³C).

The studied domain is restricted to 0 µ x µ e with e 20
times the depth at the dome, i.e. e ˆ 20 h0 ˆ 0.1L.

Adimensional velocities are obtained by using ·B1»gh2
0

as velocity unit.

The numerical values assigned to the grain behaviour
parameters (except ·B1) are given in Table 1. They were
obtained by comparison of the polycrystal model results
with field data from the GRIP ice core (Gagliardini and
Meyssonnier,1999a).

The finite-element mesh is composed of 20 horizontal
layers and 60 vertical columns of quadrilateral domains,
each subdivided into four triangular six-node elements.
This corresponds to 4800 triangles and 9761 nodes. The
mesh is refined near the ice divide and near the bedrock.

Results

The results obtained for the convergence of the local
coupled flow problem are the velocity and the fabric fields
corresponding to the stationary flow of an ice sheet with
fixed geometry.

From a numerical point of view, convergence of the
coupled problem (i.e. computation of the velocity field and
fabric field corresponding to stationary state) for both the
`̀ isotropic’’ and `̀enhanced isotropic’’ boundary conditions
was obtained after more than 30 iterations, whereas the con-
vergence was obtained after only10 iterations for the `̀ortho-
tropic’’ boundary condition.

As expected from Mangeneyandothers (1996), the imposed
velocities at the lateralboundary withthe `̀ isotropic’’boundary

Table 1.Value of the grain parameters used in finite-element
computations

­ ˆ 0.25 Grain anisotropy parameter in Equation (1)
Q ˆ 78 000 J mol^1 Activation energy
R ˆ 8.314 J mol^1K^1 Gas constant
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conditionare smaller bya factorof 1.75 than that obtainedwith
the `̀orthotropic’’ boundary condition (see Fig. 2c and d). Con-
sequently the `̀ isotropic’’ boundary condition slows down the
flow.The influence of such a constraint is visible on the surface
velocities: owing to ice incompressibility, the vertical velocity
becomes positive (upward direction) just upstream of the lat-
eral boundaryx1 ˆ e (for agivenaccumulation rate thiswould
correspond to a bump of the free surface).

On the other hand, the `̀orthotropic’’ boundary condi-
tion seems to have only a very weak influence on the
velocities. As shown by Mangeney and Califano (1998) for
transversely isotropic ice, the first- and second-order terms
of the SIA solution are negligible compared to the zero-
order terms. This could explain why the local velocities are
not disturbed by the lateral boundary condition.The verti-
cal velocities are slightly oscillating around a mean value
(see Fig. 2b) which is attributed to the imposed velocities at
the lateral boundary.

The enhancement factor for the `̀enhanced isotropic’’
boundarycondition is taken as E ˆ1.75, so that the horizontal
velocity ·u1…e; h† at the ice-sheet surface is equal to that corres-
ponding to the `̀orthotropic’’ boundary condition. Owing to
the imposed temperature profile T …z† (temperature increase
of 23.3³C from surface to bottom corresponding to an increase

of the ice fluidity by a factor about 30), most of the deformation
is located near the bedrock. As a consequence, although the
two SIA solutions are theoretically different (the orthotropic
SIA solution accounts for a variation of ·M1212 with depth,
whereas the enhanced isotropic solution assumes a constant
viscosity), both the horizontal and vertical imposed velocity
profiles of the `̀enhanced isotropic’’ and of the `̀orthotropic’’
boundary conditions are very close to each other. As a conse-
quence, the velocity field obtained with the `̀enhanced isotro-
pic’’ boundary condition is very similar to that obtained in the
`̀orthotropic’’case (see Fig.2). Fora smaller increase of the tem-
perature with depth, the difference would be more significant.

The influence of the boundary conditions on the fabric-
field results was assessed by comparing the evolutions with
depth of the fabric-strength parameter R0 and of the orienta-
tion o·’ of the material symmetry reference frame (see Fig. 3).
R0 is a statistical parameter which indicates the strength of
the fabric and is defined as:

R0 ˆ 2jjh ijj ; …31†

where is the c-axis unit vector and jj jj denotes the norm of
a vector. An isotropic fabric corresponds to R0 ˆ 0, and R0

takes the maximum value1when all the grain c axes have the
same orientation. As for the velocities, the fabrics obtained

Fig. 2. (a) Horizontal and (b) vertical velocities on the ice-sheet surface; (c) horizontal and (d) vertical velocity profiles at
x1 ˆ 10h0 (thin curves) and at x1 ˆ 20h0 ˆ e (thick curves) for the `̀ isotropic’’ (dashed line), `̀orthotropic’’ (solid line) and
`̀enhanced isotropic’’ (dotted line) boundary conditions.

Gagliardini and Meyssonnier: Boundary conditions for local anisotropic ice-flow model

508
https://doi.org/10.3189/172756402781817202 Published online by Cambridge University Press

https://doi.org/10.3189/172756402781817202


with the `̀enhanced isotropic’’ and `̀orthotropic’’ boundary
conditions are very similar. As shown on Figure 3, the differ-
ences on the fabric fields for the `̀ isotropic’’and `̀orthotropic’’
boundary conditions are smaller than those observed on the
velocities. The larger difference is observed at the lateral
boundary at x1 ˆ e ˆ 20h0, and o·’ is more perturbed than
the strength of the fabric. A possible explanation is that since
the evolution of the fabric parameters is obtained by integra-
tion of Equations (23) along the flow streamlines, it is natur-
ally sensitive to perturbations of the flow to some extent.
However, surface perturbations have much more influence
on o·’ than on parameters ·ki because they directly influence
the initial (surface) condition on o·’ (which is determined by
the principal stress directions at the surface), while the initial
conditions on the fabric-strength parameters (i.e. ·ki ˆ1) are
independent of the velocity.

CONCLUSION

A multi-scale model for the two-dimensional flow of polar
ice exhibiting a strain-induced evolving anisotropy has been
reviewed. The linear orthotropic behaviour of a polycrystal
of ice was obtained analyticallyby homogenizationassuming
a uniform state of stress in the polycrystal whose crystallo-
graphic texture is described by an ODF of its c axes. To
simulate the stationary flow of an idealized two-dimen-
sional ice sheet, a parameterized form of the ODF which
depends on three parameters was used. However, the exist-
ing model is still too complex to be used to simulate the flow
of a real ice sheet at the global scale, and potential applica-
tions are currently restricted to limited spatial domains
around existing drilling sites. Then the conditions to apply
on the lateral (fictitious) boundaries of the studied domain
must be assessed.

In this paper, three types of lateral boundary conditions
have been applied on the lateral boundary of a section of a
Vialov’s ice sheet resting on a flat bedrock. These Dirichlet-
type boundaryconditions were derived from SIA solutions at
order O…°0† for isotropic and orthotropic ice. Comparison of
the results shows that the lateral `̀orthotropic’’ boundary con-
dition derived from the SIA for anisotropic ice leads to

smooth velocities, whereas the `̀ isotropic’’ boundary condi-
tion generates strong perturbations of the flow. The present
study shows that, because Dirichlet-type conditions are too
constraining, the improvement expected from a local model
accounting for the physical mechanisms involved in the
description of ice behaviour could be wiped out by coupling
the local model with a global model which considers ice as an
isotropic medium. Using an enhanced isotropic fluidity in the
SIAwith an appropriate enhancement factor E derived from
the `̀orthotropic’’ SIA solution leads to a boundary condition
very close to the `̀orthotropic’’. However, in a general situ-
ation, the difficulty would be to guess the appropriate value
for E which is a priori unknown.
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