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Abstract

In this paper we present a simple (fixed point) method that yields various results concerning approximate
solutions of some difference equations. The results are motivated by the notion of Ulam stability.
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1. Introduction
Let (M, p) be a metric space, J be either N (positive integers) or Z (integers) and p € N.
We study the approximate solutions in M of the difference equations
Xnip = Tp(Xns Xn1s - o o5 Xnip-1),  NED, (1.1)
Xn = Tp(Xn41, xn+2,~~~axn+p), nelj, (1.2)

or, in other words, we investigate solutions (x,),ey € M (MJI denotes, as usual, the
family of all sequences (x,),cr in M) of the inequalities

Spepr nED, (1.3)
Op, nel, (1.4)

p(Zn+p; T(Zns Zns1s -+ - Zn+pfl)
p(Zn; Tn(zn+la Tn+2s e v vy Zn+p)

)
)

V/AN/A\

for T),: MP — M and 9, € R, (positive reals). Such investigations are connected with
the issue of Ulam stability, which has been a very popular subject for many years and
covers a broad variety of mathematical objects (for example, differential, difference,
functional, integral and operator equations); we refer to [2, 6] for further information
and some recent related results. This type of stability is connected with the following
natural question: When is an approximate (in some sense) solution of an equation
somehow close to a solution of the equation?

Such questions appear in natural ways. For instance, if we cannot determine a
suitable description of solutions to an equation, then we can try to find functions of
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simpler forms satisfying the equation only approximately (with a particular error) and
show that each such function is close (in some sense) to a solution of the equation.
The theory of Ulam stability provides convenient tools for such investigations. The
case p = 1 and J = N has been studied for (1.1) in [3] (cf. [1, 7-9]). In particular, it has
been proved in [3, Theorem 2] that if there is (@;,)qen € Rﬂ with

nQ

(T (x), T,(») < aup(x,y), neN, limsup — <1, (1.5)

n—oo n+1
then there are a sequence (x,),cy in M and a positive real u € R, with x,,,1 = T,(x;,)
and d(z,, x,,) < uo, for n € N. Moreover, [3, Theorem 1] contains the following result.

THeorEM 1.1. Let (X, +) be an abelian group, d be a complete and invariant metric
in X, a,: X — X be a continuous isomorphism for every n € N, and let (6,)en € RY,
(@n)net € [0, +00)" and (zn)ner, (bu)newt € X', Suppose that

0,
Ao an(z0) + by) < Opet, €N, liminf 220 5 | (1.6)

n—oo n+1

and d(a,(x),a,(y)) = a,d(x,y) for x,y € X, n € Ny. Then there is a unique (x,)nen € XN
With Xpi1 = ay(x,) + b, for n € N and sup,,oq d(2y, Xn)/0n < 0.

Those results have been obtained in a quite involved way. We present a simple fixed
point method that yields various more general results of the same type. In particular,
we generalise, complement and extend the results in [3] (see Theorems 2.1 and 2.3
and Remark 2.4). Namely, we consider a more general difference equation (1.1) (for
any p € N and without assuming any group structure in M), prove analogous results
for (1.2) and consider simultaneously also the case where N is replaced by Z. Since
we also study the case J = Z, we assume conditions somewhat stronger than (1.5) and
(1.6), but in this way we obtain more precise results.

A kind of completeness is generally necessary to obtain such stability results (cf.
[2]); for example, completeness of d in Theorem 1.1. We show, in particular, that
even if such completeness is lacking, then this method allows us to obtain a suitable
substitute of such stability; namely, there are sequences satisfying the considered
equation with ‘arbitrarily small error’ (in some sense).

Stability of (1.1) for arbitrary p was considered in [4], but in a Banach space and
with T, (x1,...,x,) = Zf:] &ix; + Bo and 6,, = 6 for n € N and some § € R, where ¢&;
are fixed scalars and Sy a given element of the Banach space. So, our results also
generalise and complement those in [4] to some extent (see also [1]).

In what follows, as before, (M, p) is a metric space, ] is either N or Z and p € N.
Moreover, T,,: M? — M and 6, € R* for n € N are given. To avoid any confusion in
what follows, let us explain that, given (a,),e; € M’, the symbol (a,_;),e; denotes the
sequence (b,),cy in M given by b,, := a,_; forn € J.
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2. Main results

Turorem 2.1. Let (Zy)uer € MY, 0, : RY - R, forneN, ¢ € (0, 1),

(T, (3), Th(W)) < On(o(y1, w1, - ., pVps Wp)) (2.1)
fory=01,....yp)w=wi,...,wy) e M’ nel,
®,»a,»,...,a,» — i
sup M < ¢sup a—, (ap)ney € Rﬂ 2.2)
il Opri el 0

and suppose that (1.3) holds. Then, for each € € (0, 1), there is x = (x,)pe1 € M with

On
P(xn+p, Tn(xm s xn+p—l)) < 86n+p’ ,D(Zm xn) < m’ nel. (23)

Next, if the metric p is complete, then there is a solution u = (uy)ner € M° of (1.1) such

that o = sup,c; P(2n, Un)/0n < 1/(1 = 9); moreover, if I = Z, then there exists only one
solution u = (uy)pey € M’ of (1.1) with o < co.

ProoE. Write peo(u, W) := sup,,c; Py, Wn)/0n for u = (Up)pes, W = Wy)ner € M’ and
M= 1{y = (Yu)nes € M’ : poo(y, 7) < oo} and set

(Tn—p(Yn—pa e ,yn—l))neﬂ if] = Z;
(Zl7 .o 7Zp9 Tl(}’l, .o 7yp), T2(y2, e 7)’p+1)7 .. ) lfJ = N,

for every y = (y,)ney € M. Then (M, po,) is a metric space, po.(2, 7 (z)) < 1 and
PTiis - Yiep-1) TiWiy .., Wisp_1))

T :={

Poo(T(¥), T (w)) = sup

i€l 5p+i
®, s Wi)s v s POViep—1s Wik p
<sup i, wi) 6P()’z+p 1> Witp 1) 2.4)
i€] p+i

for every y = (Vulners W = Wy)ner € M. Next, note that condition (2.2) implies
supiey ©i(O(Vis Wi)s - - s PVisp-1> Wit p-1)) [0 p+i < Fpeo(y, w) for all sequences y = (yu)ners
w = (Wp)ner € M, whence, from (2.4), we deduce that poo(7(y), T (W)) < Fp0 (¥, W)
for every y = Vpnes, W = Wplnes € M. So, 7: M — M is a contraction with the
constant . Hence, peo(T"(2), T"(2)) < #pw(z, T(2)) for n € N. Fix € € (0, 1).
Clearly, 9 pw(z, 7 (z)) < € for some ny € N. Take x := 7™(z). Then it is easily
seen that pe(z, ) < 1% peo(TH(@). TH'(2)) < 1% #peo (2. T(2)) < 1/(1 = 9) and
Poo (X, T (x)) < &, which means that (2.3) holds.

Assume that the metric space (M, p) is complete. Then so is (M, ps) and by
the Banach contraction principle there is a unique fixed point u € M of 7 and
Poo(U,2) € Pool(z, T (2))/(1 = F) < 1/(1 — ). Since u = T (u), u is a solution to (1.1).

Finally, letJ = Z and v = (v;,),e; € M be a solution to (1.1). Then v = 7 (v), whence
v is a fixed point of 7~ and consequently u = v. O

It follows from the proof that u = (u,),cy in Theorem 2.1 can be chosen, for J = N,
withy; = z; fori = 1,..., p. Clearly, there is only one such solution, but generally the
uniqueness property, as for J = Z, does not hold for J = N.
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Remark 2.2. Let 7,; € [0, 00) for n,i € Z and ©O,(a) := max;—;__, Tp;a; for n €7,
a=(ai,...,ap) € R”. Then, for example, (2.2) follows with ¢ := 9, from the condition

OiskTi itk

Jo :=sup max <1, (2.5

ie] k=0,..p=1  Opyi

because 74k /0p+i < Po/0ipx fori € J,k=0,..., p— 1 and consequently

Tii+kQivk Aiti a;
sup max ————= <sup max Fg—— =dosup —, (ap)uer € RL.
ie] k=0,...p=1  Op4i ie] k=0...p=1 " Ok iel Oi
If0,@) = f:] Tha;fornelJanda=(ai,...,ap) € R”, then analogously it is easy to

show that (2.2) holds for instance with 8 = pfy when 6y < 1/p is defined by (2.5).
Clearly, for p =1, condition (2.5) corresponds to the second inequality in (1.5),
because (with 7; := 7, ; for j € ]) it has the form

0jT;
¥ := sup < 1. (2.6)
jel Oj+l

TuroreM 2.3. Let (Zy)uer € MY, ©, : RY - R, forn €N, (1.4) and (2.1) hold and

Oi(ists -+ Aixp)
sup ————— P < Ysup =,
iel 0; el 0

ai
=, (p)ner €RY, 2.7)

with some ¢ € (0, 1). Then, for each & € (0, 1), there is x = (X,)ner € M’ with

nel.

0,
p(-xn’ Tn(-xn+la B xn+p)) < 86n’ P(Zn, xn) < 1 _ﬂﬂ,

Next, if p is complete, then there is a unique solution u = (uty)ner € M’ of (1.2) with
0 = 8up,c; P(Zn, )/, < 00; moreover, p(z,, up) < 6,/(1 =) forn € l.

Proor. Write pe(ut, w) 1= sup,o; p(ttn, wy)/0n for u = (Up)ner, w = Wpney € M and

M =1y = (uner € M’ : poo(y, 2) < 0} and set T(y) := (Ty(Vns1s - - - » Ynsp)ner for
Y = Vu)ner € M. Then (M, po,) is a metric space, po(z, 7 (2)) < 1 and

PTiYirts 5 Yisp), TiWints oo, Wip))

Peo(T(y), T (w)) = sup

ieJ 0i
<sup (i1, Wit ),6 ,p(y:era Wl+p)) < Dpe(y, W)
jel i

for every y = Vpnes, W = Wyl € M. So, 7: M — M is a contraction with the
constant ¢J. The rest of the proof is analogous as for Theorem 2.1. O

Some consequences of Theorems 2.1 and 2.3 (in the case p = 1) are described in
the subsequent remark.
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Remark 2.4. Now consider a situation corresponding to Theorem 1.1. Namely, let
S, : M — M be surjective for n € I, (¥n)ner> (n)nes € RL, Wp)ney € M? and

PWni1, Sy (Wp)) < a1, n €, (2.8)
P(8x(x), $,(¥) = vap(x,y), x,y € M,nel. (2.9)
Then S, must be bijective for each n € J (by (2.9)). Write
T, := S;il, Zn = Swy), Op =141 and @, = y;jl fornel.
Then, from (2.8) and (2.9),

p(Zn’ Tn(znﬂ)) = p(Sn(Wn)s Tn(Sn+l(Wn+l))) = p(Sn(Wn)’ W) < Mn+1 = On

and p(T,(2), T,(w)) < a,p(z,w) for n€J, z,w € M, whence (1.4) and (2.1) hold for
p =1 and ©,(a) = aya. If we assume additionally that sup,,c; 7,+1/(@nys) < 1, then
Sup,,cj(6n+1@,)/0, < 1, which implies (2.7) for p = 1. So, we have reduced that
situation to a particular case of Theorem 2.3. Thus, we obtain a generalisation of
Theorem 1.1. An analogous result can be derived from Theorem 2.1 when (2.8) is
replaced by the condition p(w,;, S,,(Wy+1)) < 17, for n € J and (2.9) holds; thus, we obtain
a generalisation of [3, Theorem 2].

3. Final remarks

The next example shows that ¢} = 1 cannot be admitted in (2.6) (that is, in (2.5) with
p = 1) in the general situation. Namely, let X be a normed space with dim X > 2 and
T,: X — X be a linear isometry for n € N. Then each T, is a Lipschitz mapping with
a constant ¢ = 1. Assume that there is w € X, which is a fixed point of each T}; take w
with |lw|| = 1.

Fix 6 > 0,y > 0 and mg € N with yr < myd. Define (z,),ay € X" by

Zn = Zysin(j—r . l) w, né€N.
2 my

Then sup,q l|za+1 — T(za)ll < 6, because

1
Vet = Tazll = sz sin( - ) w2y sin(3 - ). T(w)||
2 m 2 my

0
sin(z ntl ) - sin(z l)
2 myg 2 mgy

=2y vl

Let (Xp)nen, € XY and x,.; = T,(x,) for n € N. Then, for each k € N,

. (T 2km,
2)/| sm(z- m00)|—||x0||

1Z2kmy — Xokmoll = = ||xoll,
C(m (4 + Dmg
e ims = Seakemll > | 29]sin 5 - =2 )~ ] = 12y = loll,
2 my
because ||xk|| = ||xoll. This means that sup,,qy |z, — xall = .
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Similar nonstability results, as described above, have been obtained in [5] also in
the case where p = 1 and lim,,,, 8,@,/0,+1 = 1. On the other hand, in several similar
cases with p > 1, the stability results can be derived from [4] (cf. [2]).
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