
GENERALIZED RADICAL RINGS 

W. E D W I N CLARK 

Let J? be a ring. We denote by o the so-called circle composition on R, denned 
by aob = a + b — ab for a, b G R. It is well known that this composition is 
associative and that J? is a radical ring in the sense of Jacobson (see 6) if and 
only if the semigroup (R, o) is a group. We shall say that R is a generalized 
radical ring if (R, o) is a union of groups. Such rings might equally appro­
priately be called generalized strongly regular rings, since every strongly 
regular ring satisfies this property (see Theorem A below). This definition 
was in fact partially motivated by the observation of Jiang Luh (7) that a 
ring is strongly regular if and only if its multiplicative semigroup is a union 
of groups. 

After proving that any strongly regular ring is a generalized radical ring, 
the remainder of the paper is devoted to establishing a characterization of 
generalized radical rings which possess principal idempotents. An idempotent 
of a ring will be called principal if it is an identity for the ring modulo its 
(Jacobson) radical. The class of rings containing such idempotents includes 
all radical rings, all rings with identity, and all rings with the descending 
chain condition on left ideals. I t is shown that a ring R possessing a principal 
idempotent is a generalized radical ring if and only if R is a splitting extension 
of its radical TV by a strongly regular subring eRe for some idempotent e in R. 

1. Preliminaries. A ring R is said to be strongly regular if a G a?R for 
all a in R. This implies that a G Ra2 for all a G R (see 5). 

Let 5 be a semigroup, and let e be an idempotent in S. Then there exists a 
maximal subsemigroup G of 5 containing e which is a group. Moreover, any 
two distinct such groups are disjoint (see 4, p. 22). If every element of 5 
belongs to such a subgroup, then 5 is said to be a union of groups. I t is known 
(4, §4.1, p. 121) that a semigroup 5 is a union of groups if and only if 
a G a2S C\ Sa2 for all a in S. Thus if a ring R is strongly regular, then its 
multiplicative semigroup is a union of groups. The converse is trivial. 

I t is also known that every idempotent of a strongly regular ring lies in 
the centre of the ring (see 5). Hence the multiplicative semigroup of a strongly 
regular ring is an inverse semigroup (see 4, Theorem 1.17, p. 28) in addition 
to being a union of groups. 

Let N denote the (Jacobson) radical of a ring R. An idempotent e is prin­
cipal if (1 — e)R + R(l — e) Ç N. (Here, as below, 1 is used only as a 
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notational device. R may or may not have an identity.) The case e = 0 is 
not excluded; however, this happens only if R = N. If R has an identity e, 
then clearly e is a unique principal idempotent. It is easily seen that a semi-
primary SB I ring (see 6, §§ 8 and 9) always contains a principal idempotent; 
and, in particular, any ring satisfying the descending chain condition on left 
ideals contains a principal idempotent. Every principal idempotent is prin­
cipal in the classical sense (1, § 9, p. 25), but in general the converse is not 
true. 

Let Pe = eRil - e) + (1 - e)Re + (1 - e)R(l - e). Then R is an 
abelian group direct sum R = eRe © Pe. This is the so-called two-sided 
Peirce decomposition of R with respect to the idempotent e. One may easily 
see that Pe = (1 — e)R + R(l — e). Thus, an idempotent e is principal if 
and only if Pe is contained in the radical of R. 

A subset T of R will be said to be a left ideal of (R, o) if r o / £ T for all 
r G R and all t G T. Right ideals and ideals are defined analogously. 

We now state several results from (2) which will be required. If e is a 
principal idempotent of a ring R with radical N, then it may be shown that 
eoNoe is a group. From this it follows rather easily that Noe (eoN) is 
a minimal left (right) ideal of (R,o). This implies by a result of A. H. 
Clifford (3) that K = NoeoN is a completely simple ideal of (R,o), i.e., 
K is a minimal ideal and a union of groups. Since No e (eo N) is a minimal 
left ideal, we have iVoe = Ro e (eo N = eo R). Whence, eo Ro e\s a, group 
and K = Ro eo R. Further details concerning K and its role in the structure 
of R will appear in (2). 

2. The main results. 

THEOREM A. If a ring R is strongly regular, then it is a generalized radical 
ring. 

Proof. Since R is strongly regular, its multiplicative semigroup, (R, •)> is 
a union of groups (see preliminaries). We must show that (R, o) is a union 
of groups. If x G R, then x lies in some subgroup G of (R, •)• Let e be the 
identity for G, so that x = exe. Now e — x also lies in a subgroup, say H, 
of (R} •)> which contains an identity g. Let ;y be the inverse of e — x in H. 
Then g = (e — x)y = (e2 — ex)y = eg. Similarly, g = ge. Hence h = e — g 
is an idempotent. Since ex = x, ge = g, and g(e — x) = e — x, we have 
g ~~ gx = g(e — x) = e — x = e — ex. Hence e — g = (e — g)x, implying 
hox = x. A dual argument shows that xoh = x. Thus h is a two-sided 
identity for x in (R,o). Now let ;y be the inverse of e — x in i7. Since 
e(e — x) = e — x and H = (e — x)H, we have ey = y. Similarly, ;ye = 3/. 
Now from (e — x)y — g, we obtain ey — xy = g and since e;y = y, xy — y — g. 
Hence xo (e — y) = x -\- e — y — x -\- xy = e — g = h. A similar argument 
shows that (e — y) o x = h. This implies that x lies in a subgroup of (R, o). 
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We recall that a ring R is said to be a splitting extension of an ideal I il R 
is a direct sum (qua abelian group) R = S © I for some subring S of R. If 
/ is the radical of R, R is sometimes said to be cleft. 

The remainder of this paper will be devoted to a proof of the following 
theorem. 

THEOREM B. A ring R is a splitting extension of its radical N by a strongly 
regular subring eRe for some idempotent e in R if and only if R is a generalized 
radical ring possessing a principal idempotent. 

The proof will be divided into a series of lemmas. 

LEMMA 1. Let Rbe a ring with identity e and let y be an element of the radical 
N of R. Then e — y lies in a subgroup of (R, o) only if y = 0. 

Proof. We first note that x —> e — x is an isomorphism from (R,o) onto 
the multiplicative semigroup (R, • ) of R. Therefore, if e — y lies in a sub­
group of (R,o), then y = e — (e — y) lies in a subgroup, say G, of (R, •)• 
L e t / be the identity of G, and let z be the inverse of y in G. T h e n / = zy G N. 
But, as is well known, the only idempotent in the radical is zero; whence 

/ = y = o. 
LEMMA 2. Let R be a ring containing a principal idempotent e and let 

K = R o e o R. Then the additive subgroup of R generated by K — e is an ideal 
contained in the radical of R. 

Proof. Let I denote the additive subgroup of R generated by K — e. Let 
/ = J2ni(ki — e) G / where kt G K and the nt are integers. Now, for any 
r G R, we have 

rt = r^^iiki — e) = 2>i(&* — ro kt + ro e — e) 

= J^ni(ki — e) — I > * ( r o kt — e) + ]>>*(Vo e — e). 

Since K is an ideal of (R, o), this implies that rt G / . Similarly, tr G / . Hence 
/ is an ideal of R. 

To show that / is contained in the radical N of R it suffices to show that 
K — e C N. By the remarks in the preliminaries above, K = No eo N which 
is clearly contained in N + e. This implies that K — e Ç N. 

LEMMA 3. Let R be a generalized radical ring containing a principal idem-
potent e, then Pe is an ideal. 

Proof. Let I denote the ideal generated by K — e where K = Ro eo R. 
Since R(l — e) =Roe — eÇ^K — e and similarly (1 — e)R Ç K — e, it 
is clear that Pe Çj I. To show the opposite inclusion it suffices to show that 
ele = 0 (since R = eRe © Pe qua abelian group). On the other hand, since 
by Lemma 2 / is the additive group generated by K — e, it suffices to show 
that e(K — e)e = 0 or equivalently that eKe = e. To show this we consider 
any element exe for x G K. Since (R, o) is a union of groups, there exists an 
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idempotent g G R such that g o exe = exe o g = exe. From this one easily 
obtains that eg = ge = g. Therefore g 6 ei^e. Let z be the inverse of exe 
relative to g. Then g — zo exe = z + exe — sexe; so s = g — exe + sexe. This 
yields ze = s. Similarly, ez = 2. Consequently s G ei^e. This proves that exe 
lies in a subgroup of (eRe,o). 

Now let 3/ = exe — e. Clearly y = eye G ei?e. Since 

exe = x — x o e — e o x + e o x o e + e, 

we have 

y = x — x o e — e o x + e o x o e 

= (x — e) — (xo e — e) — (eo x — e) + (eo xo e — e). 

This implies that y G / C TV and since y G ei^e, 3/ lies in eiVe, which is the 
radical of eRe (see 6, § 3.7, p. 48). But by Lemma 1, exe = e + y cannot 
lie in a subgroup of eRe unless y = 0. Since we have shown in the above 
paragraph that exe does lie in a subgroup of (eRe,o), we must have y = 0; 
consequently, exe = e. 

LEMMA 4. If R is a generalized radical ring containing a principal idem-
potent e, then R is a splitting extension of its radical N = Pe by the strongly 
regular subring eRe. 

Proof. Since the property of being a generalized radical ring is clearly 
preserved under homomorphisms, and since by Lemma 3 Pe is an ideal, we 
have that eRe = R/Pe is a generalized radical ring with identity e. As in the 
proof of Lemma 1, (eRe, o) is isomorphic to the multiplicative semigroup 
(eRe, •) of eRe. This implies that (eRe, •) is a union of groups and there­
fore eRe is strongly regular and semisimple. Since eRe is semisimple, N Ç Pe. 
On the other hand, Pe CI N since e is principal (see preliminaries). Therefore 
Pe = N. Since R = eRe + Pe is always a direct sum decomposition of the 
additive group of R, we are done. 

Lemma 4 completes the proof of Theorem B in one direction. We now 
work toward the converse. 

LEMMA 5. Let R be a ring which is a splitting extension of its radical N by 
a subring eRe for e = e2 G R. Then e is a principal idempotent and N — Pe. 

Proof. By hypothesis R = eRe © N is an abelian group direct sum. This 
clearly implies that e is a principal idempotent; whence Pe Ç N. Since also 
R = eRe 0 Pe is an abelian group direct sum, we must have Pe = N. 

Before proceeding we shall need the following notation and results from (4). 
Let J (a) denote the principal ideal generated in the semigroup (R, o) by 

a, i.e., J(a) is the smallest ideal of (R,o) containing a. For a G (R,o), we 
let Ja = {x G R: J(x) = J(a)}. This is the so-called 3-class of (R,o) con­
taining a. A semigroup S is said to be intra-regular if a G Sa2S for all a G S. 
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Now, Croisot and, independently, Anderson (see 4, p. 123), have shown that 
if S is intra-regular, then every 3-class Ja j s a simple semigroup. On the 
other hand, Rees (see 4, § 2.7, p. 76) has shown that a simple semigroup 
containing a primitive idempotent is a union of groups. (An idempotent e is 
primitive if f2 = f and fe = ef=f implies / = e.) Thus, to show that (R, o) 
is a union of groups, it suffices to show that it is intra-regular and that every 
3-class contains a primitive idempotent. 

LEMMA 6. Let e be a principal idempotent in a ring R whose radical is Pe. 
Then, eae + Pe £ J (a). 

Proof. We recall that since e is principal, eo Ro e is a group with identity 
e (see preliminaries). Let a 6 R and x £ Pe, and let â = eo do e and 
x = eo xo e be the inverse of eo ao e and g o x o e , respectively, in the group 
eo Ro e. 

Now set b = xo e — ao â and c = do xo x — do a. Now using the dis­
tributive laws 

xo (y + z — 0) = xo y + xo z — xoO, 

xo (y — z -\- w) = xoy — xo z -\- xow, 

etc., one may easily calculate that 

bo ao c = a — ao do a + xo xo x. 

We wish to show that bo ao c = eae + x. To do this, first note that if y is 
any element of Pe + e, then y = eo y -\- y o e — eoyoe, since ePee = 0. 
Now, y = ao do a £ K since d £ K, and 

X = iVo eo iV C N + e = Pe + e. 

Hence, y = ao do a £ Pe + e and so 

y = eo y + y o e — eo y o e 

= eo ao do a -\- ao do ao e — eo ao do ao e 

= eo a -\- ao e — eo ao e = a + e — eae. 

Similarly, xo xo x = x + e — exe = x + e, since x Ç P e . Therefore 

bo ao c = a — ao do a + xo xo x 

= a — (a + e — eae) + (e + x) = eae + x. 

Hence, eae + x = bo ao c £ J (a). 

LEMMA 7. Let R be a ring containing an idempotent e such that R = eRe + Pe. 
If Pe is the radical of R and if eRe is strongly reglular, then for all a G R 

Ja = H + Pey 

where H is the maximal subgroup of (eRe, o) containing eae. 
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Proof. We first observe that if 0 is a homomorphism of a semigroup 5 onto 
a semigroup T and if / is a 3-class in S, then J$ is contained in a ^-class in 
T. This follows easily from the definitions. 

Now since Pe is an ideal of R, x —> £X£ is a homomorphism of R onto ePe, 
and therefore a (semigroup) homomorphism of (P, o) onto (eRe,o). Since 
ePe has an identity, (eRe, o) is isomorphic to ePe, •)• Therefore (eRe,o) is 
a union of groups. Since idempotents are in the centre of eRe, the same is 
true of (eRe,o). This implies by (4, Th. 1.17, p. 28) that (eRe, o) is an in­
verse semigroup. Since it is also a union of groups, every 3-class is a (maximal) 
group (see 4, § 4.2, p. 126). It therefore follows from the previous paragraph 
that eJa e lies in the maximal subgroup H of (eRe, o) containing eae. This 
implies that Ja C H + P e . 

On the other hand, from Lemma 6 we have immediately that J(b) = J(ebe) 
for all b G R. If e&e G -H", then one easily sees that J (eae) = J(ebe). Hence 
if b £ H + Pe, then J(b) = J(ebe) = J (eae) = J (a). Therefore b G Ja, 
implying H + Pe Q Ja-

LEMMA 8. If everything is as in Lemma 7, then every $-class of (R, o) contains 
a primitive idempotent. 

Proof. Let a £ R. By Lemma 7, JG = H + P e where if is a subgroup of 
(eRe, o) containing me. / a contains at least one idempotent, namely, the 
identity / of H. We claim that / is primitive. Since H Ç eRe, we have that 
f = ef = fe. Hence fPef = 0, since ePe e = 0. Now let g be any idempotent 
in J a such that gof=fog = gor, equivalently, gf = fg = f. Then g = h-\-p, 
where h G H and £ G P e . Since Pe is an ideal and R = eRe © Pe, 

h + p = (h + p)2 = h2 + hp + ph + p2 

implies h2 = h. Therefore ho h = h G H, and we must have h = / . Now 
from g/ = / we have that 0 = gf - f = (f + p)f - f = pf. Similarly,/£ = 0. 
From g2 = g we get f + fp + pf + p2 = f + P, and since fp = pf = 0, 
>̂ = >̂2. But p lies in P e , the radical, which contains no non-zero idempotents; 
thus, p = 0 and g = f. 

LEMMA 9. Tf everything is as in Lemmas 7 and 8, then (R, o) is intra-regular. 

Proof. Since Pe is an ideal, and ePe e = 0, we have eaôe = meèe for all 
a, b G P . It follows that e(ao 6)e = (eae) o (e&e). As pointed out in the proof 
of Lemma 7, (eRe, o) is a union of groups. Let c be the inverse of eae in some 
subgroup of (eRe, o). Since c G ^Pe, we have c = ece. lib = c o o o a , 

ebe = e(co ao a)e — co eaeo eae = eae. 

Therefore, by Lemma 6 there exist x, y G P such that 

a = xoboy = (xoc)oaoao (y). 

Hence a G Ro ao ao R, which was to be shown. 
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Now, by Lemmas 8 and 9 and the comments preceding Lemma 6, a ring 
R which is a splitting extension of its radical by a strongly regular subring 
eRe for e = e2 G R, is a generalized radical ring. This completes the proof 
of Theorem B. 
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