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An audited elementary algebra
C.J. SANGWIN
1. Introduction

Solving equations is one of the core reasons for elementary algebraic
manipulation. As Chrystal wrote [1]:

There are few parts of algebra more important than the logic of
the derivation of equations, and few, unhappily, that are treated
in more slovenly fashion in elementary teaching. No blind
adherence to set rules will avail in this matter; while a little
attention to a few simple principles will readily remove all
difficulty.

The purpose of this paper is to show how many of the classic problems,
fallacies or examples of false reasoning can be avoided by using an audited
elementary algebra. The word audited refers to the explicit tracking of
domains throughout the calculation. Auditing (i) eliminates many of the
problems of spurious or missing solutions when solving equations, (ii)
reveals where in a chain of reasoning such problems occur, and (iii) is a
natural extension of algebra which does not introduce any artificial devices.
Indeed, all the machinery of auditing, e.g. dealing with Boolean statements
or systems of inequalities, occurs already in existing curricula. While
auditing does not solve all problems, neither does it entail anything which
needs to be forgotten or ‘un-learned’ later.

‘Reasoning by equivalence’ is a particularly important activity in
elementary algebra. It is an iterative formal symbolic procedure where
algebraic expressions, or terms within an expression, are replaced by an
equivalent until a ‘solved’ form is reached. The point is that replacing an
expression or a sub-expression in a problem by an equivalent expression
provides a new problem having the same solutions. Judging the equivalence
of individual expressions, e.g. x> — y* and (x — y)(x + ), is different from
judging the validly of moving from one equation to the next. Asserting that
two expressions A and B are equivalent means that evaluating for all values
of all the variables in some domain (often implicit) we have A = B.
Asserting that two equations A = 0 and B = 0 are equivalent is subtly but
significantly different. It means that the solutions of A = 0 are precisely
the solutions of B = 0, i.e. those particular values of the variables coincide.
Operating on equations, equational reasoning, includes substituting
equivalent expressions within part of an equation. However, other forms of
reasoning are also used such as operating on both sides of an equation or
splitting a single equation into cases: AB = 0 & A = OorB = 0. In this
paper < should be read as ‘is equivalent to’, just as = is read as ‘is equal
to’. ‘Solving an equation’ often means transforming it into a conventional
form to make the solution ‘clear’. This is usually taken to be explicit, e.g. in
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solving a linear equation in x we would expect the solution to be written as
x = ... . However, manipulating an equation to an equivalent standard
form is often sufficient. For example, the form (x —a)’+ (y—b)* = 1>
represents a circle, and in this form we may readily identify the centre and
radius. One key purpose of algebraic form is to enable someone to
recognise/interpret the equation.

2. Audited expressions

An audited elementary expression contains information about the
domain for each of the variables. For example

¥ =4
is a traditional (un-audited) expression, whereas

X =4Arx>0

is audited. Variables restricted by inequalities are assumed to be real.
Therefore, this is equivalent to

¥ =4Ax>0AxeR.

The explicit purpose of auditing is to combine traditional algebraic
expressions with propositional logic. An audited expression is a single
expression represented by a tree structure. The Boolean logical connectives
‘and’ A and ‘or’ v are commutative associative binary operators (sometimes
called ‘n-ary operators’), just like x and +. The whole point of carrying
around the auditing attached to the equational parts of the expression is that
it cannot get lost. This is particularly important in a computer algebra
system, or communicating an equation from one person to another.

This is subtly different from assigning each variable a type as would be
the case in computer code. x:pos real is a perfectly respectable type,
but, as we shall see in some examples, the work in sorting out the auditing is
equal in computational difficulty and status to the work on the original
expression or equation.

2.1 Natural domain of definition

The natural domain of an expression A is the maximal set of points at
which A can be evaluated. A given problem context usually provides an
underlying field X such as @, R or C. Since division by zero is always
forbidden this may be a subset of X. For example, the natural domain of 1 is

X/{0}.
The natural domain of a rational expression 4 is the set for which
B # 0.

Rational expressions sometimes have common factors in the numerator
and denominator, e.g.

¥ -4
x -2
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This expression has a natural domain of definition x # 2 so that the
proposal we discuss here is that the audited expression should be written
P-4
x —
Traditionally we could choose to factorise and cancel, and so write
2
x- -4 _ x-2)(x +2) Y
x =2 x =2
As elements of an algebraic field, e.g. Q@ [x], both 'fjf and x + 2 are in the
same equivalence class, and in this context are often considered to be the
same. A rational expression in lowest terms, with suitable conventions for
writing polynomials in the numerator and denominator, gives a canonical
representative for the equivalence class. In analysis, when we are using an
algebraic expression to represent a function, or when solving an equation,
the domain is important. The audited form contains a ‘memory’ of any
restriction which often needs to remain with the expression. That is,
working at a higher level of detail,

AX # 2.

2_ —
x -2 x -2
x —
=3 x+2)Ax =2
x -2

S x+2Ax # 2.
Note that

X+2Ax #2

is a different audited expression fromx + 2 A x € R.

Next, consider solving
1 1 2
+ .
x+1 x-1 x2-1
Rationalising both sides we have
2x 2

2 -1 -1
from which it is tempting to conclude 2x = 2andsox = 1. Sincex # =1
in the domain of the original expression we have no real solutions. This is
just the kind of hidden loss of domain information we seek to avoid.

In a particular problem context we may choose to permit a domain
enlargement back to the whole real line, or complex plane. This choice
should be conscious and explicit in the written working, not an accident of
algebraic cancelling. In many problems a point which has been excluded
will be precisely the interesting one.
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The variables which occur in a formula are implicitly recorded in
tracking the domain. For example, when auditing the expression

a b? ?
+ +
(a - b)(a - ¢) b-0c)b-a (c — a)(c = b)

we havea # b A b # ¢ A ¢ # a. The equivalent expression 1 does not
contain any of these variables, but these domain restrictions will remain in
the equivalent form, i.e.

lAha#bAb#cAc #a.

Situations such as this are prime candidates for domain enlargements by
dropping conditions such as @ # b for variables which no longer occur in
the expression.

Example 2.1 (taken from [2, p. 81]):
By ordinary long division we have, for any value of x,

-1
X _ 1
x -1
2
-1
p =x+1
x -1
3
=1
z =X +x+1
x -1
4
-1
Y =X+ +x+1
x -1
" -1
ol ="'+ o+t L
x -1

Now in all of these identities we let x have the value 1. The right-hand sides
then assume the values 1, 2, 3, 4, ..., n. The left-hand sides are the same.
Hencel =2 =3 =4 = ... = n

The above has a silent domain enlargement to the whole of R. In the
audited version, we cannot evaluate the right-hand side, because x = 1 is
excluded from the domain. Preventing evaluation of an expression outside
its domain of definition avoids the fallacy.

In many problems we will be working over the real numbers, in which
case we may restrict the domain of an expression to ensure we remain real.
For example, the natural real domain of x'?is x > 0.

Algebraic roots are particularly troublesome. If working in the real
domain V/x is traditionally taken to be the positive square root of the positive
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number x. Therefore any expression with surd quantities should be audited
to track the domain, i.e. rather than write Vx we should always used the
audited form

Vxax>0

VirxeR o Viaxz=o.

In this paper vx and x> are considered to be different notation for the
same thing. This is not always the case. Not all authors do this. For
example, in [3] we read:

Having two symbols to indicate the n th root of a, namely {/a and

a'", we shall employ the first in the simple arithmetical sense, and

the second to denote any one of the algebraical roots, that is, any

one we please, unless some particular root be specified. Thus V4

is 2, without reference to sign; but 4> may be either +2 or —2.

If n is even then x'/" also has natural domain x > 0. If n is odd then x'/"
is defined on the whole real line. Often we don't know if n is odd or even,
which restricts our ability to audit domains or apply particular rewrite rules
which rely on a constraint such as x > 0 without error. In such cases we
audit as needed.

Points which evaluate to 0° are also excluded from the natural domain.

There are many notational ways to express a set of numbers. For
example, the positive real numbers can be written as any of the following.

x > 07 [R>07 (0? oo)’ {x | X > O}'

When auditing an expression the author should chose notation best
suited to their particular circumstance. Sometimes this will be a system of
inequalities which is amenable to calculation, and sometimes it will be using
sets written with interval notation.

3. Solving equations

An essential process in solving equations is operating on both sides, i.e.
‘doing the same thing to both sides’. When doing this we must ensure
that given expressions A and B and the operator f we have
A = B & f(A) = f(B). This is the definition of an injective function. It
is not necessary that f is surjective, just that we restrict the domains. Thus

A=BonX & f(A) = f(B)on f(X).
Given a number a, the function x = a + x is injective. Hence, we can add
the same thing to both sides of an equation.
Multiplication is not injective in general. In particular multiplication by
zero is not injective. Normally we encounter this problem when dividing
both sides of an equation by an expression. However, when asserting

equivalence multiplication and division are taken together. Hence audited
forms of the rules are needed.
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CA=CB& A=BvC=0. (1)
CA=CBAC#0e A=BAC #0. (2)
A=B o (CA=CBAC %0 vA=B=0 (3

The first form is familiar. In (2), the condition C # O appears odd on
the right hand side as there is no C elsewhere in the formula A = B. The
last is almost never seen explicitly in elementary algebraic derivations. The
omission of the auditing in the last of these hides the potential introduction
of spurious solutions in the transformation of A = B into the new equation
CA = CB.

Note that & is a symmetric, transitive relation. Since we read (English)
left to right, these rules are written to emphasise the direction of use as a
transformation (re-write rule), such as

CA=CBA#0—>A=BAC #0.

Much of elementary algebra consists of re-write rules. E.g. 0 x x — 0.
Here the expression 0 x x is rewritten to be 0. Rewrite rules can be used in
both directions. However, they are most often used in the direction left to
right. We match the pattern on the left and rewrite with the pattern on the
right. This is symbol pushing.

It might be argued that traditional practice does not mix the logical
connectives for ‘and’ A and ‘or’ v with algebraic equations in this way.
This is simply not true.

AB=0&A=0vB=0. 4)
AB>0= (A>0AB>0vI(A<0AB<DO0). (5)

The whole point is that many operations on equations which are taken to be
an equivalence, are in fact not equivalent. Multiplying or dividing by
variables, in particular cancelling terms, and taking powers of both sides of
an equation need to be qualified. Auditing makes this qualification explicit.

Example 3.1: An incorrect solution takes the square root of both sides
Qx =7 = (x + 1)
2x-T7T=x+1

x =38
In this case we may derive the correct solution using the difference of two
squares.
Qx =7 = (x + 1)
e 2x-T-@x+1)* =0
s 2x-T7+x+1DH2x-7-x-1)=0
S Bx-6)x-8 =0

S x=2vix =8
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Notice how using the difference of two square avoids taking roots of both
sides of an equation.

Using the difference of two squares avoids the dilemma of ‘when to use
+’. For example, when solving x> = a* we would like to take the square
root of both sides. However, do we have =+ on the left, right or both sides of
this equation? Writing

x2=a2<:x2—a2=O@(x—a)(x+a)=0

S x—-—a=0vx+a=0

S x=avx=-—-a
entirely avoids this problem.

Auditing can be quietly dropped when dealing with pure numbers. For
example, if in (3) we know C = 2then C # 0is true. We will never audit
as follows

A=B o 24 =2BA2 = 0.

This would be wasteful: the condition 2 # 0 immediately evaluates to
TRUE and so can be eliminated. The logical value TRUE is the identity
element for A, i.e. A A TRUE < A. Wastefulness in algebra is to be
avoided.  After all, a primary purpose of algebraic symbolism is
abbreviation and efficient computation. Auditing is only needed for variable
quantities.

In the following examples auditing which is traditionally omitted is
shown in bold.
Example 3.2: Assume
a=»>
& (@=abra#0)va=b=0
using 3) with A=C =gandB=b
& @ -b=ab-braz0)va=b=0
S ((a-b)(a+b)y=bla-b)ra#0)va=b=0
Slla+b=braz0)v(ia-b=0Ara#0)]va=b=0
S[Rb=bra#0)va=bra#0)]va=b=0
S[R=1Araz0Abzx0)va=bra#0)]va=b=0.

The unaudited version appears to derive the contradiction 1 = 2. The
audited version concludes

[Q=1Aa#0Ab=#0v@=bara=#0]va=>b-=0.
The statement 2 = 1 can be replaced by its Boolean evaluation FALSE, the
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rule FALSE A A — FALSE is used twice together with the rule
FALSE v A — Ato give
(a=bra#0)va=b=0=(a=bra#0)v(a=bra=0)
Sa=bar(la#0va=0)

S a=b.

The audited version shows this as nothing more than rewriting and
obfuscating the hypothesis.

In future examples, for brevity, we may choose to show auditing only
where it changes from line to line, just as in writing elementary algebra parts
are not repeated where this causes clutter on the page. These are aesthetic
judgements.

3.1 Squares and square roots of equations

To take square roots of both sides of an equation we should formalise
the difference of two squares:

A=BFPoA-B=0=A-BA+B)=0A=BvA=-B.
This can conveniently be remembered as a single rewrite rule

AA=BFP o A=BvA=-B (6)

Example 3.3: Returning to Example 3.1, an alternative audited solution
could be

Q2x =7 = (x + 1)

S 2 -7 x+1v2x-7=-x-1

& x=8vyx=2
Squaring both sides of a real-valued equation can also be useful, but needs
to be audited:
IfA = BthenA*> = B~
However, when solving an equation we need an equivalence, not a simple
implication. Therefore the following audited version is necessary.
A=BAAEcRABERSA =B A((A>0AB>0)v(A<0AB<0). (7)
This rule looks complex, but it will prove to be particularly useful for
removing square roots from equations.
In particular, we shall make use of the rules

(VAV AA>0 e AnA>o0. ®)
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Note, that the domain condition A > 0 on the left-hand side of this is

irr/lglied by the natural domain of the square root function. Now consider

VA? = |A|l. This does not have the domain restriction A > 0, but it does

not equal A. Notice that (\/Z)2 # VA2, Written in index form

(42" % (AY2, without some auditing. IfA > O then equality holds, i.e.
ifA > 0then (42" = (A2 = A

This is an important source of false reasoning.

The expressions which form the auditing are themselves mathematical
expressions which can, and should, be manipulated to equivalent forms.
This is done in the above argument by rewritinga —b =0asa = b. Where
constraints evaluate to logical false (FALSE) (e.g. as in 2 = 1) they should
be eliminated. The following example is similar, but this time uses (6).

Example 3.4:

1
S
+

(n + 1y +2n+ 1

S m+ 1) -@Qn+1) 2

I
S

o n+ 1) -Cn+D)-nCn+ 1) =n-nn+1

S m+ 1V -m+1DC2n+1)=n-nCn+1)

=n -
o+ 1 o+ 1
<:>(n+1)2—2(n+1)(n+ )=n2—2n(n2+ )
2n+1\ (2n+1\ 2n+1\ (2n+1\
<:>(n+1)2—2(n+1)( n )+( nE )=n2—2n( n )+( nE )
2 2 2
2n+ 1\ 2n+ 1\
(:)((n+l)— n )=(n— n )
2
@(n+1)—2n+1=n—2n+1
2 2
v(n+1)—2n+1=—n+2n+1
2 2
Sn+l=n

v2n+2-2n+1=-2n+2n+1

=1=0vl=1

What appears to be the contradiction 1 = 0 is in fact the tautology 1 = 1,
which evaluates to TRUE and is equivalent to the identity
(n+1)*>=n*+2n+1. In other words, deriving a tautology proves the
identity.
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The following examples are taken from [4].

Example 3.5: SolveV3x + 4 = 2 + Vx + 2,x € R.

The unaudited version is as follows:
V3x +4 =2 +Vx + 2

Ak +4=4+4x+2 + (x+2)
2Vx + 2

¥ -2x+1 = 4x + 8

x -1

0
x -7+ 1) = 0.

Note, the only real solutionis x = 7.

X - 6x -7

First we audit with natural domains from the original expression

V3x+4 =24+Vx+2A3x+42>2Ax+220.

Rewriting these domain conditions we have
V3x +4 =2+ Vx+2A-

Eliminating the redundant condition

V3x +4 =24+ Vx +2A-

Now we use (7)

s
VA

xXA-2<nx

s
N
=

(Vax+4) =2+ Vx+2)
AVIXFA20A2+Vx+220)v(V3r+4<0A2+Vx+2<0)a-4<

Notice, the complex conditions from (7) can be evaluated to be TRUE or
FALSE immediately, so we have the equivalent expression

(V3x+4)2=(2+\/x+2)2/\—§<x.

Now we are in a position to use (8) on both sides, together with other
algebraic manipulation.

2
A +4d=4+4ah+2+Wxr+2) A-d<x

O +4=4+4Nx+2+x+2 A-%<x

2Wx+2 A—-4< x

o x -1
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Now we use (7) again
- 17 = (2Vx + 2
AxX-120A2Vx+220)v(x—1<0A2Vx+2<0)A-%<x

We reduce the inequalities, then proceed as normal. Note the second to
third line uses (8) on the right-hand side.

0
-1 =02k+2) Ax>21Ar-4<x

o -2+ 1

v+ 2 Ax>1

o X -2r+1 4x+2)AVx+220Ax21

oxX-6x-7=0Arx>1

S x-THx+1)=0Aax21

o x=T7vx=-1 Ax 21
o x =T

Notice how in the audited version we have the natural domain constraint
which eliminates the spurious solution giving a complete and correct answer
x =T

In this example the complex auditing of domains in (7) has been spelled
out. In future we will not write out this in full, but will immediately
simplify this in the way we have with some of the other (traditional) algebra.

Example 3.6: Without auditing we have the following:
V3x +4 =2 -Vx+2

3x+4 =4 -4x+2+ (x+2)

x—-1=-2Vx+2
¥ -2+ 1 =4dx+8

¥ -6x-7=0
0.

x-7Dx+1
The only real solution is x = —1.
Auditing with natural domains

Vix+4=2-Vx+2A-§{<x

Now we use (7)

(Vax+4) = (2-Vx+2)A2>vVx+2Ar-4<x
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Note, we need (7) on the domain constraint itself:
2>Vx+2 e 4>x+2
AM220AaVi+220v(2<0avx+2<0)
S 42>2x+2

S x < 2.

Incorporating this side calculation, we have
x+4=4-4/x+2+x+2A-3<xAx<2
Sx-1=-2Vx+2A-$<xAx<2
S -2x+1=4x+8A-3<xAx<2
S -6x+7=0A-4$<xAx<2
Sx-NDx+1)=0A-3<xAx<2
ok=7Tvy=-1) A-$<rax<2
o x=-1.

Hence x = -1 is the only solution.

Evaluating the constraints on the domain might be as difficult as in the
original problem, simply pushing the work elsewhere. Including the
auditing makes this clear, and gives these calculations equal status.

Example 3.7: This equation has no real solutions. Without auditing we
appear to get two.

Vi+2=2+3x+4
X+2 =444 +44+ Gx+4
—x -3 =2/3x + 4
X H6r+9=40Cr+4 = 12x + 16
Y-6x-7=0

G-TDx+1) =0

The audited version gives

Vi+2=2+Vx+4A-4<x
S x+2=4+43x+4+Bx+HA-4$<x
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S x-3=2x+4A-%<x

Trying to apply (7) we have the constraints
Xx-320A2VAx+4>20nA-%<x

B3z2xA-%<x
This is the empty set, so that the original equation has no real solution.
A source of similar examples is [5].

3.2 nth powers and roots of equations

We should, as far as possible, avoid taking the n th roots of both sides of
an equation. Guided by the difference of two squares, it is much more direct
to subtract, factorise and split into cases. For example

A3=B3
e 0=A4-8

& 0 =(A-B)(A + 4B + B)

S A=BvA+AB+B =0.

Depending on the underlying domain, A> + AB + B> may or may not factorise
further. In particular if o # 1 is a primitive cube root of unity we have

A+ AB + B> = (A - wB)(A — w'B)
so we might, over the complex numbers, write this more elegantly as
A =B o (A-wB)(A - oB)(A-B) = 0.
This generalises to n th roots.
For example, applying this reasoning to an irreducible quadratic
2
x = -4

& 0=x+4

& 0 = (x - 2i)(x + 2i)

S x =20 vy = =2

Working in this way we retain all the roots and none are ‘lost’. Other
authors have comments on this issue, e.g.
It is by no means uncommon with algebraical authors, when
they have led their readers through a process which terminates
in an equation, to select that root which gives the answer they
require, without explaining the signification of the other roots
that are equally comprised in it; and this incomplete mode of
solution, which is censurable from revealing only a part of the
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truth, had in some instances caused the most interesting
circumstances attending a question to be entirely overlooked.

[6].
Examples of such discussions include [6] and [7, Chapter XII].

4. Further examples

Inequalities can also be solved in the same style, using identical
mathematical techniques we propose for auditing, e.g. using (5).

4.1 Solving inequalities

22 +x > 6

2 +x-620

(2x = 3)(x+2) >0
(x-3)20A@x+2)20v(2x-3)<0A@x+2)<0)

g ¢ ¢ ¢

xZ23Aax2 2)vix<iAax<g 2
( 2 3

S x 23 vy <=2

This differs considerably from a traditional rhetorical argument such as:

To solve 2x*> + x > 6 we first solve 2x*> + x = 6, or
2> +x -6 = (2x — 3)(x + 2) = 0. This has solutions

x = 3 and x = -2, hence 2x*> + x = 6 at these, and only
these, values. Since f(x) = 2x*> + x — 6 is continuous and
changes sign only at x = 3 and x = -2 by the intermediate

value theorem we need only consider the algebraic sign of f (x)
at individual points x in three intervals. Since f(0) < 0 and
f(=3) = 0and f(2) > 0 we conclude that 2x* + x > 6 for
x € (—oo, 2] U [3, o).

The more formal symbolic style reduces the rhetoric, replacing loosely
connected sentences with precise logical symbols. This is an extension of
the process of algebraic symbolism, started in the 1550s, to include more
logical reasoning within algebraic calculation.

Another example is from the International Baccalaureate specimen
questions collection:

2
Find all values of x that satisfy the inequality ﬁ < 1.
-

The mark scheme assumes students will sketch graphs and draw
inferences from the graphical solution: a perfectly reasonable way to
proceed. However, purely algebraic reasoning by equivalence is possible.
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2
—x<1/\x¢1
ke~ 1
w<h-1ax=1
xz2lAr2Zx<x-DviEx<laAa2Zx<-=x+Darx=1

xz2lAax<-DDvx<lalx<DhDax=1

gt ¢ ¢ ¢

x<iax=l1
S x <k

This illustrates the potential of auditing to deal with piecewise functions,
such as |x|, in a natural way.

4.2 Maxwell’s fallacies

The classic collection [8] defines a fallacy as leading by guile fo a
wrong but plausible conclusion. To what extent does auditing prevent these
fallacies? Clearly auditing is primarily an algebraic technique, and so we
omit the purely geometric fallacies.

Example 4.1

This comes from [8, p. 37], with only essential auditing shown. Note
when squaring both sides the conditions in (7) are redundant, and the square
root is only applied to non-negative arguments, removing the need for
natural domain constraints.

The fallacy that4 = 0.
cos’ x) =1- sin’ (x)

/
< 1l+cos(x)=1+ (1 - sinz(x))l/2 v1+cos(x)=1- (1 - sinz(x))] :

s (1+ cos()c))2 = (1 +(1- sin2(x))1/2)2

v(1 + cos(x))* = (1 ~ (1 - sin’® (JC))I/Z)2

Note that in using (7) when moving from the second to third line of the
above, the additional auditing immediately simplifies to TRU E and hence is
omitted.

Evaluatingatx = 7«
S U= =0+0-0va-1=0+a-0"?
S 0=4v0 =0
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When using trigonometric identities we also need auditing.
Traditionally we write trigonometric identities without reference to the
domain

tan (A) + tan(B)

1 — tan(A) tan (B)

Actually this requires auditing, using the set 7 := {n(} + k)|k e Z}.
tan(A+ BOAA+BgT

_ tan (A) + tan(B)
T 1= tan (A) tan (B) AA T ABgT A tan(A) tan(B) # 1. (9)

tan(A + B) =

Example 4.2: This comes from [8, p. 42]. The fallacy that +1 = —1.
To solve the equation
cot(0) + tan(30) = 0 LetT :={x(} + k) |k e 7}
cot(0) + tan(0 + 260) = 0 AO # kn A 30 ¢ T
tan(0) + tan(26) e N0 g T A2 ¢T
1—tan(0)tan(20) A tan(@) tan(260) = 1
cot(0) — tan(26) + tan(0) + tan(260) = 0
cot(f) + tan(0) = 0
tan?(6) + 1 = 0
tan? () = -1 (10)

cot(0) +

Returning to the original equation tan (36) = — cot(f) = tan(6 + %)
so that

30 =0 +% + nxm

forn € Z. Thus @ = § + n-5. Takingn = 0 we evaluate (10) in the last
line of the above derivation at § = 7 to get Maxwell's fallacy

tanZ(z) =1=-1.
4

However, looking at the auditing for (10) we have

0 #krnn0 e&T A2 T A30 A tan(A) tan(B) = 1.

The term 20 ¢ T means 20 # 5 + kn forallk € Zsothatif k = 0 we
see that & = § has been excluded from the domain of the equation
tan?(#) = -1, hence with the auditing (9) there is no fallacy.

Example 4.3: This comes from [8, p. 44]. The sum of the squares on two
sides of a triangle is never less than the square on the third.
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Take a triangle ABC with (a > b). Then
(acos(C) > bcos(C) A cos(C)>0) v (acos(C) <bcos(C) A cos(C) <0).
Now, by projecting points onto the segments a and b we have
b cos(C) = a — ¢ cos(B), acos(C) = b — c cos(A)
so that
(b —ccos(A) > a—ccos(B) A cos(C) > 0)
v (b — ¢ cos(A) < a—ccos(B) A cos(C) < 0)
< ((ccos(B) —ccos(A) >a—b A cos(C) > 0)

v(c cos(B) —ccos(A) <a—b Acos(C) < 0).
Multiply by 2ab > 0 and use the cosine formula.

(b(d®+*=b")—alb® + * = a®) > 2ab(a - b) A cos(C) > 0)
v(b(a®+ = b)) —a(b® + * = d*) < 2ab(a - b) A cos(C) < 0).

Omitting the remaining legitimate steps this reduces to

(@ + b > * A cos(C) > 0)

vid + b < A cos(C) < 0).

The case cos (C) = 0 gives equality a®> + b* = >

5. Conclusion

Many of the classic fallacies in elementary algebra can be avoided by
using auditing, i.e. explicitly tracking the domains throughout the
calculation. This is particularly useful for real algebra problems.

Over the last four hundred years, algebraic symbolism has developed
[9]. Purposes include abbreviation, e.g. Robert Recorde justified his
invention of the equals sign as follows.

... to avoid the tedious repetition of these words: ‘is equal to’, I

will set (as I do often in work use) a pair of parallels of one

length (thus =), because no two things can be more equal. [10]
Another purpose is to aid efficient computation. For example, Newton
explains his extension of meaning of x" to fractional and negative indices.

Since algebraists write a2, a’, a*, etc., for aa, aaa, aaaa, etc., so
I write a2, a*2, a2, for Va, Va?, Va’; and 1 write ¢!, a2, a3,
etc., for 1, L L etc [11].

a’ aa® aaa °
He then uses this notation in his binomial formula for (x + y)™". Euler also
discusses fractional powers and the alternative surd notation.
§200 We may therefore entirely reject the radical signs at
present made use of, and employ in their stead the fractional

https://doi.org/10.1017/mag.2015.38 Published online by Cambridge University Press


https://doi.org/10.1017/mag.2015.38

MATTERS FOR DEBATE 315

exponents which we have just explained: but as we have been
long accustomed to those signs, and meet with them in most
books of Algebra, it might be wrong to banish them entirely
from calculations; there is, however, sufficient reason also to
employ, as is now frequently done, the other method of
notation, because it manifestly corresponds with the nature of
the thing. In fact we see immediately that ¢'/? is the square root
of a, because we know that the square of '/, that is to say a'/?
multiplied by a2 is equal to @', or a. [12].

Perhaps he lacked the courage of his conviction that fractional powers
‘manifestly corresponds with the nature of the thing’; however there is little
contemporary doubt that the design of this notation significantly aids

computation. Unfortunately, (¢")” = &™ needs auditing.

The logical symbols as abbreviations, e.g. & for ‘if and only if’, are
well-established conventions. It is somewhat surprising that the use of such
symbolism has not yet routinely and systematically been extended to writing
complete arguments in many commonly occurring situations, particularly
reasoning by equivalence. Proof by induction might be another candidate
for formal or conventional written presentation. Using the two dimensional
layout on the page, e.g. lining up in vertical columns, is also not standard
practice in written work. It is unusual for contemporary students to write
any logical connectives when reasoning by equivalence! Boole commented
[13]:

The theory of Logic is thus intimately connected with that of
Language. A successful attempt to express logical propositions
by symbols, the laws of whose combinations should be
founded upon the laws of the mental processes which they
represent, would, so far, be a step towards a philosophical
language.

An expanded use of formal symbolism might have many of the same
advantages as we see in algebra. This includes fewer mistakes, as
demonstrated by the examples here. Notice that the symbol < has been
used in this article throughout the audited arguments. This connects
individual equations into a complete logical argument, combining logical
inference and algebraic calculation. Viewed in this way, individual
equations or expressions, the auditing and the logic which links them
become a single mathematical entity. The whole argument considered as a
single mathematical entity could be manipulated by software, just as
algebraic expressions can be manipulated by a computer algebra system.
This include cut and paste of expressions which form part of an argument,
retaining domain information. Proof assistants, proof verification, computer
algebra and related tools would then combine both logic with computation.
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