CORRECTIONS AND SUPPLEMENTARIES TO MY PAPER
CONCERNING KRULL-REMAK-SCHMIDT’S THEOREM

GORO AZUMAYA

1. It has recently been found that my previous paper “On generalized semi-
primary rings and Krull-Remak-Schmidt’s theorem,” Jap. Journ. Math. 19 (1949)
— referred to as S. K. — contained in its Theorems 19 and 20 some errors. Nev-
ertheless the writer has been able to correct them in suitable forms so that
most parts of both theorems hold, even under a weaker assumption, and also
subsequent theorems remain valid. These will be, together with some supple-
mentary remarks, shown in the present note.”

For completeness let us recall several definitions. Let R be any (associative)
ring. An element ¢ of R is called a root elemeni if there exists no non-zero
element x such that xex = x, or what comes to the same, if the left ideal Rec,
or equivalently, the right ideal ¢R contains no non-zero idempotent element.
We denote by C the set of all root elements of £ Then in order that C forms
a two-sided ideal it is sufficient that C is additively closed, that is, the sum of
any two root elements is also root element. And, when this is the case, we say
that R possesses the radical C. R is called semi-primary if R possesses a radi-
cal (not identical with R) and every non-zero idempotent element contains a
primitive idempotent element; if moreover all primitive idempotent elements
are isomorphic to each other we call R primary. R is said to be completely
primary when R possesses a radical (again not identical with ®) and every non-
zero idempotent element is primitive.

Now suppose that every non-zero idempotent element in R contains a primitive
idempotent element. Then R possesses a radical (i.e. R is semi-primary) if and
only if for every primitive idempotent element ¢ the subring eRe possesses a rudical
(i.e. eRe is compleiely primary). For the proof we have only to prove the “if
part, since ¢Ce = eRen C is the set of all root elements of ¢Re,” and we may
assume that eRe possesses the radical eCe. Suppose that there were two root
elements @, b such that a -+ b is not a root element (of R). Then R(a + bd)
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1)) We take this opportunity to correct the following errata: in the sixth line following the
proof of Theorem 16 (page 537) both & should be replaced by R.

2 S. K. Lemma 6.
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contains a non-zero idempotent element e, which we may by our hypothesis
assume to be primitive. Then e is expressed in a form x(a+b) whence
¢ = ex(a + b)e = exae + exbe, and this is contrary to our assumption (that eRe
possesses the radical eCe). It is further to be noted that in case R has a unit
clement R is completely primary if and only if the sum of any lwo non-regular
elements is always non-regular, and indeed, when this is the case, root elements
are nothing but non-regular elements?

2. Let M be a module (with operator-domain) and let R be its (operator-)en-
domorphism ring. Suppose that I is decomposed into a (finite or infinite) direct
sum of directly indecomposable (allowable) submoduli m, (u € M):

1 m:ug‘_,mmu.

Then there correspond mutually orthogonal primitive idempotent elements ¢, in
R such that Me, = m,, and e,Re, may be considered, as usual, as the endomor-
phism ring of m,. Let us denote by M (x) the set of all indices x & M such
that m,. is (operator-)isomorphic to m,.

Throughout the following we assume that each m, satisfies the following
condition :

(*)?  The sum of any two proper endomorphisms® of m, is also proper, i.e.
the endomorphism ring e.Re, of m, is completely primary.

LemMma 1. Under the assumption (*), let a and b be two elements of R such
that a + b =1, the identily endomorphism. Then for any finite subset {ui}
= {p, o, . . ., us) of M we can find submoduli W,, ., . .., s so that each m,,
is mapped isomorphically upon W;, by means of either a or b, and there holds
the direct decomposition

M=m,+ M+ ...+ W+ my.
[B=E0T]

Proof. ae,, and be; induce on m,, two endomorphisms whose sum is the
identity. In virtue of our assumption (*), either ae,, or be,, must induce an
automorphism on m,,, or what is the same, m,, is. mapped by @ or b isomorphi-
cally upon a submodule ifi; and i, is by e, carried isomorphically onto m, .
And the latter fact means, since S} m, is the kernel of e,,, the following direct

. BFRL
decomposability

% Cf. Corollary 1 to Theorem 15; there the assumption that the unit element is the only
non-zero idempotent element is superfluous; it follows automatically.

%) = condition B) in S. K. Theorem 19.

% = non-automorphisms = non-regular elements in the endomorphism ring of my.
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M =m 4+ >,
nFRy
Apply next the above consideration to this direct decomposition and m,, (in place
of the given direct decomposition (1) and my,). Then we obtain a second sub-
module . ; observe that m; fulfills, with m,,, the same assumption as (*).
Continuing in this way we have the required submoduli.
Now we prove, as an improvement as well as a correction of S. K. Theorem
19, the following

TrEOREM 1M Lei the divecl decomposition (1) satisfy the condition (*) above.
Then:

1) For any now-zero idempolent element [ in R, there exists ai least one m,
such that [ s an isowmeibhisin on My and the isomorplic image W, f is a (direcily
indecomposanle) divect summand of M.  In particular, every directly indecompos-
able direct summand is isomorphic to one of my’s.

ity Given a second divect decomposition of M inilo divectly indecomposadle
submoduli n, (v & Nj:

2) M= Sy,
VEIV

then there exists a one-to-one mapping p - v(u) of M onto N such that w, is
isomorphic to nuy, , for each p & M ; or, in other words, the divect decomposition
of M into directly indecomposable submoduli is unique ud to automorphisms.

Proof. 1) 1If we put f =1 —f, f is idempotent and is orthogonal to f and
M is the direct sum of WS and WMS’. Let v be any non-zero element from N f
and let sy, 2, . .., Dbe the finite number of indices such that ve,, = 0 for
i=1,2,...,s and ve, = 0 whenever xd: {x}. Then, on applying the preceding
lemma to ¢ = f, b=/’ and w,u:,...,u, we have directly indecomposable
direct summands 01y, i, . . ., Ms of I such that the module sum m, + M. 4+ . . .
+ M, is direct, each m; is isomorphic to ni,, and in fact the isomorphism is in-
duced by f or f/. Suppose that this were the case for every ¢ exclusively by f.
Then /' would map My + My, + . . .+ W, isomorphically upon m; + MW=+ . . .
-+ s, and this is a contradiction, since v % 0, v/’ = 0 and v = vey; + vey, + . . .
+ ve,, is contained in My, + My, + . . . + my,. Thus at least one m,, is mapped
by means of f isomorphically onto m; = m,,f.

iiy Each n, is, by i), isomorphic to some m,, and consequently the direct
decomposition (2) also satisfies the same condition as (*). Hence we may, by

6) This theorem can readily be transferred, together with Lemma 1, to non-commutative
groups if we consider “normal endomorphisms” and make use of the notion of their
“ Addierbarkeit.” Cf. footnote (27) in S. K.
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interchanging (1) and (2), conclude similarly that each m, is isomorphic to some
ny. As M(p), we denote by N(»), » being in N, the set of all A& N such that
nx is isomorphic with n,. Then our assertion means that if m, and n, are iso-
morphic M(x) and N(v) have the same cardinal number: Xl;(,u) = W—(v—); and
to prove this we have, by symmetry, only to show that Il:ﬁ—u_—)— = I\T(—T_f .

Changing letters for convenience, let us assume that m. and n, are isomor-
phic. Let f, be, for each » & N, the primitive idempotent element belonging to
1, (with respect to the direct decomposition (2)). Consider any index v, from
N(2). Then, on applying i) to f = f,,, we can find an index u#, & M (x) so that
M, is carried by f,, isomorphically onfo n,, (since Mfy, = n,, is directly indecom-
posable); we have the direct decomposition

m=mw+2nv-

E )
Now let »;,»s,. . .,vs be any finite number of indices from N(Z2). Then, on re-
peating the above argument s-times in the similar manner as in the proof of
Lemma 1, we can readily show the existence of s indices u;, #:,. . ., us in M(x)
for which the direct decomposition

M=my, +my, + ...+ m,+ 1y
V!

Vi)
holds. From this follows in particular that if M(x) is finite then N(1) is also
finite and JTJ(?T% ﬁ(“)__)

We assume therefore that M(x) is infinite. Consider any index p from
M(x). Then, since for an arbitrary non-zero element % from m, the n,-compo-
nent #f, vanishes for almost all », there exist all the more only finitely many
indices » & N(1) such that m, is by means of f, mapped isomorphically upon
ny. We denote this finite subset of V(X) by F(u), which we associate with each
#.  Then, as was shown above, if z runs over all indices in M(x) the corres-
ponding F(u) exhaust N(2):

U F(u) =NQR).
WEM (k)

This implies, since M(x) is infinite, that M(x) = I
pleted.

(i and the proof is com-

3. Now we verify the following theorem, the first part i) of which may be
seen as an improvement of S. K. Theorem 20, i).

THEOREM 2. Under the assumption (*) above:
i) The endomorphism ring R of WM is semi-primary, and every primitive
idempotent element in R is isomorphic to one of e)’s.
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ii) Every element a of R such that a =1 (mod. C), C being the radical of
R, is an isomorphism of WM (into itself), and for any finite number of indices

Ly, M2, o o ., s from M we have the following divect decomposition :
M =myae+ Mya+ ...+ ma+ MMy .
pe(ie)

Proof. i) is an immediate consequence of Thecrem 1, i). Indeed, that Mf
contains a directly indecomposable direct summand m,f isomorphic to m, means
that / contains a primitive idempotent element e isomorphic tc ¢, such that
Me = myf; further, in this case, the subring eRe poussesses a radical, since ¢, Re,
does the same by the assumption (*) and is isomorphic with eRe. These show,
as was remarked in § 1, that R is semi-primary.

ii) By virtue of Lemma 1, it is sufficient to prove thatif weput 6 =1 - ¢
no non-zero direct suramand can be mapped isomorphically by means of & onto
a direct summand. Suppose contrarily that there were two direct summands
m = Me and n =IMS, where both ¢ and f are non-zerc idempotent elements in
R, such that b carries m isomorphically onto n. Then the isomorphism would
have an inverse isomorphism x & fRe, which fulfills obviously the rélation x&
= f. But this is contrary to our assumption that 8 =1 - @ is in C.

We can further show that Corollary 2 to S. K. Theorem 19 also holds under
the assumption (*) alone:

Lemma 2.7 Let the direct decomposition (1) satisfy the assumption (*).
Then for any given primitive idempotent elemeni ¢ in R there exists at least one
u such that eyee, is an automorphism on my.

Proof. If we put m = Me, m is, according to Theorem 1, i), isomorphic to
one of my’s and hence satisfies the same assumption as (*). Now each e.¢ in-
duces on m an endomorphism ee,e. The totality {ee.e; n& M} is summable
with respect to m and the sum > ee¢.e = ¢ is the identity endomorphism on m.
Let « be an arbitrary non-zero glement of m and let gy, 2, . . ., s be a finite
number of indices such that wuee.e( = ue,e) =0 whenever pdk {ui} = {u, 1,

., ts}. Then the sum d = eee is, since ud = 0, a proper endomorphism
nes{ig)
on m and satisfies eeye + eepe+ .. . +eepe+d=-e. From this follows, by

(*) for m, that® there must exist at least one u; such that ee,e is an automor-

" The validity of this lemma and that of the succeeding theorem under the assumption
(*) alone were communicated to the writer by T. Nakayama.

8) Generally, if m is a directly indecomposable module satisfying the same assumption as
(*) and if {@s} be a summable system of proper endomorphisms of m then the sum

¥ as is also proper.
o
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phism on m, or what is the same, e,, and e map m and me,, isomorphically
upon me,; and m respectively. Wi is therefore the direct sum of me,; and the
kernel M(1 — e) of ¢, and ntey, is a direct summand. But since me,, is contained
in the directly indecomposable module m,; (= Me,,), we have necessarily me,;
= M,;. Thus e,ee, is an automorphism on my,.

By virtue of the preceding lemma, we obtain the following

TueorREM 3.9 Under the assumiption {(*) above:

i) The radical C of R consists of all elements ¢ in R such that e.ce, is, for
every p, v =M, a proper homomordhism of my into m,.

il) The residue class ring R = R)C modulo the radical C is a seni-irvedu-
cible vegular ring and may be considered as the endomorphism ring of the left

ideal Y Re, of R; further S Re, is the largest (left, right and) two-sided ideal ™
nEMN =R

of R.

Proof. i) That if ¢ is in C then each e,ce, is a proper homomorphism of
i, into m, can be proved in the same way as in the proof of Theorem 2, ii),
since e,ce, also in C. Suppose contrarily that an element d of R is not in C.
Then the right ideal dR contains a non-zero idempotent element e = dx, which
we may, since R is semi-primary by Theorem 2, assume to be primitive. Accor-
ding to Lemma 2, there exists an index p such that e,ee, = e,dxe, is an auto-
morphism on m,. Consider now a summable system {e.de,xe,; v & M} of en-
domorphisms of m,. Then it has the sum 2] e.de.xe, = e,dxe, and hence there
must exist,”’ by the assumption (*). at leaét one p such that e,de,xe, is an
automorphism on m,. Then e.,de, maps my isomorphically onto m,, that is, e.de,
is not a proper homomorphism of m, into m,.

ii) Let @ be any element of R. For each pu, e.ae, is a proper homomorphism
of m, into m, except for a finite numbar of indices »,'® say, v = vy, v, . . . ,0s.
Then it can readily be seen from i) of this theorem that e.a — (e,ae,, + euae,.
+ ...+ ewaey,) lies in the radical C, ie. e,@ = e,ae,, + e.ae,,. + . . . + &,ae,,.
This shows that 33 Re, is a two-sided ideal of ®. Every element of ® induces
therefore an (oper;‘cor-)endomorphism of the left ideal ZI‘EE.,,,. and indeed dis-
tinct elements induce distinct endomorphisms. For, ifua is an element of R
such that ¢,@ = (j for every u then e,@2, = (j, whence e.ae, is a proper homo-

9 This theorem was given in S. K. Theorem 20, i) (in its proof. to be precise) and iii)
by assuming not only ‘the assumption (*) but also the assumption (**) below.

10) Cf, Corollary to S. K. Theorem 11.
M Take account of footnote 8).

12) Because for an arbitrary non-zero element u of my #e.ae, vanishes for almost all v.
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morphism of m, into m, for every , », and consequently @ is in C again by i)
of this theorem. Now let there be given an endomorphism of EI?EM which
makes correspond e, -> @,. Since e,a, = a,., we can take a represe;tative a, of
@, so that e,a, = a,. The system {a@,; x& M} is then summable and if we put
a = > a, we have e.a = e,a, = a, whence ¢€,@ =a,, which means that g induces
the guiven endomorphism. Thus it is proved that R may be considered as the
endomorphism ring of the left ideal ZReu. R is semi-irreducible by Corollary
to S. K. Theorem 10, while R is regular by virtue of S. K. Theorem 16 because
§]R‘epL is completely reducible. Every simple left ideal of R is, since R is semi-
1rreducxble expressed in the form Re by a primitive idempotent element e.
Taking a primitive idempotent representative e of ¢, e is by Theorem 2, i)
isomorphic to some ¢, that is, e &= Re,R ' whence ¢ = Re R, which implies
that (the simple left ideal) Re is contained in S)Ré, Thus SR, is the
largest completely reducible left (whence right as x:fell as two-sidedsl ideal of .

We now impose, for the first time, the following assumption besides (*):

() In case the cardinal number M of {my} is infinite, each m, is finitely
generated.

We can readily see that wunder both the assumptions (*) and (**) S, K.
Theorem 20, ii), whence the succeeding Theorems 21-23 also, remain valid with
the same proofs as there. Whether or not S. K. Theorem 19, together with its
Corollary 1, and S. K. Theorem 20, iv) hold valid under the assumptions (*)
and (**), the writer has however to leave here open.

Remark. Although every element a of R such that ¢ = 1 (mod. C) is, accor-
ding to Theorem 2, ii), an isomorphism of I into itself, ¢ is not necessarily
an automorphism,'® as the following example shows:

Let R, be a completely primary ring with unit element whose radical G, is
not a nil-ideal ') and let R be the row-finite matrix ring over R, of countably
infinite dimension, say. Then R is regarded as an endomorphism ring of a count-
ably infinite direct sum of (directly indecomposable) submoduli all isomorphic
to R, (with the left operator-ring R;), which fulfills certainly the assumptions
(*) and (**), and moreover the radical C of R consists of all matrices in R
such that all its elements lie in C,./¥ Now let ¢ be any non-nilpotent element

%) Cf. S. K. Theorem 8.

") Cf. S. K. Lemma 8.

15 — condition A) in S. K. Theorem 19.

16) But in case M is finite a is always an automorphism, as Theorem 2, ii) shows.

I We may take R to be a valution ring of a p-adic number field, for instance.
%) Cf. S. K. Theorem 22,
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from C, and consider the matrix

1 —¢ 0)

C )
Then a is in R and @ = 1 (mod. C), but @ is not regular in R. For, if a could
have a left inverse, it would be of the form

0

but this matrix is not row-finite because of the non-nilpotency of c.
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