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ON ALMOST CONTINGENT MANIFOLDS OF SECOND 
CLASS WITH APPLICATIONS IN RELATIVITY 

BY 

K. L. DUGGAL 

1. Introduction. D. E. Blair [1] has introduced the notion of K-manifolds as 
an analogue of the even dimensional Kâhler manifolds and of the odd dimen­
sional quasi-Sasakian manifolds. These manifolds have been studied with 
respect to a positive definite metric. In this paper, we study a more general case 
of if-manifolds carrying an arbitrary non-degenerate metric, in particular, a 
metric of Lorentz signature. This theory is then applied within the frame-work 
of general relativity. Using the Ruse-Synge classification [8, 9] of non-null 
electromagnetic fields with source, we develop a geometric proof for the 
existence of either two space like or one space like and one time like Killing 
vector fields on the space-time manifold. 

2. K-contingent manifolds. Consider a differentiate manifold V2n+q> °f 
class C00, which carries a tensor field / of type (1,1) whose minimum recurrent 
relation is: 

(2.1) J3 + 4>2J = 0, rank/ = 2n, 

where $ is a non-zero C°° function on V2n+q- I
n the above case, we say that 

^2n+q is
 a n almost contingent manifold(1) of second class. Corresponding to 

two complementary projection operators IT and TT, on the tangent space at each 
point of V2n+q, defined by 

(2.2) <̂ 27T = / 2 + ^ 2 / , ^27T = - / 2 , 

where J denotes the identity operator, there exist two complementary distribu­
tions L and L respectively such that dim L = q and dimL = 2n. Following 
relations can easily be verified. 

(2.3) J<7r = 7rJ = 0, JTT = TTJ = J, J2TT = 0, J2fr = -<l>2ir. 

Let us assume that L is parallelizable [5] which allows us to take an ordered set 
of vector fields £a (a, b = 1 , . . . , q) spanning L at each point. Thus, their exists 
an ordered set of 1- forms y\a such that TT(X) = £a rja(X)4 and rja(&) = 8% for 

Received by the editors September 1st, 1976. 
(1) A special case, where <f> is a non-zero constant, has been discussed in [2, 3]. 
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an arbitrary vector field X. Using these results, we get 

J2x+<t>2x-<t>2 X va(x)L = o 

In this way, we say that V2n+q is endowed with an almost contingent 
structure (/, &, rja, <£) of the second class(2) [3]. 

DEFINITION 1. (J, £a> *?"> <k g> O is called an almost contingent metric struc-
ture(3) on V2n+q, if V2n+q carries a (J, 4 , T)a, <£)-structure and a non-degenerate 
metric g such that 

(2.5) g(4> 4 ) = ^a* e a c h °"a is a non-zero function, 

(2.6) g ( X , 4 ) = ^ar )
t t(X), 

(2.7) g(/X, Y) + g(X,JY) = 0. 

Replacing Y by JY in (2.7) and using (2.4) and (2.6), we get 

(2.8) g(JX,JY) = d>2g(X, Y ) - ^ 2 X ^ a r , a ( X ) r ?
a ( Y ) . 

a 

Let us define a 2-form F on V2n+q by 

(2.9) F(X,Y) = g(X,JY). 

The skew-symmetry of F is immediate from (2.7). We call F the fundamental 
2-form of the structure. In the sequel, we assume that F is closed, i.e. dF=0, 
where d is the operator of exterior differentiation. If we define a (1,1) tensor 
field / on V2n+q such that / = <£-1/, then it is easy to check that the manifold has 
an underlying /-structure / 3 + / = 0 [6]. It is well-known that such an /-structure 
is normal if [/,/](X, Y) + £ a drja(X, Y)& = 0 , where [/,/] is the Nijenhuis 
torsion of / [6]. Thus the normality of the almost contingent structure may be 
defined in the following way. 

DEFINITION 2. (J, 4> 17a
? <£)-structure is normal if 

(2.10) [/,/](X, Y) + <£2 X dV
a(X, Y)& = 0 

a 

We know that an /-structure is integrable iff [/, / ] = 0 [6]. This allows us to say 
that an almost contingent structure is integrable iff [J, J ] = 0. 

DEFINITION 3. A normal almost contingent metric manifold V2n+q, whose 
fundamental 2-form is closed, will be called a iC-contingent manifold(4) and its 
structure a K-contingent structure. 

(2) In the sequel, we shall drop the words "second class". 
(3) A special case, where each <ra = 1, has been discussed in [2, 3]. 
(4) For related literature on jK-manifolds, we refer to [1]. 
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LEMMA 1. If V2n+q has a normal (J, £a, r\a, <f>, g, aa)-structure, then 

(2.11) (i) 2J = 0, (ti) 2& = 0, 

where S£ denotes the operator of Lie derivation. 

Proof. The proof follows the pattern of the proof of [4, Lemma 3]. 

LEMMA 2. / / V2n+q has a (J, £a, rja, <f>, g, aa)-structure, then 

(2.12) ^F=0, 

where F is the closed fundamental 2-form of the structure. 

Proof. Using the formula ££ça = doi(Ça) + (iÇa)od where i(ê») is the inner 
product by ^ and d is the operator of exterior derivative, we get ^€aF = 
do(i€aF) + (iL)dF=0. Indeed, dF=0 and (/&F)X = F (&,X)= aar]p(X) = 0. 

3. Pseudo-Riemannian connection on V2n+q. We consider a product man­
ifold M2m = V2n+qXRq, where jRq is a q-dimensional affine space, m = n + q 
and V2n+q has (J, £a> Va> <k g, cra)-structure. We denote a vector field on M2m 

by X = (X,^ ad/dx a) where X is tangent to V2n+q, (xa) are coordinates of Rq 

and * a are arbitrary C°° functions on M2m. Let us define a (1,1) tensor field J 
and a metric g on M2m by 

(3.1) ^«'5?)= ("-* ,"VW^ 

(3.2) g((x, V ^ ) , ( Y, «* ̂ ) ) = foi*, Y) + X 0"^aaa, 

where 6a are also arbitrary C°° functions on M2m. It is easy to check that 
P = -<f>2I and g(JX, JY) = <f>2g{X, Y). Consequently, (J, g) defines on M2m a 
structure whose properties will be similar to an almost complex metric struc­
ture. Let V be the symmetric (torsion free) connection of g such that Vg = 0. 
We further assume that V/ = 0. Let V be a pseudo-Riemannian connection of g 
on V2n+q. A straightforward computation of 

2 g ( v ( x , o ) ( y , 0 ) , ( z , ^ ) ) and 2 g ( v ( x , 0 ) ( o , ^ ) , ( z , ^ ) ) 

provides the following explicit relations between t7 and V. 

(3.3) V(x,0)(Y,0) = V x Y + ( X l n < Ê 2 ) Y + ( Y l n < W - g ( X , Y)grad <t>\ 

(3.4) V , 0 ) ( 0 > ^ ) = ( * O ^ p where g(grad 4>\ X) =' X</>2. 

Consequently, 

tfovaj) ( 0 , ^ r ) = V ( x , o ) ( -4 ,0 ) - / (0 , (Xcra) ̂ ) 
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implies that 

(3.5) V x 4 = g(4 , X)grad <f>2 + (Xaa)€a - ( X l n <f>2)€a - ( & In <£2)X. 

4. Applications. Let us consider the space-time manifold V4 of general 
relativity whose metric g i y(l< i, y<4) is of signature (H ). It is well-
known [8,9] that at each point of V4 one can introduce a null tetrad 
{/, n, m, fn} such that / and n are real, m and m are conjugate complex vectors 
and lift1 = -mifh

i = 1 (all other products zero). Thus, gif can be expressed as: 

(4.1) gtj = krij + riilj - m^ - fFiifrij. 

If Ftj is the electromagnetic field tensor of V4, then the Maxwell equations, 
with a source term W, are expressed as: 

(4.2) (i) V^ = W\ (ii) Fw , k ] = 0, 

where the vector W satisfies the conservation law VtW
l -0 and V is the symbol 

of pseudo-Riemannian connection on V4. Well-known Maxwell scalars [11] are 
given by: 

(4.3) 4>0=2F/m' ' , ^ - F ^ / V + m W ) , 4>2 = 2FiymlV. 

In the sequel, we assume that Ftj is non-null. Therefore, <f>o = cf>2 = ^ a n d 
<j)1 y£ 0 [8, 9]. Moreover, due to the presence of a non-zero source term W, <f>1 is 
either real or pure imaginary [11, theorem 2]. Let us define a (1,1) tensor field 
J\= gikFik on V4. Under above-mentioned conditions, /] can be expressed as: 

(4.4) /{= failli - tnJ'), if <t>i is real, 

or 

(4.5) / ] = (fy^rfiim1 - mifh'), if (j>1 is imaginary. 

It is important to note that, for both cases, / is real. The minimum recurrent 
relation(5) of powers of / , for both cases, is: 

(4.6) J3 + <f>2J = 0, <£2 = - < £ ? , 

for any vector field X and rank J =2. Comparing (4.6) with (2.1), we conclude 
that the space-time V4 is an example of an almost contingent manifold. 

CASE 1. (fa real). Using (2.1) ~ (2.4), we say that V4 has (J, &, rja , <M-
structure for a = 1, 2. Comparing fl5 £2 with m, m (locally), we state the 
following proposition (proof is straightforward). 

In the sequel, index free notation will be used. 
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PROPOSITION 1. The metric gtj of the space-time V4 is compatible with the 
metric of its associated (J, £,, r\a, <f>l9 g, (restructure, satisfying (2.4)~ (2.7), iff 
Çx and £2 &re space like such that o-1 = a2 = o'<0 and 

v*'l) m=—r=-9 m=—r=-, ï = V - l . 
V2or V2(7 

Now the electromagnetic tensor field F, satisfying (4.2(H)) can be associated 
as a closed fundamental form of V4 and in order to clarify the integrability 
conditions, the associated almost contingent metric structure on V4 must be 
normal. Thus, V4 qualifies to be a K-contingent manifold. 

LEMMA 3. If the space-time V4 is endowed with a (J, £*, TJ", <t>l9 g, or)-
structure, then 4>1 is constant along the ^-curves. Consequently, grad$?JL£*-

Proof, Substituting (4.7) in the value of <\>x and then using (2.9) and (2.4), we 
get 

<h = F(l, n)--F{^ &) = F(l, n)-- g(&, F&) = F(l, n). 

Since {I, n} are not in the plane of {£1? £>}> w e conclude that 4,(</>i) = 0 a n d , 
therefore, graded ±4 , . 

THEOREM 4.1. Let F be a non-null electromagnetic field with source and g a 
metric of signature (H ) of the space-time V4. Let V4 be endowed with a 
K-contingent structure (J, £,, 17", g, <f>x, a) satisfying (2.4) — (2.10), (4.4) and 
(4.7) for a = 1,2. If V4 is embedded in M6=V4xR2 so that the respective 
connections V and V of M6 and V4 are related by (3.3), (3.4), then 

(a) or is constant along the ^-curves if &¥l\ at any point of V4. 
(b) £i and £2 o^e space like Killing vector fields. 

Proof. We first prove that, under the conditions of the theorem, (a) holds. 
Setting X— ^ in (3.5), replacing a by |8, cra by a and then using lemma 3, we 
get V t & = &(*)&• 

Using this and other results of section 3 and also lemma 3, we compute the 
following: 

(V(4„o)g)((lP, 0), (£ , 0)) = V & ( ^ g ( ^ , £ ) ) 

- g((V t& - g(&, ^)grad <tf, 0), (£ , 0)) 

- g((&, 0). (*&£» - *(£.. ^ ) 8 r a d *?> ° » 
= £,(<tf<r)-2£,(<r)<r = (&(<r))(l-2<r) = 0. 

Hence, £,(<x) = 0 as a ^ | at any point of V4. 
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Now, using (a) and lemmas 1 and 2, we show that (b) holds. 

(J^F)(X, Y) = ^F(X, Y) - F([&, X], Y) - F(X, [^ Y]) 

= &g(X, JY) - g([&, X], JY) - g(X, [ 4 , JY]) 

= ( ^ g ) ( X , / Y ) = 0, 

where we have used lemma 2 and lemma l(i). Also from (a) above and lemma 
l(ii), we get 

C2UX6, èy) = & W 7 - g([&, I,], £) - g(4, [&, £]) 

Thus, we conclude that S£^g = 0 since £*,s generate L and in the first part of 
(b) we have shown that ( ^ g ) ( X , Z) = 0 for all X and for all Z in L. 

CASE 2. (c^ is imaginary). Proceeding exactly as in Case 1, we say that V4 

can be endowed with a ^-contingent structure (/, £„•, 17"*, c^, g, o-') for a* = 3, 
4, where a3 = —<r4 = & > 0. 

(4.8) l=^±Jk, n=^^ 4 

/2o-' V2er' 

and <̂ ! is constant along £a*-curves. This leads to the following theorem (the 
proof follows the pattern of the proof of Theorem 4.1). 

THEOREM 4.2. Let F be a non-null electromagnetic field with source and g a 
metric of signature (H ) of the space-time V4. Let V4 be endowed with a 
K-contingent structure (J, £a*, 17"*, g, $1? a') satisfying (2.4) ~ (2.10), (4.5) and 
(4.8) for a* = 3,4. If V4 is embedded in M6= V4xR2 so that the respective 
connections V and V of M6 and V4 are related by (3.3), (3.4), then 

(c) a' is constant along the Ca*-curves if a V | at any point of V4. 
(d) £3 and £4 are time like and space like Killing vector fields respectively. 

REMARK. It is often assumed, while studying the Einstein-Maxwell equa­
tions, that V4 admits one or more Killing vector fields £a i.e. if€ag = 0. If 
« 2 ^ = 0 then we say that the space time has symmetry property. In 1973, 
Woolley [10] showed that i ^ g = 0^>(<5^F= fc(a)*F), where *F is a dual of F 
and k(a) are some scalar quantities. Extending this result, Michalski and 
Wainwright [7] have recently obtained conditions (i.e. for k(a) to vanish) so 
that 5£^g = 0=>cS^aF = 0. In this paper, as a byproduct of developing a geomet­
ric proof for i ^ g = 0, we have obtained conditions under which the converse 
holds (i.e. S£èaF=0^££îag = Q). Thus, under certain geometric conditions, we 
have shown that the symmetry property of the space time is equivalent to the 
existence of certain Killing vector fields. 
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