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Abstract

We generalise Sidel’nikov’s theorem from binary codes to q-ary codes for q > 2. Denoting by A(z) the
cumulative distribution function attached to the weight distribution of the code and by Φ(z) the standard
normal distribution function, we show that |A(z) − Φ(z)| is bounded above by a term which tends to 0
when the code length tends to infinity.
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1. Introduction

For the binary alphabet, it is well known that the cumulative distribution of linear codes
can be approximated by a standard normal distribution. If C is an [n, k,d] binary linear
code with weight distribution (A0, A1, . . . , An), where A j is the number of codewords
in C with weight j, we define a = (a0, a1, . . . , an), where a j = A j/2k. The mean and
variance of a are µ(a) =

∑n
j=0 ja j and σ2(a) =

∑n
j=0 (µ(a) − j)2a j, respectively. The

cumulative distribution function (cdf) associated with a is A(z) =
∑n

j≥µ(a)−σ(a)z a j. Let

Φ(z) =
1
√

2π

∫ z

−∞

e−t2/2 dt

be the cdf of the normal law and let d′ be the minimum distance of the dual code C ⊥.
Sidel’nikov [4] proved that |A(z) − Φ(z)| = O(1/

√
d′) for n large when d′ ≥ 3, which

means that Φ(z) can be regarded as an asymptotic approximation of A(z).
For q-ary alphabets, Delsarte [1] showed that the cdf A(z) of linear codes can still

be approximated by Φ(z). However, he did not provide a detailed proof. In this paper,
we consider the situation of q-ary linear codes again, and rigorously prove that the
asymptotic relation between A(z) and Φ(z) still holds. More specifically, we derive the
bound |A(z) − Φ(z)| ≤ C/ 6√d′, where C is a constant that depends only on q.
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2. Preliminaries
For any real vector v = (v0, v1, . . . , vn) with v j ≥ 0 and

∑n
j=0 v j = 1, the mean and

variance of v are defined by

µ(v) =

n∑
j=0

jv j and σ2(v) =

n∑
j=0

( µ(v) − j)2v j.

The sth central moment of v is

µs(v) =

n∑
j=0

(
µ(v) − j
σ(v)

)s
v j.

Let C be an [n, k, d] q-ary linear code and A j the number of codewords in C with
weight j. Define a j = A j/qk so that a = (a0, a1, . . . , an) satisfies the conditions above.
Hence µ(a), σ2(a) and µs(a) can be defined. The cdf of a is given by

A(z) =

n∑
j≥µ(a)−σ(a)z

a j.

Let b = (b0, b1, . . . , bn), where b j = q−n
(

n
j

)
(q − 1) j. Then b ∼ B(n, 1 − 1/q),

b satisfies the conditions above,

µ(b) =
(q − 1)n

q
, σ2(b) =

(q − 1)n
q2

and

µs(b) =

n∑
j=0

(
µ(b) − j
σ(b)

)s
b j =

q−n√
(q − 1)ns

n∑
j=0

[(q − 1)n − q j]s
(
n
j

)
(q − 1) j.

We use this notation throughout the paper. Further details on q-ary linear codes can
be found in [6–10].

3. Main result
Lemma 3.1. Let C be an [n, k, d] q-ary linear code and d′ the minimum distance of
C ⊥. For s = 0, 1, . . . , d′ − 1,

µs(a) = µs(b).

Proof. Applying the MacWilliams identity for q-ary codes [3, Equation (M3), page
257],

WC⊥(x, y) =
1
|C |

WC (y − x, y + (q − 1)x). (3.1)

Let A′i (i = 0, 1, . . . , n) be the number of codewords with weight i in C ⊥ and let a′i
be the MacWilliams transform of ai with parameter λ = q − 1 [1]. Substituting y = 1
into (3.1) gives the expansion

n∑
i=0

A′i x
i =

1
qk

n∑
i=0

Ai(1 − x)i[1 + (q − 1)x]n−i =

n∑
i=0

ai(1 − x)i[1 + (q − 1)x]n−i.
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We then find that, for i = 0, 1, . . . , n,

a′i =
A′i

qn−k .

Since a′1 = · · · = a′d′−1 = 0, by Delsarte [1, Lemma 4], we have µs(a) = µs(b) for
s = 0, 1, . . . , d′ − 1. �

Because the definitions of µ, σ2 and µs in the q-ary case are the same as in the
binary case, the formulas from Sidel’nikov’s derivation [4, Equations (35)–(40), pages
285–286] remain correct. Setting r = 2[(d′ − 1)/2] gives the following lemma.

Lemma 3.2. For all T > 0,

|A(z) − Φ(z)| ≤
1
π

∫ T

−T

1
|t|

∣∣∣∣∣ ∞∑
s=0

µs(b)
(it)s

s!
− e−t2/2

∣∣∣∣∣ dt +
2
π

∫ T

−T
µr(b)

|t|r−1

r!
dt +

24

Tπ
√

2π
.

(3.2)

Lemma 3.3. Let C be an [n, k, d] q-ary linear code and d′ the minimum distance of
C ⊥. If n ≥ 6 and d′ ≥ 1

2 n + 3, then r = 2[(d′ − 1)/2] satisfies

r ≥
n
2
≥

d′

2
.

Proof. From the definition of r, together with n ≥ 6 and d′ ≥ 1
2 n + 3,

r = 2
[d′ − 1

2

]
≥ 2

(d′ − 3
2

)
≥

n
2
≥

d′

2
.

This completes the proof. �

We now focus on the right-hand side of (3.2) and give upper bounds for each of the
three terms.

Lemma 3.4. For all T with 0 < T ≤ T0 = n1/6/(3ρ1/3),

1
π

∫ T

−T

1
|t|

∣∣∣∣∣ ∞∑
s=0

µs(b)
(it)s

s!
− e−t2/2

∣∣∣∣∣ dt ≤
8ρ
√

2π
·

1
√

n

where 0 < ρ <∞ and ρ is a constant that depends only on q.

Proof. Define the random variables ξ ∼ B(n,1 − 1/q), η = (Eξ − ξ)/
√

Dξ, and let ϕη(t)
be the characteristic function of η. We find

ϕη(t) =

n∑
j=0

exp
(
it ·

(q − 1)n − jq√
n(q − 1)

)(n
j

)
(q − 1) jq−n

=

∞∑
s=0

n∑
j=0

( (q − 1)n − jq√
n(q − 1)

)s(n
j

)
(q − 1) jq−n (it)s

s!

=

∞∑
s=0

µs(b)
(it)s

s!
.
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Thus the first term on the right-hand side of (3.2) is equal to

1
π

∫ T

−T

1
|t|
|ϕη(t) − e−t2/2| dt.

Define independent random variables ξ1, . . . , ξn, where each ξ j satisfies

P(ξ j =
√

q − 1) =
1
q
, P

(
ξ j = −

1√
q − 1

)
= 1 −

1
q
.

It is easy to verify that Eξ j = 0 and Dξ j = 1. If we now set s2
n =

∑n
j=1 Dξ j, then

η = s−1
n

∑n
j=1 ξ j. Define F j(x) to be the distribution function of ξ j and

ρ j = sup
z>0

(∣∣∣∣∣ ∫ z

−z
x3dF j(x)

∣∣∣∣∣ + z
∫
|x|≥z

x2dF j

)
.

Observe that ρ1 = · · · = ρn, so we can set ρ = ρ j. From the definition of the Riemann–
Stieltjes integral, 0 < ρ <∞ and ρ only depends on q. From Esseen [2, Lemma 5], for
|t| ≤ T ≤ T0 = n1/6/(3ρ1/3),

|ϕη(t) − e−t2/2| ≤
4
∑n

j=1 ρ j

s3
n
|t|3e−t2/2 =

4ρ
√

n
|t|3e−t2/2.

Hence

1
π

∫ T

−T

1
|t|
|ϕη(t) − e−t2/2| dt ≤

4ρ
π
√

n

∫ T

−T
|t|2e−t2/2 dt

≤
8ρ
π
√

n

∫ +∞

0
t2e−t2/2 dt

=
8ρ
√

2π
·

1
√

n
.

This completes the proof. �

Lemma 3.5 [5]. Define a random variable X ∼ B(n, p). Then, for all even r,

µr(X) = σ(X)−rE(X − µ(X))r ≤

( 2
p(1 − p)

)r/2
·

r!
(r/2)!

.

Lemma 3.6. For all T > 0 and all even r,

2
π

∫ T

−T
µr(b)

|t|r−1

r!
dt ≤

4e1/24T r

π
√

r · r!
·

( 4rq2

e(q − 1)

)r/2
.

Proof. Since b ∼ B(n, 1 − 1/q), by Lemma 3.5,

µr(b) ≤
( 2q2

q − 1

)r/2
·

r!
(r/2)!

. (3.3)
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Substituting (3.3) into the second term on the right-hand side of (3.2),

2
π

∫ T

−T
µr(b)

|t|r−1

r!
dt ≤

4T r

πr · r!
·

( 2q2

q − 1

)r/2
·

r!
(r/2)!

<
4e1/24T r

π
√

r · r!
·

( 2q2

q − 1

)r/2
·

(2r
e

)r/2

=
4e1/24T r

π
√

r · r!
·

( 4rq2

e(q − 1)

)r/2
. (3.4)

The observation
√

2πm(m/e)m < m! <
√

2πm(m/e)me1/12m for all m ∈ N∗ has been used
in the second inequality in (3.4). �

If we choose a suitable T satisfying 0 < T ≤ T0 = n1/6/(3ρ1/3) and collect all the
results above, we reach the following bound for the right-hand side of (3.2), which
gives the generalisation of Sidel’nikov’s theorem for q-ary linear codes.

Theorem 3.7. Let C be an [n, k, d] q-ary linear code and d′ the minimum distance of
C ⊥. If n ≥ 6 and d′ ≥ 1

2 n + 3, then

|A(z) − Φ(z)| ≤
C
6√d′

where C is a constant that depends only on q.

Proof. Choose T with 0 < T ≤ T0 = n1/6/(3ρ1/3), so that
√

n ≥ 27ρT 3. Using this
along with Lemmas 3.4 and 3.6, the right-hand side of (3.2) is

≤
8

27T 3
√

2π
+

4e1/24T r

π
√

r · r!
·

( 4rq2

e(q − 1)

)r/2
+

24

Tπ
√

2π
. (3.5)

Let

c = min
( 1
16
,

(q − 1)e
9ρ2/3

)
and T =

( cr
(q − 1)e

)1/2
·

1
n1/3 .

Then 0 < T ≤ (n/(9ρ2/3))1/2 · n−1/3 = T0 and we can substitute T into (3.5). Finally,
from the inequality (r/e)r/r! < 1/

√
2πr and Lemma 3.3,

|A(z) − Φ(z)| ≤
8[(q − 1)e]3/2

27c3/2
√

2π
·

(n1/3

√
r

)3
+

4e1/24

π
√

r · r!
·

( r
e

)r
·

( 2qc1/2

(q − 1)n1/3

)r

+
24[(q − 1)e]1/2

c1/2π
√

2π
·

n1/3

√
r

≤
16[(q − 1)e]3/2

27c3/2
√

2π
·

1
√

r
+

4e1/24

π
√

2π
·

1
r

+
24[(q − 1)e]1/2 · 21/3

c1/2π
√

2π
·

1
6
√

r

≤
16[(q − 1)e]3/2

27c3/2
√
π
·

1
√

d′
+

8e1/24

π
√

2π
·

1
d′

+
24[(q − 1)e]1/2

c1/2π
√
π

·
1

6√d′

=
c1
√

d′
+

c2

d′
+

c3
6√d′
≤

C
6√d′

,

where C is a constant that depends only on q. �
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4. Conclusion and open problem

The estimate |A(z) − Φ(z)| = O(1/ 6√d′) when n→∞ that we have obtained for q-
ary codes is coarser than Sidel’nikov’s upper-bound O(1/

√
d′) for the binary case. A

challenging open problem is to improve the above estimates.
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