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Hermitian Yang–Mills–Higgs Metrics on
Complete Kähler Manifolds

Xi Zhang

Abstract. In this paper, first, we will investigate the Dirichlet problem for one type of vortex equation,

which generalizes the well-known Hermitian Einstein equation. Secondly, we will give existence results

for solutions of these vortex equations over various complete noncompact Kähler manifolds.

1 Introduction

The Hermitian Yang–Mills theory plays an important role for holomorphic vector

bundles over a compact Kähler manifold M. The relation between the existence
of Hermitian Einstein metrics and stable holomorphic vector bundles over closed
Kähler manifolds is by now well understood, due to the work of Narasimhan–Seshadri
[18], Donaldson [4], Siu [21], Uhlenbeck–Yau [22] and others. The Higgs bundle,

which is introduced by Hitchin in [10] on a Riemann surface, is a holomorphic bun-
dle E together with a given holomorphic linear map

θ : Ω
0(M, E) → Ω

1,0(M, E)

which satisfies θ∧θ = 0. Simpson [20] generalized the above results about Hermitian
Einstein metric to Higgs bundles. Different to the Higgs bundles, Bradlow [1, 2]
considered holomorphic vector bundles on which additional data in the form of a

prescribed holomorphic global section is given. Bradlow investigated the following
vortex equation

(1.1) ΛFH −
√
−1

2
φ⊗ φ∗H + λ

√
−1

2
Id = 0,

Here FH is the curvature of the metric connection determined by ∂̄E and a Hermi-
tian metric H, φ is a holomorphic section of E, φ∗H is the adjoint of φ with respect
to metric H. This vortex equation looks like the Hermitian Einstein (or Hermitian
Yang–Mills) equation with an extra zeroth order term, and we will call a Hermi-

tian metric satisfying (1.1) a Hermitian Yang–Mills–Higgs metric. In [2], Bradlow
proved the equivalence between the existence of Hermitian Yang–Mills–Higgs metric
and the φ-stability of holomorphic bundle by minimizing the so called Donaldson’s
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functional. More recently, Hong [11] established the global existence of smooth so-
lutions to heat flow for the Hermitian Yang–Mills–Higgs metric on E, and proved the

existence of the Hermitian Yang–Mills–Higgs metric on the φ-stable holomorphic
bundle by studying the limiting behaviour of the gauge flow.

It is natural to hope that geometric results dealing with closed manifolds will ex-
tend to yield interesting information for manifolds with boundary. In [5], Donald-
son solved the Dirichlet boundary value problem for Hermitian Einstein metrics on
Kähler manifolds. In the first part of this paper, we want to consider the Dirich-

let boundary value problem for Hermitian Yang–Mills–Higgs metric (or the above
vortex equation (1.1)). We obtain the following theorem.

Theorem 1.1 Let E be a holomorphic vector bundle over the compact Kähler mani-

fold M with non-empty boundary ∂M, and φ be a holomorphic section of E. For any

Hermitian metric f on the restriction of E to ∂M there is a unique Hermitian Yang–

Mills–Higgs metric H on E such that H = f over ∂M.

We will use the heat equation method to prove Theorem 1.1, and adapt the tech-
niques which already appear in the literature on the Hermitian Yang–Mills flow [5,

20, 21]. Let H0 be a Hermitian metric on E, and satisfying H0 = f over ∂M. Con-
sider a family of Hermitian metric H(t) on E with initial metric H(0) = H0. De-
note by AH(t) and FH(t) the corresponding connections and curvature forms. When
there is no confusion, we will omit the parameter t and simply write H,AH , FH for

H(t),AH(t), FH(t) respectively. The heat equation of (1.1) is following:

(1.2) H−1 ∂H

∂t
= −2

√
−1

(

ΛFH −
√
−1

2
φ⊗ φ∗H +

√
−1

2
λ Id

)

.

One can easily see that, written in local coordinates, this is a parabolic semilinear
system. In fact, we proved that the heat equation (1.2) for the Dirichlet problem has

a long time solution H(t) for any initial metric H0 such that H0|∂M = f . We obtain
the following theorem.

Theorem 1.2 Let E be a holomorphic vector bundle over the compact Kähler mani-

fold M with non-empty boundary ∂M, and φ be a holomorphic section of E. For any

Hermitian metric f on the restriction of E to ∂M and any initial metric H0 satisfying

H0|∂M = f there exists a unique solution metric H( · , t) on E such that

(1.3)
H−1 ∂H

∂t
= −2

√
−1

(

ΛFH −
√
−1

2
φ⊗ φ∗H + λ

√
−1

2
Id

)

,

H(x, 0) = H0, H(x, t)|∂M = f (x).

In the second part of this paper, we study the existence of Hermitian Yang–Mills–

Higgs metrics for a holomorphic vector bundle over a class of complete noncompact
Kähler manifolds. We would like to point out that Ni and Ren [16, 17] had discussed
the existence of a Hermitian Einstein metric on a complete Kähler manifold, and
we would adapt the techniques used by them. In section 4, we prove a long-time
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existence of the Hermitian Yang–Mills–Higgs heat equation on any complete Kähler
manifold, under some assumptions on the initial metric and the holomorphic section

φ. We obtain:

Theorem 1.3 Let M be a complete noncompact Kähler manifold without boundary,

let E be a holomorphic vector bundle over M with Hermitian metric H0, and φ be a

holomorphic section of E. Suppose that there exists a positive number Θ such that

|2
√
−1ΛFH0

+ φ ⊗ φ∗H0 − λ Id | ≤ Θ everywhere, where λ is a real number. Then

the Hermitian Yang–Mills–Higgs flow

(1.4) H−1 ∂H

∂t
= −2

√
−1

(

ΛFH −
√
−1

2
φ⊗ φ∗H + λ

√
−1

2
Id

)

,

H(x, 0) = H0,

has a long-time solution on M × [0,∞).

In section 5, by studying the limiting behaviour of the solution of the above heat
equation, we prove the existence of Hermitian Yang–Mills–Higgs metric over a class
of complete Kähler manifolds under some assumptions. The method we use is simi-

lar to that used by Li [13] in the heat flow of the harmonic map.

2 Preliminary Results

Let M be a compact Kähler manifold and E a rank r complex vector bundle over M.
Denote by ω the Kähler form, and define the map

L : Ω
p,q(M, E) → Ω

p+1,q+1(M, E)

by

(2.1) L(α) = α ∧ ω.

Here Ωp,q(M, E) is the space of global sections of ∧p,q(M, E), where ∧p,q(M, E) is the
sheaf of germs of smooth (p, q) forms on M with values in E. The L2-adjoint of this
map is denoted by

(2.2) Λ = L∗ : Ω
p,q(M, E) → Ω

p−1,q−1(M, E).

If α ∈ Ω1,1(M, E), then

(2.3) Λα = 〈α, ω〉.

where 〈 , 〉 denotes the point-wise inner product on (1, 1) forms induced by the

Kähler metric on M. Let A be a connection on E; through the definition of Λ, we
have the following Kähler identities:

(2.4)
∂̄∗A =

√
−1[∂A,Λ] =

√
−1(∂AΛ − Λ∂A),

∂∗A = −
√
−1[∂̄A,Λ] = −

√
−1(∂̄AΛ − Λ∂̄A),
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on general (p, q) forms Ωp,q(M, E). For the special cases of the above Kähler identities
are

(2.5) ∂̄∗A = −
√
−1Λ∂A; ∂∗A =

√
−1Λ∂̄A,

on Ω1,0(M, E), Ω0,1(M, E). Let ρ ∈ Ω0(M, End(E)), one can check the fact that the
covariant Laplacian △A = −∇∗

A∇ can be written:

(2.6)
△Aρ = −2∂̄∗A∂̄Aρ−

√
−1[ΛFA, ρ],

△Aρ = −2∂∗A∂Aρ +
√
−1[ΛFA, ρ].

Here FA is the curvature form with respect to connection A.

Definition 2.1 We define the Yang–Mills–Higgs functional

YMHλ : A(H) × Ω
0(M, E) → R

by

(2.7) YMHλ(A, φ) = ‖FA‖2
L2 + ‖dAφ‖2

L2 +
1

4
‖φ⊗ φ∗ − λ Id ‖2

L2 .

Here, using the metric on E, we get identifications E ≈ E∗ and also E⊗E∗ ≈ End(E),
A(H) denotes connections on E that are compatible with H, and φ∗ is the adjoint of

φ taken with respect to H and λ is a real parameter.

In the case of closed Kähler manifold M, Bradlow proved the following proposi-
tion:

Proposition 2.2 The functional YMHλ : A(H) × Ω0(M, E) → R can be written as

(2.8) YMHλ(A, φ) = 4‖F
0,2
A ‖2

L2 + 2‖∂̄Aφ‖2
L2 + ‖

√
−1ΛFA +

1

2
φ⊗ φ∗ − λ

2
Id ‖2

L2

+ λ

∫

M

√
−1 Tr(FA) ∧ ω[n−1] +

∫

M

Tr(FA ∧ FA) ∧ ω[n−2].

Here ω[m] =
ωm

(m)!
and F0,2

A is the component of FA of type (0, 2).

An immediate corollary is that the functional YMHλ is bounded below by

2πλC1(E, ω) − 8π2Ch2(E, ω),

and this lower bound is attained at (A, φ) ∈ A(H) × Ω0(M, E) if and only if

F
0,2
A = 0,(2.9)

∂̄Aφ = 0,(2.10)

√
−1ΛFA +

1

2
φ⊗ φ∗ =

λ

2
Id .(2.11)
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The third equation generalizes the Hermitian Yang–Mills equation (which is re-
covered by taking φ = 0) and is the analog of the classical vortex equation over R2.

For this reasons we call the equation (2.11) the Hermitian Yang–Mills–Higgs or the
vortex equation.

Let H be a Hermitian metric on holomorphic vector bundle E, and denote the
holomorphic structure by ∂̄E. Then there exists one and only one complex metric

connection which is denoted by AH . By taking a local holomorphic basis eα (1 ≤
α ≤ r), the Hermitian metric H is a positive Hermitian matrix (Hαβ̄)1≤α,β≤r which
also will be denoted by H for simplicity. In fact, the complex metric connection can
be written as

(2.12) AH = H−1∂H,

and the curvature form as

(2.13) FH = ∂̄AH = ∂̄(H−1∂H).

In the literature sometimes the connection is written as (∂H)H−1 because of the
reversal of the roles of the row and column indices.

Definition 2.3 If the Hermitian metric H satisfying the vortex equation

(2.14)
√
−1ΛFH +

1

2
φ⊗ φ∗H

=
λ

2
Id,

then we will call it Hermitian Yang–Mills–Higgs metric. The notation φ∗H empha-

sizes that the adjoint is taken with respect to the metric H.

Bradlow [1] showed that the problem of minimizing the functional YMHλ(A, φ)
defined on (E,H), a complex bundle with fixed metric, into the problem of find-
ing a special metric on (E, ∂̄E, φ), i.e., on a holomorphic bundle with a prescribed
holomorphic section. In fact these two problems are equivalent.

It is well known that any two Hermitian metrics H and K are related by H = Kh,
where h = K−1H ∈ Ω0(M, End(E)) is positive and self adjoint with respect to K. It
is easy to check that

AH − AK = h−1∂K h,(2.15)

FH − FK = ∂̄(h−1∂K h),(2.16)

△ lg Tr h ≥ −(|ΛFK | + |ΛFH |).(2.17)

Let H0 be a Hermitian metric on E. Consider a family of Hermitian metrics H(t)
on E with initial metric H(0) = H0. Denote by AH(t) and FH(t) the correspond-
ing connections and curvature forms, and denote h(t) = H−1

0 H(t). When there

is no confusion, we will omit the parameter t and simply write H,AH , FH , h for
H(t),AH(t), FH(t), h(t) respectively. The heat equation of (2.14) is

(2.18) H−1 ∂H

∂t
= −2

√
−1

(

ΛFH −
√
−1

2
φ⊗ φ∗H +

√
−1

2
λ Id

)

.
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It is completely equivalent to the following evolution equation:

(2.19)
∂h

∂t
= △0h+2

√
−1Λ(∂̄Ehh−1∂0h)−

√
−1(ΛF0h+hΛF0)+λh−hφ⊗φ∗H0 h,

where △0 = △H0
, ∂0 = ∂H0

. We know that the above equation is a nonlinear
parabolic equation, as in [4],and h(t) are self adjoint with respect to H0 for t > 0
since h(0) = Id. Proceeding as in [4], we have

Proposition 2.4 Let H(t) be a solution of Hermitian Yang–Mills–Higgs flow (2.18),

φ be a holomorphic section of E. Then

(2.20)
( ∂

∂t
−△

)

|ΛFH −
√
−1

2
φ⊗ φ∗H +

√
−1

2
λ Id |2H ≤ 0.

Proof By calculating directly, we have

(2.21)
∂

∂t
(ΛFH) =

∂

∂t
(Λ∂̄E(h−1∂0h))

= Λ∂̄E(∂H(h−1 ∂h

∂t
))

= −2
√
−1Λ∂̄E(∂H(ΛFH −

√
−1

2
φ⊗ φ∗H +

√
−1λ

2
Id))

= △H(ΛFH −
√
−1

2
φ⊗ φ∗H +

√
−1λ

2
Id)

−
[√

−1ΛFH ,ΛFH −
√
−1

2
φ⊗ φ∗H +

√
−1λ

2
Id

]

,

and

(2.22) △|ΛFH −
√
−1

2
φ⊗ φ∗H +

√
−1λ

2
Id |2H

= −∇∗∇|ΛFH −
√
−1

2
φ⊗ φ∗H +

√
−1λ

2
Id |2H

= 2 Re
〈

−∇∗
H∇H(ΛFH −

√
−1

2
φ⊗ φ∗H +

√
−1λ

2
Id) ,

ΛFH −
√
−1

2
φ⊗ φ∗H +

√
−1λ

2
Id

〉

H

+ |∇H(ΛFH −
√
−1

2
φ⊗ φ∗H +

√
−1λ

2
Id)|2H .

https://doi.org/10.4153/CJM-2005-034-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-034-3


Hermitian Yang–Mills–Higgs Metrics 877

It is easy to check the following formulas,

Re
〈

ΛFHφ⊗ φ∗H + φ⊗ φ∗H
ΛFH ,ΛFH

〉

H
= 2|ΛFHφ|2H ,

Re
〈

ΛFHφ⊗ φ∗H + φ⊗ φ∗H
ΛFH ,−

√
−1

2
(φ⊗ φ∗H − λ Id)

〉

H

= (|φ|2 − λ) Re〈−
√
−1φ,ΛFHφ〉H ,

Re
〈√

−1φ⊗ φ∗H(λId − φ⊗ φ∗H),ΛFH

〉

H
= (|φ|2 − λ) Re〈−

√
−1φ,ΛFHφ〉H ,

Re
〈√

−1φ⊗ φ∗H(λ Id −φ⊗ φ∗H),

√
−1

2
(λ Id −φ⊗ φ∗H)

〉

H
=

1

2
|φ|2H(λ− |φ|2H)2.

Using the above formulas, we have

(△− ∂

∂t
)
∣

∣

∣
ΛFH −

√
−1

2
φ⊗ φ∗H +

√
−1λ

2
Id

∣

∣

∣

2

H

= 2
∣

∣

∣
∇H(ΛFH −

√
−1

2
φ⊗ φ∗H +

√
−1λ

2
Id)

∣

∣

∣

2

H

+ 2 Re
〈

[√
−1ΛFH ,ΛFH −

√
−1

2
φ⊗ φ∗H +

√
−1λ

2
Id

]

,

ΛFH −
√
−1

2
φ⊗ φ∗H +

√
−1λ

2
Id

〉

H

+ 2 Re
〈

√
−1

2
φ⊗ φ∗Hh−1 ∂h

∂t
,ΛFH −

√
−1

2
φ⊗ φ∗H +

√
−1λ

2
Id

〉

H

= 2
∣

∣

∣
∇H(ΛFH −

√
−1

2
φ⊗ φ∗H +

√
−1λ

2
Id)

∣

∣

∣

2

H

+
1

2

∣

∣

∣
−
√
−1(|φ|2 − λ)φ + 2ΛFHφ

∣

∣

∣

2

H

≥ 0.

Proposition 2.5 Let H(t) be a solution of Hermitian Yang–Mills–Higgs flow (2.18)
on M × [0,T), and let φ be a holomorphic section of E. Then

(2.23)
( ∂

∂t
−△

)

|φ|2H = (λ− |φ|2H)|φ|2H − 2|∇Hφ|2H .

Proof By calculating directly, we have

∂

∂t
|φ|2H =

∂

∂t
〈φ⊗ φ∗H , Id〉H

= 〈φ⊗ φ∗Hh−1 ∂h

∂t
, Id〉H

+
〈

φ⊗ φ∗H(2
√
−1ΛFH), Id

〉

H
−

〈

(2
√
−1ΛFH)φ⊗ φ∗H , Id

〉

H

=
〈

φ⊗ φ∗H(−φ⊗ φ∗H + λId) − 2
√
−1ΛFHφ⊗ φ∗H , Id

〉

H
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and

△|φ|2H = 2|∇Hφ|2H − 2Re〈∇∗
H∇Hφ, φ〉H

= 2|∇Hφ|2H − 2〈
√
−1ΛFHφ, φ〉H,

where we have used ∂Eφ = 0. From the above equalities we have

( ∂

∂t
−△

)

|φ|2H = −2|∇Hφ|2 +
〈

φ⊗ φ∗H(−φ⊗ φ∗H + λ Id), Id
〉

H

= −2|∇Hφ|2 + (λ− |φ|2H)|φ|2H .

Next, we will introduce Donaldson’s “distance” on the space of Hermitian metrics

as follows.

Definition 2.6 For any two Hermitian metrics H, K on bundle E set

(2.24) σ(H,K) = Tr H−1K + Tr K−1H − 2 rank E.

It is obvious that σ(H,K) ≥ 0 with equality if and only if H = K. The function σ
is not quite a metric, but it serves almost equally well in our problem. Moreover
the function σ compares uniformly with d( , ), where d is the Riemannian distance
function on the metric space, in that f1(d) ≤ σ ≤ f2(d) for monotone functions
f1, f2. In particular, a sequence of metrics Hi converges to H in the usual C0 topology

if and only if supM σ(Hi ,H) −→ 0.

Proposition 2.7 Let H and K be two Hermitian Yang–Mills–Higgs metrics, then

σ(H,K) is sub-harmonic:

(2.25) △σ ≥ 0.

Proof Denote h = K−1H, applying −iΛ to (2.16) and also taking the trace in the

bundle E, we have

(2.26) Tr(
√
−1h(ΛFH − ΛFK )) = −1

2
△Tr h + Tr(−

√
−1Λ∂̄Ehh−1∂Kh).

By formula (2.14), then

△Tr h = 2 Tr(−
√
−1Λ∂̄Ehh−1∂K h) + Tr(hφ⊗ φ∗H − hφ⊗ φ∗K ).

Similarly, let k = H−1K; we have

△Tr k = 2 Tr(−
√
−1Λ∂̄Ekk−1∂Hk) + Tr(kφ⊗ φ∗K − kφ⊗ φ∗H).
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Let {ei} be unitary basis with respect to metric K at the point under consideration,
and suppose that h(ei) = λiei .

(2.27)
Tr

(

hφ⊗ φ∗H − hφ⊗ φ∗K + h−1φ⊗ φ∗K − h−1φ⊗ φ∗H)

= Tr((h − h−1)φ⊗ φ∗K (h − Id)
)

=

r
∑

i=1

〈

(h − h−1)φ⊗ φ∗K(h − Id)(ei), ei

〉

=

r
∑

i=1

(λi − 1)(λi − λ−1
i )|〈φ, ei〉K |2

=

r
∑

i=1

(λi − 1)2(λi + 1)(λi)
−1|〈φ, ei〉K |2

≥ 0.

Using the above formula and the facts[4, 21]

Tr(−
√
−1Λ∂̄Ehh−1∂K h) ≥ 0,Tr(−

√
−1Λ∂̄Ekk−1∂Hk) ≥ 0,

h−1 = k, we have

△σ(H,K) = △(Tr h + Tr h−1 − 2r)

= 2 Tr(−
√
−1Λ∂̄Ehh−1∂K h) + 2 Tr(−

√
−1Λ∂̄Ekk−1∂Hk)

+ Tr
(

hφ⊗ φ∗H − hφ⊗ φ∗K + h−1φ⊗ φ∗K − h−1φ⊗ φ∗H
)

≥ 0.

Let H(t), K(t) be two solutions of Hermitian Yang–Mills–Higgs flow (2.18), and

denote h(t) = K(t)−1H(t). Applying−iΛ to (2.16) and taking the trace in the bundle
E, we have

(

△− ∂

∂t

)

Tr h(t) = 2 Tr(−
√
−1Λ∂̄Ehh−1∂K h) + Tr(hφ⊗ φ∗H − hφ⊗ φ∗K )

and

(△− ∂

∂t
) Tr h−1(t) = 2 Tr(−

√
−1Λ∂̄Eh−1h∂Kh−1)+Tr(h−1φ⊗φ∗K −h−1φ⊗φ∗H).

Using (2.27) again, then

(

△− ∂

∂t

)

(Tr h(t) + Tr h−1(t))

= 2Tr(−
√
−1Λ∂̄Ehh−1∂Kh) + 2 Tr(−

√
−1Λ∂̄Eh−1h∂Hh−1)

+ Tr
(

hφ⊗ φ∗H − hφ⊗ φ∗K + h−1φ⊗ φ∗K − h−1φ⊗ φ∗H
)

≥ 0.
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So we have proved the following proposition.

Proposition 2.8 Let H(t), K(t) be two solutions of Hermitian Yang–Mills–Higgs flow

(2.18). Then

(2.28)
(

△− ∂

∂t

)

σ(H(t),K(t)) ≥ 0.

Proposition 2.9 Let H(x, t) be a solution of Hermitian Yang–Mills–Higgs flow (2.18)

with the initial metric H0. Then

(2.29)
(

△− ∂

∂t

)

lg{Tr(H−1
0 H) + Tr(H−1H0)}

≥ −
∣

∣2
√
−1ΛFH0

+ φ⊗ φ∗H0 − λ Id
∣

∣

H0

.

Proof Let h = H−1
0 H. Applying (2.18) and (2.26), we have

(2.30)
(

△− ∂

∂t

)

Tr h = Tr
(

2
√
−1hΛFH0

+ hφ⊗ φ∗H − λh
)

+ 2 Tr(−
√
−1Λ∂̄Ehh−1∂0h).

(2.31)
(

△− ∂

∂t

)

Tr h−1
= −Tr

(

2
√
−1h−1

ΛFH0
+ φ⊗ φ∗Hh−1 − λh−1

)

+ 2 Tr(−
√
−1Λ∂̄Eh−1h∂Hh−1).

Direct calculation shows that [21]

(2.32)
2(Tr h)−1 Tr(−

√
−1Λ∂̄Ehh−1∂0h) − (Tr h)−2|∇Tr h|2 ≥ 0,

2(Tr h−1)−1 Tr(−
√
−1Λ∂̄Eh−1h∂Hh−1) − (Tr h−1)−2|∇Tr h−1|2 ≥ 0.

From the above two inequalities, it is easy to check

(2.33) (Tr h + Tr h−1)−1
{

−2
√
−1Λ∂̄Ehh−1∂0h − 2

√
−1Λ∂̄Eh−1h∂Hh−1

}

≥ (Tr h + Tr h−1)−2|∇Tr h + ∇Tr h−1|2.
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Then, we have

(△− ∂

∂t
) lg{Tr h + Tr h−1}

= (Tr h + Tr h−1)−1(△− ∂

∂t
){Tr h + Tr h−1}

− (Tr h + Tr h−1)−2|∇Tr h + ∇Tr h−1|2

= (Tr h + Tr h−1)−1 Tr(2
√
−1hΛFH0

+ hφ⊗ φ∗H0 − λh)

− (Tr h + Tr h−1)−1

× Tr(2
√
−1h−1

ΛFH0
+ φ⊗ φ∗H0 h−1 − λh−1)

+ (Tr h + Tr h−1)−1
(

Tr(h − h−1)φ⊗ φ∗H0 (h − Id)
)

+ (Tr h + Tr h−1)−1

×
{

−2
√
−1Λ∂̄Ehh−1∂0h − 2

√
−1Λ∂̄Eh−1h∂Hh−1

}

− (Tr h + Tr h−1)−2|∇Tr h + ∇Tr h−1|2

≥ −|2
√
−1ΛFH0

+ φ⊗ φ∗H0 − λ Id |H0
.

where we have used formula (2.27) and (2.33).

Using (2.26), (2.32), (2.33), and proceeding as in the above proposition, we have:

Proposition 2.10 If H(x) and H0(x) are two Hermitian metrics, then

(2.34) △ lg{Tr H−1
0 H + Tr H−1H0} ≥ −|2

√
−1ΛFH0

+ φ⊗ φ∗H0 − λ Id |H0

− |2
√
−1ΛFH + φ⊗ φ∗H − λ Id |H .

Corollary 2.11 Let H be an Hermitian Yang–Mills–Higgs metric, and H0 a Hermi-

tian metric. Then

(2.35) △ lg{Tr(H−1
0 H) + Tr(H−1H0)} ≥ −

∣

∣2
√
−1ΛFH0

+ φ⊗ φ∗H0 − λ Id
∣

∣

H0

.

3 The Dirichlet Boundary Problem for HYMH Equations

In this section we will consider the case when M is the interior of compact Kähler
manifold M with non-empty boundary ∂M, and the Kähler metric is smooth and

non-degenerate on the boundary. The holomorphic vector bundle E is defined over
M. Letφ be a holomorphic section of E. We will discuss the Dirichlet boundary prob-
lem for the Hermitian Yang–Mills–Higgs metric by using the heat equation method
to deform an arbitrary initial metric to the desired solution. The main points in the
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discussion are similar to that in [5, 20]. For given data f on ∂M we consider the
evolution equation:

(3.1)
H−1 ∂H

∂t
= −2

√
−1(ΛFH −

√
−1

2
φ⊗ φ∗H +

√
−1

2
λ Id),

H(t)|t=0 = H0, H|∂M = f .

Here H0 is an arbitrary smooth initial Hermitian metric satisfying the boundary con-
dition. Denote h(t) = H−1

0 H(t). Then the evolution equation (3.1) is completely

equivalent to the following equation:

(3.2)

∂h

∂t
= △0h + 2

√
−1Λ(∂̄Ehh−1∂0h) −

√
−1(ΛF0h + hΛF0) + λh

− hφ⊗ φ∗H0 h,

h(0) = Id, h|∂M = Id

where △0 = △H0
, ∂0 = ∂H0

. We know that the above equation is a parabolic equa-

tion, so standard theory gives short-time existence.

Proposition 3.1 For sufficiently small ǫ > 0, the equation (3.2), and so also equation

(3.1), have a smooth solution defined for 0 ≤ t < ǫ.

The main point of the proof is to show that the solution of equation (3.1) persists
for all time and converges to a limit. First we want to prove the long-time existence
of the evolution equation. Let H(t) be a solution of the evolution equation (3.1), and
h(t) = H−1

0 H(t), then

(3.3)
∂

∂t
(lg Tr h) =

Tr
(

∂h
∂t

)

Tr h

=
Tr h(−2

√
−1ΛFH − φ⊗ φ∗H + λ Id)

Tr h

≤ 2|ΛFH −
√
−1

2
φ⊗ φ∗H +

λ
√
−1

2
Id |H ,

and similarly

(3.4)
∂

∂t
(lg Tr h−1) ≤ 2|ΛFH −

√
−1

2
φ⊗ φ∗H +

λ
√
−1

2
Id |H .

Theorem 3.2 Suppose that a smooth solution Ht to the evolution equation (3.1) is

defined for 0 ≤ t < T. Then Ht converges in C0 to some continuous non-degenerate

metric HT as t → T.
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Proof It is well known that the space of metrics on the given bundle E is complete.
Given ǫ > 0, by continuity at t = 0 we can find a δ such that

sup
M

σ(Ht ,Ht ′) < ǫ,

for 0 < t, t ′ < δ. Then Proposition 2.8 and the maximum principle imply that

sup
M

σ(Ht ,Ht ′) < ǫ,

for all t, t ′ > T − δ. This implies that Ht are a uniformly Cauchy sequence and
converge to a continuous limiting metric HT . On the other hand, by Proposition

2.4, we know that |ΛFH −
√
−1

2
φ ⊗ φ∗H + λ

√
−1

2
Id|H are bounded uniformly. Using

formulas (3.3) and (3.4), one can conclude that σ(H,H0) are bounded uniformly,
therefore H(T) is a non-degenerate metric.

We take the following lemma from [4, Lemma 19]and [20, Lemma 6.4].

Lemma 3.3 Let H(t), 0 ≤ t < T, be any one-parameter family of Hermitian metrics

on a holomorphic bundle E over compact Kähler manifold and satisfying a Dirichlet

boundary condition. If H(t) converges in C0 topology to some continuous metric HT as

t → T, and if supM |ΛFH | is bounded uniformly in t, then H(t) are bounded in C1 and

also bounded in L
p
2 (for any 1 < p <∞) uniformly in t.

Theorem 3.4 Given data f on the boundary ∂M and initial Hermitian metric H0,

then the evolution equation (3.1) has a unique solution H(t) which exists for 0 ≤
t < ∞.

Proof Proposition 3.1 guarantees that a solution exists for a short time. Suppose
that the solution H(t) exists for 0 ≤ t < T. By Lemma 3.3, H(t) converges in C0

to a non-degenerate continuous limit metric H(T) as t → t . From Proposition 2.4

and the maximum principle, we conclude that |ΛFH −
√
−1

2
φ⊗ φ∗H +

√
−1λ
2

Id |H is
bounded independently of t . Moreover, from Proposition 2.5, we have

( ∂

∂t
−△

)

|φ|2H ≤ (λ− |φ|2H)|φ|2H .

Assume that |φ|2H attains its maximum on M × [0,∞) at the point (x0, t0) with 0 <
t0 < T, x0 ∈ M. If |φ|2H(x0, t0) > |λ|, then

( ∂

∂t
−△

)

|φ|2H(x0, t0) ≤ 0.

This is contradicted with the maximum principle of the heat operator. Then |φ|2H
must attain its maximum point at t = 0 or on ∂M. So we have

(3.5) |φ|2H ≤ max
{

sup
M

|φ|2H0
, |λ|

}

.
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Moreover, supM |ΛFH |2H0
is bounded independently of t . Hence by Lemma 3.3, H(t)

are bounded in C1 and also bounded in L
p
2 (for any 1 < p <∞) uniformly in t . Since

the evolution (3.2) is quadratic in the first derivative of h, we can apply Hamilton’s
method [9] to deduce that H(t) → H(T) in C∞, and the solution can be continued
past T. Then the evolution equation (3.1) has a solution H(t) defined for all time.

Next, we want to show the uniqueness of the solution. Suppose that K(t) is an-

other solution of equation (3.1). From Proposition 2.8, we have

(

△− ∂

∂t

)

σ(H(t),K(t)) ≥ 0,

and σ(H,K)|t=0 = 0, σ(H,K)|∂M = 0. By the maximum principle, we have

σ(H(t),K(t)) ≡ 0, i.e., H(t) ≡ K(t).

From Theorem 3.4, we can discuss as in [5] to deduce the existence of Hermitian
Yang–Mills–Higgs metric. First, we shall need the following lemma.

Lemma 3.5 ([5]) Suppose g ≥ 0 is a sub-solution of the heat equation on M×[0,∞),

i.e., ∂g
∂t

−△g ≤ 0. If g = 0 on ∂M for all time, then g decays exponentially:

(3.6) sup
M

g( · , t) ≤ Ce−µt ,

where µ > 0 depends only on M, and C depends on the initial value of g.

Let Ht be a solution of the evolution equation (3.1) for 0 ≤ t < ∞. We consider

the function g =
∣

∣ΛFH −
√
−1

2
φ⊗φ∗H +

√
−1

2
λ Id

∣

∣

2

H
on M × [0,∞). By Proposition

2.4, we know that ∂g
∂t

− △g ≤ 0, and the Dirichlet boundary condition satisfied by

H(t) implies that, for t > 0, g vanishes on the boundary of M. Thus Lemma 3.5 tells
us that g decays exponentially, and in particular that

(3.7)

∫ ∞

0

√
g dt <∞.

Directly calculated, we have

(3.8) | lg Tr h(t)| − lg rank E =

∫ t

0

∂

∂s
| lg Tr h(s)| ds

≤
∫ t

0

∣

∣

∣

Tr hh−1 ∂h
∂t

Tr h

∣

∣

∣
ds ≤

∫ t

0

√
g dt

and similarly

(3.9) | lg Tr h−1(t)| ≤ lg rank E +

∫ t

0

√
g dt.

https://doi.org/10.4153/CJM-2005-034-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-034-3


Hermitian Yang–Mills–Higgs Metrics 885

Using (3.8), (3.9), we know that supM σ(H0,H(t)) is uniformly bounded for t ∈
[0,∞). Then there exists a subsequence of the H(t) converging in C0 to some con-

tinuous metric H∞. It is then easy to show, as in Theorem 3.4, that a subsequence

of the Ht converges in C∞ to a smooth metric H∞, and since
∣

∣ΛFH −
√
−1

2
φ ⊗

φ∗H +
√
−1λ
2

Id
∣

∣

2

H
tends to zero with t → ∞, this limit is the desired Hermitian

Yang–Mills–Higgs metric. By Proposition 2.7, it is easy to prove the uniqueness of
Hermitian Yang–Mills–Higgs metric satisfying the same data f on boundary ∂M. So
we have proved Theorem 1.1.

4 HYMH Flow over Complete Kähler Manifolds

Let M be a complete, noncompact Kähler manifold without boundary, in this case,
we will simply say M is a complete Kähler manifold. Let E be a holomorphic vector
bundle of rank r over M with metric H0, and φ be a holomorphic section of E. In this
section we are going to prove a long-time existence for the Hermitian Yang–Mills–

Higgs flow under some conditions on initial metric H0 and section φ. As in [16], we
use the compact exhaustion construction to prove the long-time existence.

Let {Ωi}∞i=1 be an exhausting sequence of compact sub-domains of M, i.e., they
satisfy Ωi ⊂ Ωi+1 and

⋃∞
i=1 Ωi = M. By Theorem 3.4, we can find a Hermitian metric

Hi(x, t) on E|Ωi
for each i such that

(4.1)

H−1
i

∂Hi

∂t
= −2

√
−1

(

ΛFHi
−

√
−1

2
φ⊗ φ∗Hi +

√
−1

2
λ Id

)

,

Hi(x, 0) = H0(x),

Hi(x, t)|∂Ωi
= H0(x),

lim
t→∞

(

ΛFHi
−

√
−1

2
φ⊗ φ∗Hi +

√
−1

2
λ Id

)

= 0.

Suppose that there exists a positive number Θ such that

∣

∣2
√
−1ΛFH0

+ φ⊗ φ∗H0 − λ Id
∣

∣

H0

≤ Θ

on any points of M. Denote hi = H−1
0 Hi . Direct calculation shows that

(4.2)
∣

∣

∣

∂

∂t
lg Tr hi

∣

∣

∣
=

∣

∣

∣

Tr(hihi−1
∂
∂t

hi)

Tr hi

∣

∣

∣
≤

∣

∣2
√
−1ΛFHi

+ φ⊗ φ∗Hi − λ Id
∣

∣

Hi
,

∣

∣

∣

∂

∂t
lg Tr h−1

i

∣

∣

∣
=

∣

∣

∣
−Tr(hi−1

∂
∂t

hih
−1
i )

Tr h−1
i

∣

∣

∣
≤

∣

∣2
√
−1ΛFHi

+ φ⊗ φ∗Hi − λ Id
∣

∣

Hi
,

By Proposition 2.4 and the Maximum principle, we have

(4.3) sup
Ωi×[0,∞)

∣

∣2
√
−1ΛFHi

+ φ⊗ φ∗Hi − λ Id
∣

∣

Hi
≤ Θ.
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Integrating (4.2) along the time direction,

| lg Tr hi(x, t) − lg r| =

∣

∣

∣

∫ t

0

∂

∂s
(lg Tr hi(x, s)) ds

∣

∣

∣
≤ Θt.

Then we have

(4.4) sup
Ωi×[0,T]

Tr hi ≤ r exp(ΘT), inf
Ωi×[0,T]

Tr hi ≥ r exp(−ΘT),

and

(4.5) sup
Ωi×[0,T]

Tr h−1
i ≤ r exp(ΘT), inf

Ωi×[0,T]
Tr h−1

i ≥ r exp(−ΘT),

This implies that

(4.6) sup
Ωi×[0,T]

σ(H0,Hi) ≤ 2r exp(ΘT),

and

(4.7) (r exp(ΘT))−1 Id ≤ hi(x, t) ≤ r exp(ΘT) Id

for any (x, t) ∈ Ωi×[0,T]. In particular, over any compact subset Ω, for i sufficiently
large such that Ω ⊂ Ωi , we have the C0-estimate

(4.8) sup
Ω×[0,T]

σ(H0,Hi) ≤ 2r exp(ΘT).

Without loss of generality we can assume that Ω = Bo(R). Here B0(R) denotes the
geodesic ball of radius R with center at fixed point o ∈ M. First, we want to show
that there exists a subsequence of {Hi} converging uniformly to an Hermitian metric

H∞ on Bo(R) × [0, T
2

].

Denote τi = Tr(hi) + Tr(h−1
i ). Direct calculation as before shows that over

Ωi×[0,T]

(4.9) △τi = △Tr(hi) + △Tr(h−1
i )

= −Tr(hi(2
√
−1ΛFHi

+ φ⊗ φ∗Hi − λ Id))

+ Tr(hi(2
√
−1ΛFH0

+ φ⊗ φ∗H0 − λ Id))

− Tr(h−1
i (2

√
−1ΛFH0

+ φ⊗ φ∗H0 − λ Id))

+ Tr(h−1
i (2

√
−1ΛFHi

+ φ⊗ φ∗Hi − λ Id))

− Tr(2
√
−1Λ∂̄Ehih

−1
i ∂H0

hi) − Tr(2
√
−1Λ∂̄Eh−1

i hi∂Hi
h−1

i )

+ Tr((hi − h−1
i )φ⊗ φ∗H0 (hi − Id))

≥ −C1 + C2e(hi).
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Here e(hi) = −Tr(2
√
−1Λ∂̄Ehi∂H0

hi), C1 and C2 are positive constants depending
only on Θ and T, and we have used formulas (2.26), (4.3)–(4.5) and (4.7). Choosing i

sufficiently larger such that Bo(4R) ⊂ Ωi , let ψ be a cutoff function which equals 1 in
Bo(2R) and is supported in Bo(4R). Now multiply the above inequality by τiψ

2 and
integrate it over M. Then

∫

M

τiψ
2△τi ≥ −C1

∫

M

τiψ
2 + C2

∫

M

τiψ
2e(hi).

Integrating by parts, and then integrating along the time direction, we have

C2

∫ T

0

∫

M

τiψ
2e(hi) ≤ C1

∫ T

0

∫

M

τiψ
2 +

∫ T

0

∫

M

|∇ψ|2τ 2
i .

Using (4.4) and (4.5) again, we obtain the following estimate:

(4.10)

∫ T

0

∫

Bo(2R)

e(hi) ≤ C3.

Here C3 is a positive number depending only on Θ, T and R.
Because e(hi) contain all the squares of the first order derivatives (space direc-

tion) of hi , hi have uniform C0 bound, and also ∂
∂t

hi are uniformly bounded. So,

the above inequality implies that hi are uniformly bounded in L2
1(Bo(2R) × [0,T]).

Using the fact that L2
1(Bo(2R) × [0,T]) is compact in L2(Bo(2R) × [0,T]), by passing

to a subsequence which we also denoted by {Hi}, we have that the Hi converge in
L2(Bo(2R) × [0,T]). Given any positive number ǫ, we have

(4.11)

∫ T

0

∫

Bo(2R)

σ2(H j ,Hk) ≤ ǫ,

for j, k sufficiently large. By Proposition 2.8, we know that σ(H j ,Hk) is a sub-
solution of the heat equation. Applying the mean value inequality of Li and Tam [12]
for the nonnegative sub-solution to the heat equation, we have

(4.12) sup
Bo(R)×[0, T

2
]

σ2(H j ,Hk) ≤ C4ǫ.

Here C4 is a positive constant depending only on Θ, R, T, and the bound of sectional
curvature on Bo(2R). From (4.12), we can conclude that Hi converges uniformly to a

continuous Hermitian metric H∞ on Bo(R) × [0, T
2

].

Next, we will proceed as in [5, §2.3] to obtain the C1-estimate on Bo(R) × [0, T
2

].

We need the following lemmas. The following Sobolev inequality was proved by
Saloff-Coste [19, Theorem 3.1].

Lemma 4.1 ([19]) Let Mm be an m-dimensional complete noncompact Riemannian

manifold, and Bx(r) be a geodesic ball of radius r and centered at x. Suppose that
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−K ≤ 0 is the lower bound of the Ricci curvature of Bx(r). If m > 2, there exists

C, depending only on m, such that

(4.13)
(

∫

Bx(r)

| f |2q
)

1

q ≤ exp (C(1 +
√

Kr)) Vol(Bx(r))−
2

m r2

×
∫

Bx(r)

(

|∇ f |2 + r−2| f |2
)

,

for any f ∈ C∞
0 (Bx(r)), where q =

m
m−2

. For m ≤ 2, the above inequality holds with a

replaced by any fixed µ > 2.

Using the above Sobolev inequality, and Moser’s iteration [12, 14], we have the
following mean-value inequalities.

Lemma 4.2 Let Mm be an m-dimensional complete noncompact Riemannian man-

ifold without boundary, and Bo(2R) a geodesic ball centered at o ∈ M of radius 2R.

Suppose that f (x, t) is a nonnegative function satisfying

(4.14) (△− ∂

∂t
) f ≥ −C1 f

on Bo(2R)× [0,T]. If −K ≤ 0 is the lower bound of the Ricci curvature of Bo(2R), then

for p > 0, there exist positive constants C2 and C3 depending only on m, R, K, p, and T

such that

(4.15) sup
Bo( 1

4
R)×[0, T

4
]

f p ≤ C2

∫ T

0

∫

Bo(R)

f p(y, t) dydt + C3 sup
Bo(R)

f p( · , 0).

Lemma 4.3 Let Mm be an m-dimensional complete noncompact Riemannian man-

ifold without boundary, and Bo(2R) a geodesic ball centered at o ∈ M of radius 2R.

Suppose that f (x, t) is a nonnegative function satisfying (4.14) on Bo(2R) × [0,T]. If

−K ≤ 0 is the lower bound of the Ricci curvature of Bo(2R), then for p > 0, there exists

a positive constant C depending only on m, R, K, p, δ, η, and T such that

(4.16) sup
Bo((1−δ)R)×[ηT,(1−η)T]

f p ≤ C

∫ T

0

∫

Bo(R)

f p(y, t) dydt,

where 0 < δ, η < 1.

Proof of Theorem 1.3 For any point x ∈ Bo(2R), choose a small ball Bx(r) such that
the bundle E can be trivialized locally, and let {eα} be the holomorphic frame of E.
So, a metric Hi can be written as a matrix which also is denoted by Hi on Bx(r). The
complex metric connection with respect to Hi can be written as follows:

Ai = H−1
i ∂Hi
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and the curvature form

FHi
= ∂̄(H−1

i ∂Hi).

Choose a normal coordinate {yl} on Bx(r) and centered at x, and denote ρl =

H−1
i dHi(

∂
∂yl

). It is easy to check that

(4.17)
(

△Hi
− ∂

∂t

)

ρl = −ρlH
−1
i

∂Hi

∂t
+ H−1

i

∂Hi

∂t
ρl +

∂

∂t
(φ⊗ φ∗Hi )

on Bx( r
2
). In fact, this follows from (4.1) by considering the one-parameter fam-

ily of solutions obtained by translating in the direction of ∂
∂yl

, Hs
i (y1, . . . , ym) =

Hi(y1, . . . , yl + s, . . . , ym). It follows that the square norm |ρl|2Hi
= Tr ρlH

−1
i ρ̄l

∗Hi

satisfies

(4.18)
(

△− ∂

∂t

)

|ρl|2Hi
≥ −C4|ρl|2Hi

− c11|ρl|Hi

on Bx( r
2
), where C4, C5 are positive constants depending only on Θ, T, and φ. Let

f = 1 + |ρl|2Hi
, from (4.18), we have

(

△− ∂

∂t

)

f ≥ −C6 f .

On the other hand, there must exist constants C7 and C8 such that

C7 Id ≤
{

g
( ∂

∂yl

,
∂

∂yl

)}

≤ C8 Id

on Bx( r
2
), where g is the Kähler metric of M. So, we have

C7

∑

l

∣

∣

∣
H−1

i

∂Hi

∂yl

∣

∣

∣

Hi

≤ |H−1
i ∇Hi |2Hi

≤ C8

∑

l

∣

∣

∣
H−1

i

∂Hi

∂yl

∣

∣

∣

Hi

.

Using formula (4.15) in Lemma 4.2, and (4.10), we conclude that there exists a posi-
tive constant C9 which is independent of i such that

(4.19) sup
Bo(r/4)×[0,T/4]

|H−1
i ∇Hi |2H0

≤ C9.

Since x is arbitrary, we can conclude that the C1-norm of Hi is bounded uni-
formly on any Bo(R) × [0, T

4
]. By the C0-estimate (4.6) and the above C1-estimate,

the standard parabolic theory shows that, by passing to a subsequence, Hi converges

uniformly over any compact subset of M×[0.∞) to a smooth H∞ which is a solution
of the Hermitian Yang–Mills–Higgs flow (1.4) on the whole manifold. Therefore we
complete the proof of Theorem 1.3
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5 HYMH Metric Over Complete Kähler Manifolds

In this section, we consider the existence of the Hermitian Yang–Mills–Higgs
(HYMH) metrics on some complete Kähler manifolds. As above, here complete
means complete, noncompact, without boundary. Since we have established the

global existence of the HYMH flow on complete Kähler manifolds, in this section
we aim to show that the HYMH flow can converge to a HYMH metric under some
assumptions. First, we will give a proof of the following existence theorem. The
method we used here is similar to that used by Li in the harmonic map case [13].

Theorem 5.1 Let M be an m-dimensional complete Kähler manifold, (E,H0) be a

holomorphic vector bundle with Hermitian metric H0, and φ a holomorphic section of

E. Assume that λ1(M) > 0, where λ1(M) denotes the lower bound of the spectrum of

the Laplacian operator, and that ‖2
√
−1ΛFH0

+ φ⊗ φ∗H0 − λ Id ‖Lp(M) <∞ for some

p > 1 and real number λ. Then there exists a Hermitian metric H on E such that

2
√
−1ΛFH + φ⊗ φ∗H − λ Id = 0.

In addition, if p > m
2

, Ric M ≥ −K (K ≥ 0), and infx∈M Vx(1) = a > 0, where Vx(1)
denote the volume of the geodesic ball Bx(1) centered at x of radius 1, then the Hermitian

Yang–Mills–Higgs metric H given above must satisfy

σ(H(x),H0(x)) → 0

as x → ∞.

Proof Let {Ωi}∞i=1 be the exhausting sequence of compact sub-domain which we

chose in the above section. Let Hi(x, t) be a solution of (4.1), and let Hi(x, t) = H0(x)
outside Ωi for all t > 0. From the proof of Proposition 2.4, we have

(5.1)
(

△− ∂

∂t

)

∣

∣2
√
−1ΛFHi

+ φ⊗ φ∗Hi − λ Id
∣

∣

2

Hi

≥ 2
∣

∣∇Hi
(2
√
−1ΛFHi

+ φ⊗ φ∗Hi − λ Id)
∣

∣

2

Hi
.

By direct calculation, one can check that

|∇Hθ|2H ≥ |∇|θ|H |2

for any section θ in End(E). Then, we have

(5.2)
(

△− ∂

∂t

)

∣

∣2
√
−1ΛFHi

+ φ⊗ φ∗Hi − λ Id
∣

∣

Hi
≥ 0.

Since |H−1
i

∂
∂t

Hi| = 0 outside Ωi , using the maximum principle, we have

(5.3) |2
√
−1ΛFHi

+ φ⊗ φ∗Hi − λ Id |Hi
(x, t)

≤
∫

Ωi

KΩi
(x, y, t)

∣

∣2
√
−1ΛFH0

+ φ⊗ φ∗H0 − λ Id
∣

∣

H0

(y, t) dy

≤
∫

M

K(x, y, t)
∣

∣2
√
−1ΛFH0

+ φ⊗ φ∗H0 − λ Id
∣

∣

H0

(y, t) dy,
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where KΩi
(x, y, t) is the Dirichlet heat kernel of Ωi and K(x, y, t) is the heat kernel of

M. For simplicity, we denote τ (H) = |2
√
−1ΛFH + φ⊗ φ∗H − λ Id |H . Therefore

(5.4)

∫

M

τ (Hi)
p(x, t) dx ≤

∫

M

τ (H0)p(x) dx.

for any p > 1. From (5.3), we have

(5.5) τ (Hi)(x, t) ≤
∫

M

K(x, y, t)τ (H0)(y) dy

≤
(

∫

M

K(x, y, t)q dy
)

1

q
(

∫

M

τ (H0)p(y) dy
)

1

p

.

By the estimate of the heat kernel [7], from the condition λ1(M) > 0, we have

(5.6)

∫

M

Kq(x, y, t) dy ≤ C∗ exp
(

−4λ1(M)(q − 1)

q
(t − 1)

)

.

Proceeding as (4.2)–(4.4), we have

(5.7) σ(Hi(x, t),H0(x)) ≤ 2 rank E
(

exp
(

∫ t

0

τ (Hi)(x, t) dt
)

− 1
)

.

So, we have obtained the uniformly C0 estimates on Hi . From §4, we know that,
by passing to a subsequence, Hi converges uniformly over any compact subset of
M × [0.∞) to a smooth H(x, t) which is a solution of the Hermitian Yang–Mills–
Higgs flow (1.4) on the whole manifold.

From (5.4)–(5.7), we have

∫

M

τ (H)p(x, t) dx ≤
∫

M

τ (H0)p(x) dx,(5.4 ′)

τ (H)(x, t) ≤
(

∫

M

K(x, y, t)q dy
)

1

q
(

∫

M

τ (H0)p(y) dy
)

1

p

,(5.5 ′)

and

(5.8) σ(H(x, t1),H(x, t2)) ≤ 2 rank E
(

exp
(

∫ t2

t1

τ (H)(x, t) dt
)

−1
)

.

Combining the above inequality with (5.5 ′), (5.6), we have proved that the H(x, t)
converge uniformly to a continuous Hermitian metric H∞.

From the C0-estimate (5.8), proceeding as in the proof of Theorem 1.3, we can

obtain a C1-estimate of H( · , t). Then the standard parabolic theory shows that a
H( · , t) converges uniformly over any compact subset of M to a smooth Hermitian
metric H∞ as t → ∞. From (5.5 ′), and (5.6), we have proved that H∞ must satisfy

(5.9) 2
√
−1ΛFH∞

+ φ⊗ φ∗H∞ − λ Id = 0.
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Let hi(x, t) = H−1
0 Hi , and ρi(x, t) = lg(Tr hi + Tr h−1

i ) − lg 2 rank E. By (2.34),
we have

(5.10) △ρi ≥ −τ (Hi) − τ (H0).

Then, the above inequality and the Poincaré inequality imply

∫

Ωi

ρ
p
i (x, t) dx ≤ 1

λ1(M)

∫

Ωi

|∇ρ
p
2

i |2 dx

≤ p2

4(p − 1)λ1(M)

∫

Ωi

ρ
p−1

i (τ (H0) + τ (Hi)) dx

≤
(

∫

Ωi

ρ
p
i dx

)

p−1

p
(

∫

Ωi

(τ (H0) + τ (Hi))p dx
)

1

p

.

By (5.4), we have

(5.11)

∫

Ωi

ρ
p
i (x, t) ≤ C(p, λ1(M))‖τ (H0)‖p

Lp (M)
.

where C(p, λ1(M)) denote a positive constant depending only on p and λ1(M).
Denote h = H−1

0 H∞, and ρ = lg(Tr h + Tr h−1) − lg 2 rank E. From (5.11), we
have

(5.12)

∫

M

ρp(x) dx ≤ C(p, λ1(M))‖τ (H0)‖p
Lp(M)

.

From Corollary 2.11, we have

(5.13) △ρ ≥ −τ (H0).

If dim M = m > 2, we denote the Sobolev constant by

(5.14) S2(Bx(R)) = inf
0 6=u∈W

1,2
0

(Bx(R))

‖∇u‖2
2

‖u‖2
2m

m−2

and if dim M = m = 2, we denote the Sobolev constant by

(5.15) S1(Bx(R)) = inf
0 6=u∈W

1,1
0

(Bx(R))

‖∇u‖2
1

‖u‖2
m

m−1

It was shown in [6] that under the additional assumption that RicM ≥ −K and
infx∈M Vx(1) = a > 0, the Sobolev constant on Bx(1) has a positive lower bound
depending only on K, a, and λ1(M). By Moser’s iterative argument, we have

(5.16) ρ(x) ≤ C(p, a,K, λ1(M))
{

‖ρ‖Lp(Bx(1)) + Vx(1)
1

p ‖τ (H0)‖Lp (Bx(1))

}

.
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By the volume comparison theorem and (5.12), we have

ρ(x) → 0.

as x → ∞. Equivalently,

σ(H∞(x),H0(x)) = Tr h(x) + Tr h−1(x) − 2 rank E → 0,

as x → ∞.

Theorem 5.2 Let M be an m-dimensional complete Kähler manifold (m > 2), (E,H0)
be a holomorphic vector bundle with Hermitian metric H0, and φ be a holomorphic sec-

tion of E. Assume that the Sobolev constant S2(M) > 0, and that

‖2
√
−1ΛFH0

+ φ⊗ φ∗H0 − λ Id ‖Lp (M) <∞

for some p ∈ (1, m
2

) and real number λ. Then there exists a Hermitian metric H on E

such that

2
√
−1ΛFH + φ⊗ φ∗H − λ Id = 0.

Furthermore, if we assume that
∣

∣2
√
−1ΛFH0

+φ⊗φ∗H0 −λ Id
∣

∣ ∈ Lp(M)∩ Lr(M) for

some r > m
2

and

Vx(1)
r
q

∫

Bx(1)

∣

∣2
√
−1ΛFH0

+ φ⊗ φ∗H0 − λ Id
∣

∣

r
dy → 0

as x → ∞, where q =
mp

m−2p
, then the Hermitian Yang–Mills–Higgs metric H given in

the above must satisfy

σ(H(x),H0(x)) → 0

as x → ∞.

Proof The proof is completely similar to that of Theorem 5.1. Using the condition
S2(M) > 0, we have [3, 15]

(5.17)
(

∫

M

Kq(x, y, t) dy
)

1

q ≤ C(m, S2(M))t−
m
2p .

Here q =
p

p−1
. Then, from (5.5), (5.5 ′), (5.7) and (5.8), we can conclude that there

exists a global Hermitian Yang–Mills–Higgs flow H( · , t), and H( · , t) converge to a
smooth Hermitian Yang–Mills–Higgs metric H∞ as t → ∞.

On the other hand, we only need to replace the Poincaré inequality by the Sobolev
inequality (5.14) when we apply the inequality (5.10) △ρi ≥ −τ (Hi)−τ (H0). Then,

we have

(5.18)
(

∫

M

ρq(x) dx
)

1

q ≤ C(p, S2(M))‖τ (H0)‖Lp (M),
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where q =
mp

m−2p
. By Moser’s iterative argument [8, Theorem 8.17] for (5.13), we

have

(5.19) ρ(x) ≤ C(p,m, S2(M)){‖ρ‖Lq(Bx(1)) + Vx(1)
1

q ‖τ (H0)‖Lr(Bx(1))}.

Then, the conclusion that σ(H(x),H0(x)) → 0 as x → ∞ follows.

Lemma 5.3 ([16]) Let M be a complete Riemannian manifold with nonnegative Ricci

curvature. Let f be a nonnegative continuous function on M. Consider the heat equation

(

△− ∂

∂t

)

u(x, t) = 0, u(x, 0) = f (x).

Then it has a nonnegative solution u(x, t) such that
∫ ∞

0
u(x, s) ds <∞ if and only if

∫ ∞

0

s

Vx(s)

∫

Bx(s)

f (y) dyds <∞.

From Proposition 2.4, we know that the Hermitian Yang–Mills–Higgs flow

Hi( · , t) which we constructed on the sub-domain Ωi must satisfy

(5.20)

(

△− ∂

∂t

)

τ (Hi) ≥ 0,

τ (Hi)(x, 0) = τ (H0)(x),

τ (Hi)(x, t)|x∈∂Ωi
.

If the initial metric H0 satisfies
∫ ∞

0
s

Vx(s)

∫

Bx(s)
τ (H0)(y) dyds < ∞, by Lemma 5.3

and the maximum principle, we have

τHi
(x, t) ≤ u(x, t).

Proceeding as in Theorem 5.1, we can conclude there exists a global HYMH flow
H(x, t) satisfying

σ(H(x, t1),H(x, t2)) ≤ 2 rank E
(

exp
(

∫ t2

t1

τ (H)(x, t) dt
)

− 1
)

≤ 2 rank E
(

exp
(

∫ t2

t1

u(x, t) dt
)

− 1
)

.

Since
∫ ∞

0
u(x, s) ds < ∞, we can conclude that H( · , t) must converge to an Hermi-

tian Yang–Mills–Higgs metric H∞. So, we have proved the following theorem.
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Theorem 5.4 Let M be a complete Kähler manifold with nonnegative Ricci curvature,

(E,H0) a holomorphic vector bundle with Hermitian metric H0, and φ a holomorphic

section of E. Assume the initial metric H0 satisfies, for every x ∈ M,

∫ ∞

0

s

Vx(s)

∫

Bx(s)

|2
√
−1ΛFH0

+ φ⊗ φ∗H0 − λ Id |(y) dyds <∞.

Then there exists an Hermitian metric H on E such that

2
√
−1ΛFH + φ⊗ φ∗H − λ Id = 0.
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