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Abstract

In this paper we present a simple (fixed point) method that yields various results concerning approximate
solutions of some difference equations. The results are motivated by the notion of Ulam stability.
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1. Introduction

Let (M, ρ) be a metric space, J be either N (positive integers) or Z (integers) and p ∈ N.
We study the approximate solutions in M of the difference equations

xn+p = Tn(xn, xn+1, . . . , xn+p−1), n ∈ J, (1.1)
xn = Tn(xn+1, xn+2, . . . , xn+p), n ∈ J, (1.2)

or, in other words, we investigate solutions (xn)n∈J ∈ MJ (MJ denotes, as usual, the
family of all sequences (xn)n∈J in M) of the inequalities

ρ(zn+p; Tn(zn, zn+1, . . . , zn+p−1))6 δn+p, n ∈ J, (1.3)
ρ(zn; Tn(zn+1, zn+2, . . . , zn+p))6 δn, n ∈ J, (1.4)

for Tn : Mp → M and δn ∈ R+ (positive reals). Such investigations are connected with
the issue of Ulam stability, which has been a very popular subject for many years and
covers a broad variety of mathematical objects (for example, differential, difference,
functional, integral and operator equations); we refer to [2, 6] for further information
and some recent related results. This type of stability is connected with the following
natural question: When is an approximate (in some sense) solution of an equation
somehow close to a solution of the equation?

Such questions appear in natural ways. For instance, if we cannot determine a
suitable description of solutions to an equation, then we can try to find functions of
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simpler forms satisfying the equation only approximately (with a particular error) and
show that each such function is close (in some sense) to a solution of the equation.
The theory of Ulam stability provides convenient tools for such investigations. The
case p = 1 and J = N has been studied for (1.1) in [3] (cf. [1, 7–9]). In particular, it has
been proved in [3, Theorem 2] that if there is (αn)n∈N ∈ R

J
+ with

ρ(Tn(x),Tn(y)) 6 αnρ(x, y), n ∈ N, lim sup
n→∞

δnαn

δn+1
< 1, (1.5)

then there are a sequence (xn)n∈N in M and a positive real µ ∈ R+ with xn+1 = Tn(xn)
and d(zn, xn) 6 µδn for n ∈ N. Moreover, [3, Theorem 1] contains the following result.

Theorem 1.1. Let (X,+) be an abelian group, d be a complete and invariant metric
in X, an : X → X be a continuous isomorphism for every n ∈ N, and let (δn)n∈N ∈ R

N
+ ,

(αn)n∈N ∈ [0,+∞)N and (zn)n∈N, (bn)n∈N ∈ XN. Suppose that

d(zn+1, an(zn) + bn) 6 δn+1, n ∈ N, lim inf
n→∞

δnαn

δn+1
> 1 (1.6)

and d(an(x),an(y)) > αnd(x, y) for x, y ∈ X, n ∈ N0. Then there is a unique (xn)n∈N ∈ XN

with xn+1 = an(xn) + bn for n ∈ N and supn∈N d(zn, xn)/δn <∞.

Those results have been obtained in a quite involved way. We present a simple fixed
point method that yields various more general results of the same type. In particular,
we generalise, complement and extend the results in [3] (see Theorems 2.1 and 2.3
and Remark 2.4). Namely, we consider a more general difference equation (1.1) (for
any p ∈ N and without assuming any group structure in M), prove analogous results
for (1.2) and consider simultaneously also the case where N is replaced by Z. Since
we also study the case J = Z, we assume conditions somewhat stronger than (1.5) and
(1.6), but in this way we obtain more precise results.

A kind of completeness is generally necessary to obtain such stability results (cf.
[2]); for example, completeness of d in Theorem 1.1. We show, in particular, that
even if such completeness is lacking, then this method allows us to obtain a suitable
substitute of such stability; namely, there are sequences satisfying the considered
equation with ‘arbitrarily small error’ (in some sense).

Stability of (1.1) for arbitrary p was considered in [4], but in a Banach space and
with Tn(x1, . . . , xp) ≡

∑p
i=1 ξixi + β0 and δn = δ for n ∈ N and some δ ∈ R+, where ξi

are fixed scalars and β0 a given element of the Banach space. So, our results also
generalise and complement those in [4] to some extent (see also [1]).

In what follows, as before, (M, ρ) is a metric space, J is either N or Z and p ∈ N.
Moreover, Tn : Mp → M and δn ∈ R

+ for n ∈ N are given. To avoid any confusion in
what follows, let us explain that, given (an)n∈J ∈ MJ, the symbol (an−1)n∈J denotes the
sequence (bn)n∈J in M given by bn := an−1 for n ∈ J.
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2. Main results

Theorem 2.1. Let (zn)n∈J ∈ MJ, Θn : Rp
+ → R+ for n ∈ N, ϑ ∈ (0, 1),

ρ(Tn(y),Tn(w)) 6 Θn(ρ(y1,w1), . . . , ρ(yp,wp)) (2.1)
for y = (y1, . . . , yp),w = (w1, . . . ,wp) ∈ Mp, n ∈ J,

sup
i∈J

Θi(ai, . . . , ai+p−1)
δp+i

< ϑ sup
i∈J

ai

δi
, (an)n∈J ∈ R

J
+ (2.2)

and suppose that (1.3) holds. Then, for each ε ∈ (0, 1), there is x = (xn)n∈J ∈ MJ with

ρ(xn+p,Tn(xn, . . . , xn+p−1)) 6 εδn+p, ρ(zn, xn) 6
δn

1 − ϑ
, n ∈ J. (2.3)

Next, if the metric ρ is complete, then there is a solution u = (un)n∈J ∈ MJ of (1.1) such
that σ := supn∈J ρ(zn, un)/δn 6 1/(1 − ϑ); moreover, if J = Z, then there exists only one
solution u = (un)n∈J ∈ MJ of (1.1) with σ <∞.

Proof. Write ρ∞(u,w) := supn∈J ρ(un,wn)/δn for u = (un)n∈J, w = (wn)n∈J ∈ MJ and
M := {y = (yn)n∈J ∈ MJ : ρ∞(y, z) <∞} and set

T (y) :=

(Tn−p(yn−p, . . . , yn−1))n∈J if J = Z;
(z1, . . . , zp,T1(y1, . . . , yp),T2(y2, . . . , yp+1), . . .) if J = N;

for every y = (yn)n∈J ∈ M. Then (M, ρ∞) is a metric space, ρ∞(z,T (z)) 6 1 and

ρ∞(T (y),T (w)) = sup
i∈J

ρ(Ti(yi, . . . , yi+p−1),Ti(wi, . . . ,wi+p−1))
δp+i

6 sup
i∈J

Θi(ρ(yi,wi), . . . , ρ(yi+p−1,wi+p−1))
δp+i

(2.4)

for every y = (yn)n∈J, w = (wn)n∈J ∈ M. Next, note that condition (2.2) implies
supi∈J Θi(ρ(yi,wi), . . . , ρ(yi+p−1,wi+p−1))/δp+i 6 ϑρ∞(y,w) for all sequences y = (yn)n∈J,
w = (wn)n∈J ∈ M, whence, from (2.4), we deduce that ρ∞(T (y),T (w)) 6 ϑρ∞(y,w)
for every y = (yn)n∈J,w = (wn)n∈J ∈ M. So, T : M→M is a contraction with the
constant ϑ. Hence, ρ∞(T n(z), T n+1(z)) 6 ϑnρ∞(z, T (z)) for n ∈ N. Fix ε ∈ (0, 1).
Clearly, ϑn0ρ∞(z,T (z)) 6 ε for some n0 ∈ N. Take x := T n0 (z). Then it is easily
seen that ρ∞(z, x) 6

∑n0−1
i=0 ρ∞(T i(z),T i+1(z)) 6

∑n0−1
i=0 ϑiρ∞ (z,T (z)) 6 1/(1 − ϑ) and

ρ∞ (x,T (x)) 6 ε, which means that (2.3) holds.
Assume that the metric space (M, ρ) is complete. Then so is (M, ρ∞) and by

the Banach contraction principle there is a unique fixed point u ∈ M of T and
ρ∞(u, z) 6 ρ∞(z,T (z))/(1 − ϑ) 6 1/(1 − ϑ). Since u = T (u), u is a solution to (1.1).

Finally, let J = Z and v = (vn)n∈J ∈ M be a solution to (1.1). Then v = T (v), whence
v is a fixed point of T and consequently u = v. �

It follows from the proof that u = (un)n∈J in Theorem 2.1 can be chosen, for J = N,
with ui = zi for i = 1, . . . , p. Clearly, there is only one such solution, but generally the
uniqueness property, as for J = Z, does not hold for J = N.
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Remark 2.2. Let τn,i ∈ [0,∞) for n, i ∈ Z and Θn(a) := maxi=1,...,p τn,iai for n ∈ J,
a = (a1, . . . ,ap) ∈ Rp

+. Then, for example, (2.2) follows with ϑ := ϑ0 from the condition

ϑ0 := sup
i∈J

max
k=0,...,p−1

δi+kτi,i+k

δp+i
< 1, (2.5)

because τi,i+k/δp+i 6 ϑ0/δi+k for i ∈ J, k = 0, . . . , p − 1 and consequently

sup
i∈J

max
k=0,...,p−1

τi,i+kai+k

δp+i
6 sup

i∈J
max

k=0,...,p−1
ϑ0

ai+k

δi+k
= ϑ0 sup

i∈J

ai

δi
, (an)n∈J ∈ R

J
+.

If Θn(a) =
∑p

i=1 τn,iai for n ∈ J and a = (a1, . . . , ap) ∈ Rp
+, then analogously it is easy to

show that (2.2) holds for instance with θ = pθ0 when θ0 < 1/p is defined by (2.5).
Clearly, for p = 1, condition (2.5) corresponds to the second inequality in (1.5),
because (with τ j := τ j, j for j ∈ J) it has the form

ϑ := sup
j∈J

δ jτ j

δ j+1
< 1. (2.6)

Theorem 2.3. Let (zn)n∈J ∈ MJ, Θn : Rp
+ → R+ for n ∈ N, (1.4) and (2.1) hold and

sup
i∈J

Θi(ai+1, . . . , ai+p)
δi

6 ϑ sup
i∈J

ai

δi
, (an)n∈J ∈ R

J
+, (2.7)

with some ϑ ∈ (0, 1). Then, for each ε ∈ (0, 1), there is x = (xn)n∈J ∈ MJ with

ρ(xn,Tn(xn+1, . . . , xn+p)) 6 εδn, ρ(zn, xn) 6
δn

1 − ϑ
, n ∈ J.

Next, if ρ is complete, then there is a unique solution u = (un)n∈J ∈ MJ of (1.2) with
σ := supn∈J ρ(zn, un)/δn <∞; moreover, ρ(zn, un) 6 δn/(1 − ϑ) for n ∈ J.

Proof. Write ρ∞(u,w) := supn∈J ρ(un,wn)/δn for u = (un)n∈J, w = (wn)n∈J ∈ MJ and
M := {y = (yn)n∈J ∈ MJ : ρ∞(y, z) < ∞} and set T (y) := (Tn(yn+1, . . . , yn+p))n∈J for
y = (yn)n∈J ∈ M. Then (M, ρ∞) is a metric space, ρ∞(z,T (z)) 6 1 and

ρ∞(T (y),T (w)) = sup
i∈J

ρ(Ti(yi+1, . . . , yi+p),Ti(wi+1, . . . ,wi+p))
δi

6 sup
j∈J

Θi(ρ(yi+1,wi+1), . . . , ρ(yi+p,wi+p))
δi

6 ϑρ∞(y,w)

for every y = (yn)n∈J,w = (wn)n∈J ∈ M. So, T : M→M is a contraction with the
constant ϑ. The rest of the proof is analogous as for Theorem 2.1. �

Some consequences of Theorems 2.1 and 2.3 (in the case p = 1) are described in
the subsequent remark.
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Remark 2.4. Now consider a situation corresponding to Theorem 1.1. Namely, let
Sn : M → M be surjective for n ∈ J, (γn)n∈J, (ηn)n∈J ∈ R

J
+, (wn)n∈J ∈ MJ and

ρ(wn+1, Sn(wn)) 6 ηn+1, n ∈ J, (2.8)
ρ(Sn(x), Sn(y)) > γnρ(x, y), x, y ∈ M, n ∈ J. (2.9)

Then Sn must be bijective for each n ∈ J (by (2.9)). Write

Tn := S −1
n+1, zn := Sn(wn), δn := ηn+1 and αn := γ−1

n+1 for n ∈ J.

Then, from (2.8) and (2.9),

ρ(zn,Tn(zn+1)) = ρ(S n(wn),Tn(S n+1(wn+1))) = ρ(S n(wn),wn+1) 6 ηn+1 = δn

and ρ(Tn(z), Tn(w)) 6 αnρ(z,w) for n ∈ J, z,w ∈ M, whence (1.4) and (2.1) hold for
p = 1 and Θn(a) ≡ αna. If we assume additionally that supn∈J ηn+1/(ηnγn) < 1, then
supn∈J(δn+1αn)/δn < 1, which implies (2.7) for p = 1. So, we have reduced that
situation to a particular case of Theorem 2.3. Thus, we obtain a generalisation of
Theorem 1.1. An analogous result can be derived from Theorem 2.1 when (2.8) is
replaced by the condition ρ(wn,Sn(wn+1)) 6 ηn for n ∈ J and (2.9) holds; thus, we obtain
a generalisation of [3, Theorem 2].

3. Final remarks

The next example shows that ϑ = 1 cannot be admitted in (2.6) (that is, in (2.5) with
p = 1) in the general situation. Namely, let X be a normed space with dim X > 2 and
Tn : X → X be a linear isometry for n ∈ N. Then each Tn is a Lipschitz mapping with
a constant ϑ = 1. Assume that there is w ∈ X, which is a fixed point of each Tk; take w
with ‖w‖ = 1.

Fix δ > 0, γ > 0 and m0 ∈ N with γπ < m0δ. Define (zn)n∈N ∈ XN by

zn := 2γ sin
(
π

2
·

n
m0

)
w, n ∈ N.

Then supn∈N ‖zn+1 − Tn(zn)‖ 6 δ, because

‖zn+1 − Tn(zn)‖=

∥∥∥∥∥2γ sin
(
π

2
·

n + 1
m0

)
· w − 2γ sin

(
π

2
·

n
m0

)
· Tn

(
w
)∥∥∥∥∥

= 2γ
∣∣∣∣∣sin

(
π

2
·

n + 1
m0

)
− sin

(
π

2
·

n
m0

)∣∣∣∣∣ · ‖w‖
6 2γ

∣∣∣∣∣π2 · n + 1
m0

−
π

2
·

n
m0

∣∣∣∣∣ 6 2γ ·
π

2
·

1
m0

< δ, n ∈ N.

Let (xn)n∈N0 ∈ XN and xn+1 = Tn(xn) for n ∈ N. Then, for each k ∈ N,

‖z2km0 − x2km0‖>

∣∣∣∣∣ 2γ
∣∣∣∣ sin

(
π

2
·

2km0

m0

)∣∣∣∣ − ‖x0‖

∣∣∣∣∣ = ‖x0‖,

‖z(4k+1)m0 − x(4k+1)m0‖>

∣∣∣∣∣ 2γ∣∣∣∣ sin
(
π

2
·

(4k + 1)m0

m0

)∣∣∣∣ − ‖x0‖

∣∣∣∣∣ = | 2γ − ‖x0‖ |,

because ‖xk‖ = ‖x0‖. This means that supn∈N ‖zn − xn‖ > γ.
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Similar nonstability results, as described above, have been obtained in [5] also in
the case where p = 1 and limn→∞ δnαn/δn+1 = 1. On the other hand, in several similar
cases with p > 1, the stability results can be derived from [4] (cf. [2]).
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[3] J. Brzdęk, D. Popa and B. Xu, ‘The Hyers–Ulam stability of nonlinear recurrences’, J. Math. Anal.

Appl. 335 (2007), 443–449.
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