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Introduction

Given two topologies IT x, &~% on a set X, 3~i is said to be coarser than &~ 2,
written ^"x ^ ^"2 > ^ every set open under yx is open under ̂ "2. A minimal
Hausdorff space is then one for which there is no coarser Hausdorff topology
etc. Vaidyanathaswamy [4] showed that every compact Hausdorff space is
both maximal compact and minimal Hausdorff. This raised the question of
whether there exist minimal Hausdorff non-compact spaces and/or maximal
compact non-Hausdorff spaces. These questions were in fact answered in the
affirmative by Ramanathan [2], Balachandran [1], and Hing Tong [3].
Their examples were, however, all on countable sets, and the topology con-
structed to answer one question bore no relation to the topology answering
the second. In particular, the minimal Hausdorff non-compact topologies
were not finer than any maximal compact topology.

We shall here construct two topologies on an extension of the real line
(formed by adjoining two points "at infinity") one of which is maximal
compact non-Hausdorff, and which is strictly coarser than the other which
is minimal Hausdorff non-compact. (In fact there are topologies lying be-
tween them.)

Further it is easy to show that there exist minimal To topologies which are
not compact (although every maximal compact space is To!); and the unique
minimum 7\ topology is always compact; what then may be said of
minimal Ta and minimal T4 spaces? It is shown that every minimal Tt

space, and every normal minimal T3 space is compact; the general question
for minimal T3 spaces remains open.

The authors would like to acknowledge the helpful suggestions of the
referee, especially as regards the material of section 3.

1. Let R be the set of real numbers. Let E — R u {a} u {6} with topology
S" defined by the following neighbourhood systems:

W(x) = {VCE :VD (x-d, x + d) for some d > 0}, if x e R;

IT (a) = {V C E : V D {a} u (J (2r. 2r + 1) u "jj (2r, 2r + 1),
r-N r—N

for some integer N}
167
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•JT(6) = {FC£:FD{6}uU(2r-l,2f)u \J (2r - 1, 2r),
r=JV r — N

for some integer N}.

Clearly E is Hausdorff and it induces the usual real line topology on R.
E is not T3 (regular) under J~, so it is not compact. We show that 9~ is mini-
mal Hausdorff.

Suppose 9~' is a coarser Hausdorff topology on E. It is to be proved that
every interval (c, d) of R is open in &~', and that every basic neighbourhood
of a in &~ is a neighbourhood of a in &"'; by symmetry the latter will hold
also for b, and thus 9~ = 9~'.

The closed interval [m, n] is compact in &~, so it is compact in the coarser
topology &"', for every open cover of [w, n] in &"' is an open cover of
[m, it] in 3~. But 3~' induces a Hausdorff topology on [m, n] coarser than
that induced by fF; and every compact Hausdorff topology is minimal
Hausdorff, so that $~ and &~' induce the same topology on \m, «]. Then if
x e (c, d) there are open disjoint sets U, V, W oiS~' containing x, a, b respec-
tively. It follows that for some integer N, the only points of U larger in
absolute value than N are integers. But U is open in &" so cannot contain
isolated points. Thus U is contained in some bounded interval [m, n],
which has the usual topology. U n (c, d) is open in [m, n], therefore in U,
therefore in E under &"'. Then (c, d) contains a ^"'-neighbourhood of every
one of its points, so is open in &"'.

Let H be the basic neighbourhood of a containing a and all intervals
(2r, 2r + 1) for \r\ > some integer N. There exist disjoint open sets U, V of
3T' with a e U, b e V, so that U contains no points of (2r — 1, 2r) for \r\
larger than some integer M. U being open in &~, it cannot contain arbitrarily
large integers without containing neighbourhoods of them, so U does not
meet [2r - 1, 2r] for \r\ > M'. Thus U -His bounded, say U - H C[c, d].
Since [c, d] is compact in 3~' which is Hausdorff, [c, d] is closed. Then
U n {E — [c, d]) is open in &"' and is contained in H, so H is a ^"'-neigh-
bourhood of a. This completes the proof.

2. We may characterise maximal compact spaces by

THEOREM 1. A space E is maximal compact if and only if the compact
subsets of E are identical with the closed subsets of E.

PROOF. Necessity: Suppose E is maximal compact under a topology 3~.
Then every closed set is compact. Assume there is a compact non-closed
subset X of E. Define a topology &"' on E by open sets of the form
(0' n (E — X)) \j 0" where 0' and 0" are any sets open in ^". This clearly
defines a topology which is finer than J7" since X is closed in this topology.
Let {Gs:seS} be any open cover of the space (E,S~'). Put
Gs = {$', n (E — X)) \j 0's', so that {0̂  u 0',' : s e S} is an open cover of
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(E, &~); then there exist slt • • • sn such that E = \Ji=i(°'.t
 u °i(')>

 a n d

E -XC U?-i(0^ n(E — X)) u O',[. {o;' :scS} is an open cover'of the
compact space (X, 3TX), so there exist sn+1, • • • sN such that X C Usln+i0^ •
Then U<li^i = E a n ( i « "̂' is compact which is impossible since 9~ is maxi-
mal compact. Thus every compact set is closed.

Sufficiency: If every closed set is compact, E is compact under 3". Now
assume every compact set is closed under 9~. Let &"' ( > S~) be a compact
topology on E. There exists a set X which is closed under 3"' but not under
9~\ X is then not compact under &", so there is an open cover of X under 3~
having no finite subcover. This cover is an open cover of X under 3T' since
&"' > 3", and thus X is not compact but closed in the compact topology^"',
which is impossible. It follows that E is maximal compact under the topolo-
gy y . Q.E.D.

Notice this shows that every Hausdorff compact space is maximal
compact, since in a Hausdorff space every compact set is closed and in a
compact space every closed set is compact.

We may now coarsen the topology on the set E of the preceding section
to give an example of a maximal compact non-Hausdorff space. Define yx

on E by neighbourhoods

iTx{x) = {U : U D (x - d, x + d) for some d > 0} if x <• R,

IT^b) = {U : U D {b} u (j (2r - 1, 2r) for some integer N}
\T\-N

*rl{fl) = {U:UD{a}u U (2r- dT, 2r + 1 + dr)
|r|2JV

for some integer N, some dr > 0}.

Clearly this defines a compact non-Hausdorff topology which is strictly
coarser than the original topology S~. Now if 3~x is not maximal compact,
there is a compact non-closed set X. The interval [— n, n] is closed under
&"x, which induces the usual topology on [— n, «]. Thus X n [— n, n] is
closed in X, and is therefore compact. Being a compact subset of [— n, n],
it is closed in [— n, n]. Then it follows that X n [— n, n] = X n [— n, n]
for all n, so that X n R = X r\ R. Since X ^ A', either a or 6 is in X — X.

li b € X — X, X meets an infinite number of intervals (2r — 1, 2r) for
integral r; we may choose numbers dr > 0 such that X meets an infinite
number of intervals (2r — 1 + dr, 2r — dT). The collection of open sets
consisting of {a} u \J%_X (2r — dr,2r+l + dr+J) together with all sets
(— r, r) covers E — {b} and therefore X; and there is no finite subcover of A'
from this covering in view of the above. This is impossible since X is compact.
Thus biX-X.

If a e X — X, X meets an infinite number of closed intervals [2r, 2r + 1], r
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integral. For suppose that for \r\ > N, X meets no such intervals. Then RnX
would eventually be contained in intervals (2r — 1, 2r). For such intervals,
X n (2r — 1, 2r) = X n [2r — 1, 2r] which is compact, so we may choose
numbers dr > 0 such that X n (2r — 1, 2r) C [2r — 1 + dr, 2r — dT].
Clearly these numbers dT define a neighbourhood of a which does not meet X,
contradicting a <• X.

Now consider the open set {b} u Ui£.-<x>(2'' — *> 2r) together with all the
open sets (— r,r). This is a covering of E — {a}, therefore of X, yet it has
no finite subcover of X. So again a $ X — X. But this contradicts our origi-
nal assumption, so that every compact set is closed and 3~x is maximal
compact.

3. It is natural now to ask whether every minimal T3 (7\ and regular)
space, and/or every minimal Tt (Tt and normal) space is compact. The
question is partly answered in

THEOREM 2. Every minimal Tt space is compact.

COROLLARY. Every normal minimal T3 space is compact. In fact, the class
of minimal T4 spaces is identical with the class of normal minimal T3 spaces,
and with the class of compact Hausdorff spaces.

PROOF. Suppose X is normal and Hausdorff under a topology 3~, but not
compact. We shall construct a strictly coarser 7"4 topology on X, thus prov-
ing the theorem. The corollary follows immediately.

Since X is not compact there is a filter-base of closed sets of X with
empty adherence; i.e., a family fF of closed sets such that any finite inter-
section of sets of 3" is a member of &', and whose intersection is empty
while the intersection of every finite subfamily is non-empty. Choose any
point xeX and define a topology 3~' on X as follows: the open sets of 3"'
are those open sets of 3~ not containing x, together with those open sets of
3~ containing x and some F e !F. From the finite intersection property of
filter-bases it follows that 3"' is a topology; and 3~' is strictly coarser than
&", for if every set G open in 3" containing x contained some set F e 3", G
would meet every F E f and it would follow xe F = F, for every Fe &,
which is impossible.

The topology 3T' is T, since for any yeX.X— {y} is open in 3" and con-
tains some F e & (y $ F for some F e &), and so is open in 3"'.

Further the topology 3"' is normal. For let A, B be two disjoint sets
closed in 3~'. Suppose x # A, since x cannot be in both. X — A is open in 3~,
so contains some F e 3r. The sets A, B KJ F KJ {X} are disjoint sets closed
under 3~ which is normal, so there exist disjoint sets U, V open in 3~ such
that ACU, B vFu {x} CV. x <j-U and F C F s o that U and V are both
open in 3"'. This completes the proof, since A C U, B C V.
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