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Abstract

We generalise Sidel’nikov’s theorem from binary codes to g-ary codes for ¢ > 2. Denoting by A(z) the
cumulative distribution function attached to the weight distribution of the code and by ®(z) the standard
normal distribution function, we show that |A(z) — ®(z)| is bounded above by a term which tends to 0
when the code length tends to infinity.
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1. Introduction

For the binary alphabet, it is well known that the camulative distribution of linear codes
can be approximated by a standard normal distribution. If % is an [n, k, d] binary linear
code with weight distribution (Ao, Ay, ...,A,), where A; is the number of codewords
in ¢ with weight j, we define a = (ag, a1, ..., a,), where a; = Aj/2". The mean and
variance of a are u(a) = i, ja; and o(a) = X', (u(a) — j)*a;, respectively. The
cumulative distribution function (cdf) associated with a is A(z) = . aj. Let

1 L a
D)= — f e dt
V2r J-wo

be the cdf of the normal law and let d’ be the minimum distance of the dual code ™*.
Sidel’nikov [4] proved that |A(z) — @(z)| = O(1/ Va') for n large when d’ > 3, which
means that ®(z) can be regarded as an asymptotic approximation of A(z).

For g-ary alphabets, Delsarte [1] showed that the cdf A(z) of linear codes can still
be approximated by ®(z). However, he did not provide a detailed proof. In this paper,
we consider the situation of g-ary linear codes again, and rigorously prove that the
asymptotic relation between A(z) and ®(z) still holds. More specifically, we derive the
bound |A(z) — ®(z)| < C/Vd’, where C is a constant that depends only on ¢.

n
Jjzp(a)—o(a)z
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2. Preliminaries

For any real vector v = (vg, vi,...,V,) with v; > 0 and Z;’.zo vj =1, the mean and
variance of v are defined by

n

pv =) vy and )= ) (uv) = ;.
j=0

j=0
The sth central moment of v is

w0= 2 (45 )

Jj=0

Let € be an [n, k, d] g-ary linear code and A; the number of codewords in ¢ with
weight j. Define a; = A; /q"* so that a = (ag, ay, . .., a,) satisfies the conditions above.
Hence p(a), o%(a) and p,(a) can be defined. The cdf of a is given by

n

A= Y a

Jjzu@)-o(a)z
Let b = (bo, by, ..., by), where b; =g ()@~ 1)’. Then b~ B(n, 1-1/g),
b satisfies the conditions above,

(g—Dn

uty = C 2y = Lt

C]2

and

o (1) — /) "N (™ :
ps(b) = ( ) b= [(g = Dn—qj] ( .)(q -1
; o(b) Jg—Dns ; J

We use this notation throughout the paper. Further details on g-ary linear codes can
be found in [6-10].

3. Main result

Lemma 3.1. Let € be an [n, k,d] g-ary linear code and d’' the minimum distance of
€+ Fors=0,1,...,d -1,
us(@) = us(b).
Proor. Applying the MacWilliams identity for g-ary codes [3, Equation (M3), page
2571,
1
W (x,y) = @ch(y—x,w (g - Dx). (3.1)

Let A} (i=0,1,...,n) be the number of codewords with weight i in ¢+ and let a;
be the MacWilliams transform of a; with parameter 4 = g — 1 [1]. Substituting y = 1
into (3.1) gives the expansion
1 . 1 & . . 1 . .
A = 7 ;Ai(l — 01+ (g = Dxl"™ = 3 a1 = '] + (g — D",

i=0 i=0
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We then find that, fori =0,1,...,n,
,_ A
a; = pr=d

Since a =---=a),_, =0, by Delsarte [1, Lemma 4], we have pg(a) = uy(b) for
s=0,1,...,d - 1. O

Because the definitions of u, o and uy in the g-ary case are the same as in the
binary case, the formulas from Sidel’nikov’s derivation [4, Equations (35)—(40), pages
285-286] remain correct. Setting r = 2[(d” — 1)/2] gives the following lemma.

Lemma 3.2. Forall T > 0,

AQ) - D) < f m|Z &

T r—1
|t| 24
dt+ = f pr(b)—— dt + :
TrnN2n

(3.2)

Lemma 3.3. Let € be an [n, k,d] g-ary linear code and d’' the minimum distance of
C*. Ifn>6andd > %n + 3, then r = 2[(d’ — 1)/2] satisfies

n_d

- > =

2720
Proor. From the definition of r, together with n > 6 and d’ > %n + 3,

d—1 n_d
P >2 n,4
d [ ] ( ) 2272

This completes the proof. O

\%

r

We now focus on the right-hand side of (3.2) and give upper bounds for each of the
three terms.

LemmMa 3.4, Forall T with0 < T < Ty = n'/%/(3p!/3),
dt < —-

(l[) -y
f . MZ ¢ Var

where O < p < 0o and p is a constant that depends only on q.

Proor. Define the random variables ¢ ~ B(n, 1 — 1/q), n = (E¢ =€)/ VDéE, and let ¢, (1)
be the characteristic function of 7. We find

3 _(q—l)n—jq(n) g
o0 j_ZOeXP(” m)j@ Va

n D= ig\ . L\
((q n JQ)(’;)(q_l)an%

=0 yn(g—1)
(lf)S

S 1

N 2

ps() =

P
Il
(=)
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Thus the first term on the right-hand side of (3.2) is equal to
11*1 op
— | =g, ) - e ar
T Jor | n
Define independent random variables &1, . .., &,, where each ¢; satisfies
1 1
PE=a-D=-, Plg=- J=1-
J p J (—q 1

It is easy to verify that ££; =0 and D&; = 1. If we now set 52 = 7‘:1 D¢, then
n=s,! Z;?ZI ¢;. Define F;(x) to be the distribution function of ¢; and

"z
f x3dFj(x) +zf xzdF/-).
-z |x[=z

Observe that p; = -+ = p,, so we can set p = p;. From the definition of the Riemann—
Stieltjes integral, 0 < p < oo and p only depends on g. From Esseen [2, Lemma 5], for
| <T < To=n'%/(3p'3),

1
7

>0

42”:1/)- 4
e e
n

n

Hence
1 (M1 4 T
—f‘q%m—awﬂms—ﬁlfn&*“m
mJor I mn Jor
< ” e % dt
nvn Jo
_ 8 1
V2r  Nn
This completes the proof. o

Lemma 3.5 [S]. Define a random variable X ~ B(n, p). Then, for all even r,

r!

(/2!

2 r/2
m@hmeaﬂﬂwqmnm)

Lemma 3.6. Forall T > 0 and all even r,

2 T tr—l 4 1/24Tr 4 2 r/2
—f,um” dr < 2¢ -( g ).
nJ_r r! ar-rl \e(g—1)

Proor. Since b ~ B(n,1 —1/g), by Lemma 3.5,

2

1

yﬂ " (3.3)

2q
m@s@_ e
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Substituting (3.3) into the second term on the right-hand side of (3.2),

2 T tr—l AT" 2 2 \r/2 !
= [ o ars (L)
T J_r r!

arerl qg-1 . (r/2)!
461/24Tr 2q2 r/2 2r r/2
< . . _
aAr-r! (q -1 ) ( e )
4 1/24Tr 4 2 r/2
e ( rq ) (3.4)
ar-rl \e(g-1)
The observation V2rm(m/e)™ < m! < V2rxm(m/e)"e'/1" for all m € N* has been used
in the second inequality in (3.4). O

If we choose a suitable 7 satisfying 0 < T < Ty = n'/®/(3p!/?) and collect all the
results above, we reach the following bound for the right-hand side of (3.2), which
gives the generalisation of Sidel’nikov’s theorem for g-ary linear codes.

TueoreM 3.7. Let € be an [n, k,d] g-ary linear code and d’ the minimum distance of
G+ Ifn>6andd > sn+3, then

C
6d'

|A(z) — D(z)| <

where C is a constant that depends only on q.
Proor. Choose T with 0 < T < Ty = n'/®/(3p'/?), so that vn > 27pT3. Using this
along with Lemmas 3.4 and 3.6, the right-hand side of (3.2) is
8 de' /2T drg®> 2 24
< + . ( ) + .
2773 V2 e(g—1) Tn\2n

. ( 1 (g- l)e) 4 T ( cr )1/2 1
¢c=min|{—, ——=] an = C—
16> 9p2/3 G-De) s

Then 0 < T < (n/(9p?/*))!/? - n~1/3 = Ty and we can substitute T into (3.5). Finally,
from the inequality (r/e)"/r! < 1/ V27rr and Lemma 3.3,
8[(g — De]*/? (ﬁf N 4!/ '(r)’ ( 2gc'’? )’
27322 \Nr/)  wArer! (g — Dn!/3
24[(g = De]'> a7
NI
- 16[(g—DelP’?> 1 4% 1 24[(g-De]V/?-2'3 1

(3.5)

TAr-r!
Let

|A(z) — D(z)| <

e

* — + .
27312 \2n Nt oa\N2n T A 2x\2n r
- 16[(g — Del?? 1 8el/? 1 24[(g-De]'? 1

. + —_ + —_— .
2732 \n Nd N2 d ey &V Nd'
C C G C
= t—ot+t o =<%=
vo @ a TN
where C is a constant that depends only on q. O
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4. Conclusion and open problem

The estimate |A(z) — ©(z)| = O(1/ Va ) when n — oo that we have obtained for g-
ary codes is coarser than Sidel’nikov’s upper-bound O(1/ Vd’) for the binary case. A
challenging open problem is to improve the above estimates.
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