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BOUNDED-ANALYTIC SEQUENT CALCULI AND EMBEDDINGS FOR
HYPERSEQUENT LOGICS

AGATA CIABATTONI, TIMO LANG, AND REVANTHA RAMANAYAKE

Abstract. A sequent calculus with the subformula property has long been recognised as a highly
favourable starting point for the proof theoretic investigation of a logic. However, most logics of interest
cannot be presented using a sequent calculus with the subformula property. In response, many formalisms
more intricate than the sequent calculus have been formulated. In this work we identify an alternative:
retain the sequent calculus but generalise the subformula property to permit specific axiom substitutions
and their subformulas. Our investigation leads to a classification of generalised subformula properties and
is applied to infinitely many substructural, intermediate, and modal logics (specifically: those with a cut-
free hypersequent calculus). We also develop a complementary perspective on the generalised subformula
properties in terms of logical embeddings. This yields new complexity upper bounds for contractive-mingle
substructural logics and situates isolated results on the so-called simple substitution property within a
general theory.

§1. Introduction. What concepts are essential to the proof of a given statement?
This is a fundamental and long-debated question in logic since the time of Leibniz,
Kant, and Frege, when a broad notion of analytic proof was formulated to mean
truth by conceptual containments, or purity of method in mathematical arguments.

The familiar Hilbert-style proof systems are excellent for many purposes including
defining a logic and a notion of proof. However they offer few insight concerning
analyticity because of their reliance on the inference rule of modus ponens. The
issue is that the conclusion B of modus ponens may be quite unrelated to the A
that occurs in its premises A→ B and A. In 1935, Gentzen [20] showed how to
address this weakness of the Hilbert systems by placing the logical language within
a meta-logical (structural) language. Specifically, he introduced a new type of proof
system called the sequent calculus built from sequents Γ ⇒ Δ where Γ and Δ are
lists/multisets of logical formulas. Enriching the logical language with a structural
language enabled him to state and prove the famous cut-elimination theorem—this is
a constructive procedure that eliminates all applications of the cut rule from a given
proof. The cut rule is a generalisation of modus ponens and it is the only non-analytic
rule in the classical and intuitionistic sequent calculi. So from cut-elimination it
follows that every provable formula has a proof respecting the subformula property
(i.e., every formula in the proof is a subformula of the theorem). Gentzen later
used this property to give a proof of the consistency of arithmetic. This cemented
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the significance of the sequent calculus, and analyticity came to be seen as near-
synonymous with the subformula property.

The decades following Gentzen’s work saw an explosion of results establishing the
subformula property via cut-elimination for sequent calculi for various logics. The
subformula property is a significant restriction on the proof search space which
can be exploited to establish metalogical results (e.g., consistency, decidability,
complexity, interpolation, and disjunction properties) and for automated reasoning.
Nevertheless, already from the 1960s it was observed (for example, Mints [36]) that
the formalism of the sequent calculus was not expressive enough to provide the
subformula property for most logics of interest. The response of the structural proof
theory community was to obtain the subformula property by developing new exotic
proof formalisms (e.g., hypersequent, bunched, nested sequent, display, labelled
calculi, tree-hypersequent, and many more) that further extend the structural
language of the sequent calculus.

Introduced independently by Mints [36], Pottinger [38], and Avron [2], the
hypersequent calculus is one of the most successful such formalisms. A hypersequent
goes just one step further in the sense that it is a multiset of Gentzen’s sequents,
denoted as Γ1 ⇒ Δ1 | ··· | Γn ⇒ Δn. Hypersequent calculi with the subformula
property have been presented for many non-classical logics that could not be
provided this property in the sequent calculus. Especially noteworthy are the uniform
and modular extensions of base systems for commutative substructural logics [12]
and modal logics [28, 29, 31].

However, the price to be paid for moving to an exotic proof formalism—even in
the simple case of hypersequents—is having to tame its richer structural language
in order to use the proof calculus to prove metalogical results.

Rather than privileging the subformula property and developing exotic for-
malisms that provide it, we propose an alternative. We stay with the sequent
calculus—thus benefitting from the simplicity of its structural language—and
identify generalisations of the subformula property that can be useful to prove
metalogical results. In a nutshell, we tackle the question:

What are some useful generalisations of the subformula property for the sequent
calculus?

Isolated proposals for perturbing the subformula property have been presented for
specific families of logics. In contrast, we propose a hierarchy of generalisations of
the subformula property that are logic- and language-independent. Our interests are
methodological and also aim for concrete results. Specifically, we obtain generalised
subformula properties in the sequent calculus for the commutative substructural
logics in [12] and for the modal logics in [29], starting from analytic hypersequent
calculi for these logics.

Our work can be seen from two perspectives.

(I) Proof theory: We generalise the subformula property by permitting subfor-
mulas of specific (i.e., restricted) substitutions of the logic’s axioms. From
this perspective, proofs satisfying the subformula property are the lower limit
of our classification, while proofs with arbitrary cuts are the upper limit.
We achieve this result by transforming hypersequent calculi into sequent
calculi such that the cut-formulas in the latter are restricted to axioms whose
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propositional variables are substituted using variables, or formulas, or lists of
formulas (without, or possibly with, repetitions). In each case, the formulas
that are used must occur in the end formula. The ensuing sequent calculi
are called, respectively, variable-analytic, formula-analytic, set-analytic, and
multiset-analytic. Collectively they are called bounded-analytic sequent calculi.
As a corollary we obtain a new syntactic proof of a well-known result [17]:
the subformula property of the sequent calculus for the modal logic S5.

(II) Embeddings: We characterise axiomatic extensions of a base logic in terms
of a function embedding it into the base logic. The form of the functions
determines the degree of boundedness. This perspective is helpful for meta-
logical argumentation since we are no longer constrained by the minute
syntactic details. As a corollary we obtain new decidability and complexity
upper bounds for a large class of substructural logics with contraction and
mingle (such as, e.g., UML [34]) and hence also decidability of the equational
theory of the corresponding classes of residuated lattices [18]. Moreover we
also obtain sharper embeddings from intermediate logics into intuitionistic
logic, and situate within our theory scattered results from the 1980s on the
simple substitution property [23].

1.1. Related work. Subformula property without cut-elimination. Beginning with
Smullyan [43], several works have investigated cuts on subformulas of the end
formula (‘analytic cuts’). The resulting proofs are not cut-free but they do satisfy
the subformula property. Takano’s intricate proof [45] of the subformula property
for S5 via analytic cuts belongs to this literature. D’Agostino and Mondadori [15]
show that analytic cuts for classical logic can be used to gain a deterministic speedup
in proof search. Fitting [17] proved that the sequent calculi of several modal logics
possess the subformula property by a logic-specific semantic argument. Algebraic
arguments were employed by Kowalski and Ono [27] to show that a sequent calculus
for bi-intuitionistic logic has the analytic cut property. Avron and Lahav [6] give
sufficient conditions for the subformula property in sequent calculi whose rules
obey a certain shape.

Bezhanishvili and Ghilardi [10] investigate what can be said about a Hilbert system
when the logic possesses a sequent calculus with the subformula property. In that
work several modal logics were shown to possess the bounded proof property—this is
a restriction on the modal complexity of formulas that need to appear in their Hilbert
proofs (as a function of the formula being proved). The same algebraic approach
is applied in [11] to show that analytic hypersequent calculi for intermediate logics
satisfy a bounded property, this time with respect to the implicational complexity
of formulas.

Generalisations of the subformula property have been investigated for specific
families of logics. Avron [5] considers s-n-analyticity in the context of paraconsistent
logics, while Lellmann and Pattinson [32] introduce a generalisation in the context of
conditional logics where a modal operator appended to propositional combinations
of subformulas of the end formula is permitted, and obtain some tight complexity
bounds. Lahav and Zohar [30] define a subformula property modulo the presence
of leading negation symbols and provide a method for constructing sequent calculi
with this property for sub-logics of a base logic.
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The above are certainly in the spirit of our work here. A point of difference with the
above is that the generalisations proposed here are logic- and language-independent
and provide a classification. We also provide a complementary perspective on this
classification in terms of logical embeddings.

A different solution to the absence of the subformula property is presented by
Benzmüller [9] who obtains a cut-free proof calculus for quantified conditional
logic by embedding their semantics in classical higher-order logic. This approach
might make it possible to take advantage of existing theorem provers. However,
it does not support a proof theoretic investigation of a logic because properties
such as decidability, complexity, and proof structures are obscured or lost under the
embedding into higher-order logic. Furthermore, although the higher-order calculus
is cut-free, its proof rules contain higher-order variables that can be instantiated by
arbitrary formulas (‘cut-simulation’).

Embeddings from axiomatic extensions to the base logic. Hosoi [23] introduced
the notion of the simple substitution property. This was followed up by Sasaki [40–
42] who gives positive and negative criteria for this property to hold in various
intermediate logics. The simple substitution property corresponds to variable-
axiomatisations under our embedding perspective. Avellone et al. [1] present a
semantic-based method and so-called selection functions to establish that certain
intermediate logics are—in our terminology—variable-axiomatisations and (a
variant of) formula-axiomatisations of intuitionistic logic. In contrast, our approach
is not tailored to any specific logic or family of logics, and leads to a general theory
encompassing proof theoretic and embedding perspectives. The simple substitution
property and selection functions are specific instances in our classification.

The embedding functions that we present have a closed-form (explicit) definition,
and their complexity depends solely on whether we are considering a set- or
formula-axiomatisation. This makes it possible to use them in decidability and
complexity arguments. Embeddings that satisfy fewer structural properties—for
example, conservative translations in the sense of [16], which exist between most non-
classical logics (see Jerábek [24])—are not so useful for deriving metalogical results.

Decidability and complexity. The decidability and 2EXPTIME complexity results
for amenable extensions of FLecm presented here were first reported in the conference
version of this paper, together with the EXPTIME complexity of FLecm. This upper
bound for FLecm improves on the 2EXPTIME given in St. John [44]. Note that a
PSPACE lower bound for this logic appears in Horcı́k and Terui [21]. Ramanayake
[39] showed that these decidability results hold even in the absence of mingle, and
complexity upper bounds for these were given in Balasubramanian et al. [7].

1.2. Illustration of the key idea. Let us demonstrate how to transform a
hypersequent calculus with the subformula property for propositional Gödel logic—
i.e., intuitionistic logic extended with the axiom lin := (p→ q)∨ (q → p)—into a
bounded-analytic sequent calculus. The hypersequent calculus we start with was
obtained in [3] by adding the following rule to the hypersequent version HLJ of the
sequent calculus LJ for intuitionistic logic:

G | Σ1,Γ1 ⇒ Π1 G | Σ2,Γ2 ⇒ Π2

G | Σ1,Γ2 ⇒ Π1 | Σ2,Γ1 ⇒ Π2
(com).

https://doi.org/10.1017/jsl.2021.42 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.42


BOUNDED-ANALYTIC SEQUENT CALCULI 639

Consider the following derivation in HLJ + (com) of ⇒ F . To highlight the key
point, let us assume that the derivation contains a single instance of (com).

�1

Σ1,Γ1 ⇒ Π1

�2

Σ2,Γ2 ⇒ Π2 (com)
Σ1,Γ2 ⇒ Π1|Σ2,Γ1 ⇒ Π2

···
Γ′ ⇒ Π′|Γ′ ⇒ Π′

(ec)
Γ′ ⇒ Π′

···
⇒ F .

From this we can obtain the following sequent derivation in LJ. Note that for
Γ = {A1, ...,An} we write ∧Γ to mean A1 ∧···∧An.

Γ2 ⇒∧Γ2

�1

Σ1,Γ1 ⇒ Π1 ∧LΣ1, ∧Γ1 ⇒ Π1 →L∧Γ2 →∧Γ1,Σ1,Γ2 ⇒ Π1
···

∧Γ2 →∧Γ1,Γ′ ⇒ Π′

Γ1 ⇒∧Γ1

�2

Σ2,Γ2 ⇒ Π2 ∧LΣ2, ∧Γ2 ⇒ Π2 →L∧Γ1 →∧Γ2,Σ2,Γ1 ⇒ Π2
···

∧Γ1 →∧Γ2,Γ′ ⇒ Π′
∨L

(∧Γ2 →∧Γ1)∨ (∧Γ1 →∧Γ2),Γ′ ⇒ Π′

···
(∧Γ2 →∧Γ1)∨ (∧Γ1 →∧Γ2) ⇒ F .

By the subformula property in the hypersequent calculus, Γ1 and Γ2 are multisets
consisting of subformulas of F.

We call �(lin) = (∧Γ2 →∧Γ1)∨(∧Γ1 →∧Γ2) a multiset-substitution because each
propositional variable in lin is substituted by a conjunction, possibly with repetition,
of subformulas from the end formula F.

By iterating this argument, if a formula F is a theorem of Gödel logic then there is
some sequent �1(lin), ...,�n(lin) ⇒ F derivable in LJ such that each �i is a multiset-
substitution. By applying the cut-rule it is easily seen that the reverse direction holds
as well. As a consequence, we say that Gödel logic is multiset-axiomatisable over
intuitionistic logic.

Exploiting the weakening and contraction rules in LJ we can show that Gödel
logic is in fact set-axiomatisable over intuitionistic logic (a set-substitution maps p
and q to conjunctions, without repeats, of subformulas of F). In fact, we can improve
this to formula-axiomatisable (a formula-substitution maps p and q to subformulas
of F). Set- and formula-axiomatisations each give rise to an embedding into the
base logic. This is the embedding perspective.

Alternatively, we have that LJ extended by cuts on formulas of the shape �(lin)
with � a multiset/set/formula-substitution is a sequent calculus sound and complete
for Gödel logic. Every formula in a derivation will then be a subformula of such
�(lin). This is the proof theoretic perspective.

1.3. Organisation of the paper. Preliminary notions are introduced in Section 2.
Section 3 provides a formal introduction of the two perspectives. In Section 4 we
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discuss the key notion of disjunction form for a hypersequent rule and show how
it leads to multiset-axiomatisations/analyticity. Next we show how to compute a
disjunction form from each rule in an analytic hypersequent calculus (Section 5).
As a consequence, substructural and intermediate logics are multiset-axiomatisable
over, respectively, FLe and intuitionistic logic. Moreover, each such logic possesses
a multiset-analytic sequent calculus. In Section 6 we show how the property can be
strengthened in the presence of certain structural rules. We exploit these stronger
forms of boundedness to establish complexity results, and show how interpolation
is related to variable-analyticity. In Section 7 we show how the theory extends to
modal logics.

This paper is an extension of work presented in [14]. The complementary
perspective via embeddings, and the study of stronger forms of boundedness is
new. Furthermore, the method is applied, not just to S4.2, S4.3, and S5, but to all
of extensions of the modal logic S4 covered in [29].

§2. Preliminaries. The logics we consider in this paper are all extensions of the
commutative Full Lambek calculus. The grammar for formulas in this language1 is
given below. Here Var is a countably infinite set of propositional variables.

F := p ∈ Var | � | ⊥ | 1 | 0 | F ∧F | F ∨F | F ·F | F → F.
We refer to the connective · as fusion (in the literature on linear logic, it is called
either multiplicative conjunction or tensor). See [18] for an extensive discussion on the
commutative Full Lambek calculus. Following the usual substructural convention,
¬A abbreviates A→ 0.

Let subf(S) denote the set of subformulas in a formula/sequent S. Formulas are
denoted by A,B,C, ....

A multiset is a function mapping each element from a set (its ‘universe’) to a
natural number (its ‘multiplicity’). All multisets in this paper are finite in the sense
that all but finitely many elements have multiplicity 0.

Formula multisets (i.e., a multiset whose universe is the set of formulas) will be
denoted by Γ,Δ, .... We say that ‘ Γ contains A’ to mean that the multiplicity of A in
Γ is ≥ 1. Also ‘ Γ contains at most one formula’ means that the multiplicity of some
formula in Γ is ≤ 1 and every other formula has multiplicity 0.

A sequent is a pair of formula multisets and is written Γ ⇒ Δ. Γ is called the
antecedent and Δ the succedent. If Δ contains at most one formula then the sequent
is said to be single-conclusioned, otherwise it is multi-conclusioned. The letter Π is
reserved to denote a multiset containing at most one formula.

2.1. Rule schemas, rule instances, and sequent calculus. A rule schema consists
of some number of premise sequents and a single conclusion sequent, where the
antecedent and succedent of each sequent may contain schematic-variables in
addition to formulas. A rule schema with no premises is called an initial sequent.

An instance of the rule schema is obtained by the uniform instantiation of
schematic-variables for concrete objects of the corresponding type, and the uniform

1We added the constants � (true) and ⊥ (false) to the language. We are also able to conflate left and
right implications to → since we are in the commutative setting.
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substitution of propositional variables (occurring in formulas) to formulas. It is
typical in structural proof theory not to distinguish explicitly between a rule schema
and its instance (indeed the word ‘rule’ is used for both), nor distinguish in notation
between a schematic-variable and its instantiation. We follow this convention except
where an explicit distinction is helpful; in that case an instance of the rule schema
r is denoted �(r) where � is a function that maps schematic-variables to concrete
objects of the corresponding type. It will be helpful to permit � to be a map also
from propositional variables to formulas.

Example 1. Consider the following rule schemas.

(lin)⇒ (p→ q)∨ (q→ p)
Γ ⇒ A A,Δ ⇒ Π

(cut).
Δ,Γ ⇒ Π

Above left, a function � mapping the propositional variables p and q to formulas
yields a rule instance �(lin); e.g., �(p) = p∨q and �(q) = q gives the rule instance
with no premise and conclusion ⇒ ((p∨q) → q)∨ (q→ (p∨q)).

Above right, the rule schema is built from multiset schematic-variables Γ,Δ,Π
and the formula schematic-variable A. For �(Γ) = {p,p,q}; �(Δ) = {r,p}; �(Π) = ∅;
�(A) = r∧q we obtain the rule instance with premises p,p,q⇒ r∧q and r∧q,r,p⇒
and conclusion r,p,p,p,q⇒.

A rule schema is single-conclusioned if instantiations are restricted to single-
conclusioned sequents. A sequent calculus is a finite set of rule schemas.

2.2. The sequent calculus FLe and its extensions. The sequent calculus FLe for the
commutative Full Lambek calculus consists of the set of single-conclusioned rules
schemas in Figure 1. We observe that no explicit exchange rule is needed for this
calculus since sequents are built using multisets.

For a set R of rule schemas, the extension FLe∗ +R is simply the set-union
FLe∗∪R. For a set A of formulas, we write FLe∗ +A for the extension of FLe∗ by
the initial sequents ⇒A where A ∈A. Here are some well-known rule schemas: left
weakening (wl ), right weakening (wr), contraction (c), and mingle [26] (m)

Δ ⇒ Π
Δ,A⇒ Π

(wl )
Δ ⇒

Δ ⇒ Π
(wr)

Δ,A,A⇒ Π
Δ,A⇒ Π

(c)
Δ,Γ1 ⇒ Π Δ,Γ2 ⇒ Π

Δ,Γ1,Γ2 ⇒ Π
(m)

Rules schemas containing neither formulas nor propositional/formula schematic-
variables will be called structural rules. We add a subscript to FLe to indicate an
extension by one of the rules above, e.g., FLec := FLe + {(c)}. Also, FLe∗ (FLec∗)
denotes FLe (FLec) extended by a combination of them. Finally, FLew is FLewlwr .

2.3. (Cut-free) derivability and subformula property. Let C be any extension of
FLe by rule schemas, and S a set of sequents. A derivation (or proof ) of a sequent S
(from S) in C is defined in the usual way as a tree of sequents with root S such that
every internal node and its children correspond to the conclusion and premises of a
rule instance of C, and every leaf of the tree is an instance of an initial sequent from
C, or one of the sequents in S.

A cut-free derivation does not contain any instance of the cut-rule. Let S 
C S

(S 
cfC S) denote that the sequent S is derivable (cut-free derivable) from S in C.
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A A

A

A

(id)
A A, Δ
, Δ

(cut )
Ai

A1 A2
( R )i 1 ,2

,A B
A B

( R )

1
(1R) 1

(1L) 0
(0R) 0

(0L) ( ) ( )

Δ B
, Δ A · B

(·R)
,A ,B
,A B

( L)
,A,B
,A · B

(·L )

Δ,B
, Δ,A B

( L)
B

A
A

B
( R )

,Ai
,A1 A2

( L )i 1 ,2

Figure 1. The single-conclusioned sequent calculus FLe.

If S is empty we write these as 
C S and 
cfC S respectively. A derivation has
the subformula property, and is called analytic, if all formulas occurring in it are
subformulas of the endsequent.

We say that C is analytic (resp. C has cut-elimination) if every derivable sequent
in C has an analytic derivation (resp. every derivation can be transformed into a
cut-free derivation). It is well-known that FLe∗ has cut-elimination and is analytic—
its extensions by initial sequents are analytic only in trivial cases.

2.4. Logics and axiomatic extensions. A logic is a set of formulas closed under
modus ponens (and necessitation, in the modal case) and the uniform substitution
of propositional variables for arbitrary formulas.

For a logic L and a finite set A of formulas, the axiomatic extension of L by A
(denoted L+A) is the smallest logic containing L and all formulas in A.

Let C be any extension of FLe by rule schemas. We let Thm(C) denote the set of all
formulas F such that 
C ⇒F . Since the cut-rule subsumes modus ponens, it is easily
verified that Thm(C) is a logic and that Thm(C +A) = Thm(C) +A. This indicates
that axiomatic extensions of the logic Thm(C) are captured proof theoretically by
the addition of initial sequent rule schemas to C.

We say that Cis a calculus for a logic L if Thm(C) = L.
Hypersequent calculi generalise sequent calculi by using a multiset of sequents (a

hypersequent) rather than a single sequent for the premises and conclusion of the
rule schemas. A hypersequent is written S1 | ... | Sn. Each Si (a sequent) is called a
component.

Every sequent calculus S can be embedded into a hypersequent calculus HS: (i)
replace each rule schema (r) in S with (Hr) (see below) where the hypersequent
schematic-variable G can be instantiated with a (possibly empty) hypersequent, and
(ii) include the rules of external weakening (ew) and external contraction (ec) (the
external exchange).

S1 ... Sn

S′
(r)

G | S1 ... G | Sn
G | S′ (Hr)

G

G | S (ew)
G | S | S
G | S (ec)

It is easy to see that a sequent is derivable in HS iff it is derivable in S. This
observation will be used several times in this article. The additional expressivity of
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the hypersequent calculus comes from the use of rule schemas that act on multiple
components of the conclusion simultaneously.

Example 2. A sequent calculus for propositional Gödel logic extends LJ = FLecw
by the initial sequent ⇒ lin (lin := (p → q) ∨ (q → p)). The resulting system
has neither cut-elimination nor analyticity. A hypersequent calculus with these
properties can be obtained [3] by adding to HLJ the communication rule

G | Σ1,Γ1 ⇒ Π1 G | Σ2,Γ2 ⇒ Π2

G | Σ1,Γ2 ⇒ Π1 | Σ2,Γ1 ⇒ Π2
(com).

A cut-free hypersequent calculus for modal logic S5 with the subformula property
is obtained by extending the hypersequent calculus HS4 for S4 with Avron’s
modalized splitting rule [4]:

G | Γ1,�Γ2 ⇒�Δ2,Δ1

G | Γ1 ⇒ Δ1 |�Γ2 ⇒�Δ2
(MSAv).

In the above examples, the hypersequent schematic-variable G is called the context.
The remaining components are called the active components of the rule.

Notations and terminologies introduced for sequent calculi apply to hypersequent
calculi in the obvious way.

§3. Twin perspectives. We now define bounded-axiomatisations and bounded-
analytic sequent calculi.

A bounding function is any map � which takes as arguments a set of formulas A
(the axioms) and a formula F (in practice, this is the formula that we wish to prove),
and returns a set �(A,F ) of instances of A.

Definition 3 (Bounded-axiomatisation and bounded-axiomatisable). Let �
be a bounding function and A a finite set of formulas. A logic L is said to be
�-axiomatisation over Thm(FLe∗) w.r.t. A if L = Thm(FLe∗) +A, and for every
formula F :

F ∈ L iff ∃A1, ...,An ∈ �(A,F ) such that A1 · ... ·An → F ∈ Thm(FLe∗).

A logic L is a �-axiomatisable over Thm(FLe∗) if it is a �-axiomatisation over
Thm(FLe∗) w.r.t. some set A.

Note that in the above definition, the same formula may appear multiple times in
the list A1, ...,An.

The definition of bounded-axiomatisation can be seen as a refinement of the local
deduction theorem for commutative substructural logics. The latter can be formulated
in our notation as:

Theorem 4 [19]. Let A be a finite set of formulas and L= Thm(FLe∗) +A. Then
for every formula F :

F ∈ L iff ∃A1, ...,An ∈ �(A) such that (A1 ∧1) · ... · (An ∧1) → F ∈ Thm(FLe∗),

where �(A) denotes the set of all instances of formulas in A.
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The use of ∧1 in the local deduction theorem is inessential in our context, see the
remark after Definition 7.

The key point is that Theorem 4 concerns a specific bounding function, i.e., the
one that yields every instance ofA—Definition 3 parametrises this to some bounding
function.

Obviously, it is preferable for a bounding function to be restrictive in the sense that
the set �(A,F ) is small. We shall see that finding a good bounding function for an
axiomatic extension is nontrivial and depends on both the base logic and the choice
of axioms. Below are four bounding functions—ordered from most restrictive to
least—that will be the main focus of the present article.

1. The variable-bounding function �v(A,F ) contains all instances of formulas in
A whose variables have been substituted by variables occurring in F.

2. The formula-bounding function �f(A,F ) contains all instances of formulas in
A whose variables have been substituted by subformulas of F.

3. The set-bounding function �s(A,F ) contains all instances of formulas in A
whose variables are substituted by non-repeating2 fusions of subformulas of F.

4. The multiset-bounding function �ms(A,F ) contains all instances of formulas in
A whose variables have been substituted by fusions of subformulas of F.

In the definition of �s and �ms we admit empty fusions of subformulas, which
are identified, as one might expect, with the constant 1.

Example 5. Let A = {p→ 1} and F = r∧q. Then

– �v(A,F ) = {r→ 1,q→ 1};
– �f(A,F ) = �v(A,F )∪{r ∧q→ 1};
– �s(A,F ) = �f(A,F )∪{1 → 1,r ·q→ 1,(r∧q) · r→ 1,(r ∧q) ·q→ 1};
– �ms(A,F ) = �s(A,F )∪{r · r→ 1,q ·q→ 1,r · r ·q→ 1,r ·q · r→ 1, ...}.

Note that for finite A, the substitution sets �v(A,F ), �f(A,F ), and �s(A,F ) are
finite, and �ms(A,F ) is infinite.

A �-axiomatisation has a natural proof theoretic analogue.

Definition 6 (Bounded-analytic sequent calculus). Let� be a bounding function
and A a finite set of formulas. A derivation of ⇒F in FLe∗ +A is called �-analytic
if every cut and every initial sequent instance from {⇒A|A ∈ A} appears in the
context below with A ∈ �(A,F ).

⇒ A
···

Γ,A⇒ Π
(cut).

Γ ⇒ Π
···

The sequent calculus FLe∗ +A is �-analytic if every derivable formula has a
�-analytic derivation.

Definition 7. A formula A is weakenable over FLe∗ if 
FLe∗ A⇒ 1.

2A fusion A1 · ... ·An is non-repeating if the Ai ’s are pairwise distinct.
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The weakenable requirement in the following is a very slight restriction, since for
every set A of formulas: A∧1 := {A∧ 1|A ∈ A} is a set of weakenable formulas
in FLe∗, and Thm(FLe∗) + A = Thm(FLe∗) + A∧1. Of course, every formula is
weakenable in the presence of the left weakening rule (wl ).

Lemma 8. Let A be a set of weakenable formulas over FLe∗. The following are
equivalent:

(i) The sequent calculus FLe∗ +A is �-analytic.
(ii) The logic Thm(FLe∗) +A is a �-axiomatisation over Thm(FLe∗) w.r.t. A.

Proof. (i) to (ii): Suppose that F ∈ Thm(FLe∗) +A = Thm(FLe∗ +A). Since
FLe∗ +A is �-analytic by assumption, there is a �-analytic derivation of ⇒F .
Consider an occurrence of initial sequent instance of {⇒A|A∈A} in this derivation.
By�-analyticity, we know thatA∈�(A,F ) and the occurrence of⇒A is in a context
as below on the left. Eliminate this initial sequent by replacing it with the proof figure
below right, and propagate the additional formula A downwards in the derivation.

⇒ A
···

Γ,A⇒ Π
(cut)

Γ ⇒ Π
···

···
Γ,A⇒ Π

···

To propagate A from the premises to the conclusion of a binary additive rule when
A only occurs in the antecedent of one premise, a copy needs to be supplied to the
antecedent of the other premise. This can be achieved by making a cut on A⇒ 1
like this, assuming that the premise is Σ ⇒ Δ:

A⇒ 1
Σ ⇒ Δ

Σ,1 ⇒ Δ
(1L)

Σ,A⇒ Δ
(cut)

By the assumption on weakenability, A⇒ 1 is derivable in FLe∗. We obtain a
proof of A⇒ F which has one less initial sequent from A. Proceeding in this way,
we eventually obtain a derivation of A1, ...,An ⇒ F without any initial sequents
from A, where each Ai ∈ �(A,F ). It follows that A1 · ... ·An→ F ∈ Thm(FLe∗).

(ii) to (i): Suppose that FLe∗ +A derives ⇒F . Then F ∈ Thm(FLe∗) +A, and
by virtue of being a �-axiomatisation w.r.t. A there exists A1, ...,An ∈ �(A,F )
such that A1 · ... ·An → F ∈ Thm(FLe∗). By invertibility of the rules ·L and →R
there is a derivation of A1, ...,An ⇒ F in FLe∗. By cut-elimination in FLe∗, there
is a cut-free derivation. By a cut on the latter with the initial sequent ⇒ A1 we
obtain A2, ...,An ⇒ F . By a cut on the latter with ⇒ A2 we obtain A3, ...,An ⇒ F .
Continuing in this way, we ultimately obtain a �-analytic derivation of ⇒F in
FLe∗ +A. �

An axiomatic extension over some base logic is called

– variable-axiomatisable if it is �v-axiomatisable;
– formula-axiomatisable if it is �f-axiomatisable;
– set-axiomatisable if it is �s -axiomatisable;
– multiset-axiomatisable if it is �ms -axiomatisable.
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An extension of a sequent calculus by initial sequents {⇒A|A ∈ A} is called

– variable-analytic if it is �v-analytic;
– formula-analytic if it is �f-analytic;
– set-analytic if it is �s -analytic;
– multiset-analytic if it is �ms -analytic.

3.1. Subformula property compared to �-analytic sequent calculus. For sequent
calculus with the subformula property, every derivable sequent ⇒F has a derivation
such that

every formula is a subformula of F.

Meanwhile in a �-analytic derivation of ⇒F in FLe∗ +A, every cut-formula and
every initial sequent ⇒A belong to �(A,F ). In such a derivation

every formula is a subformula of F or of some A ∈ �(A,F ).

Therefore, a �-analytic sequent calculus is a generalisation of a sequent calculus
with the subformula property that preserves its original motivation: the restriction
of the proof search space. This is especially the case when� has a finite image. In the
following sections we shall see that this generalisation is precisely what is needed to
capture logics that do not satisfy the subformula property in the sequent calculus.

§4. Disjunction form and multiset-boundedness. To transform analytic hyperse-
quent calculi into bounded-analytic sequent calculi we introduce the concept of a
disjunction form of a hypersequent rule schema This is a disjunction of formulas that
captures the essence of the rule.

We first present the formal definition of disjunction form, and show how to use it
to obtain multiset-axiomatisations and multiset-analytic sequent calculi.

Although the definitions and results in this section and in the next one are
formulated for commutative substructural logics, they adapt to other contexts, as
demonstrated in Section 7 on modal logics.

4.1. Disjunction form of a structural hypersequent rule.

Convention. For a multiset A of formulas, let �A denote the fusion of all formulas
in A, and 1 if A is empty. When working in calculi which have weakening and
contraction, we identify 1 and �, 0 and ⊥, as well as · and ∧.

Definition 9. For a sequent S = (Γ ⇒ Π), define Δ#S := (Δ,Γ ⇒ Π).

The disjunction form is defined with respect to a rule schema (and not to a
particular rule instance). Consequently, the disjunction form will represent all of its
rule instances. Consider a structural hypersequent rule schema (r)

G | T1 ... G | Tl
G | S1 | ··· | Sn

(r).

Here the Ti ’s are the active components of the premise, and the Si ’s are the
active components of the conclusion. Let {Γi | i ∈ I } be the multiset schematic-
variables from which the active components are built, and associate with each Γi a
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propositional variable Γ̂i . Given an instantiation � on (r), we can then define the
substitution �̂ which maps each Γ̂i to the formula ��(Γi).

Definition 10. (Disjunction form of a rule) Let (r) be given as above. The
formula A1 ∨ ··· ∨An built from the propositional variables Γ̂i(i ∈ I ) is called a
disjunction form of (r) over FLe∗ if:

(splitting) For every rule instance �(r) and every i ≤ n:

{�(T1), ...,�(Tl )} 
FLe∗ �̂(Ai )#�(Si ).

(provability) 
HFLe∗+(r) A1 ∨···∨An.
(weakening) Each Ai is weakenable over FLe∗(cf. Definition 7).

We use the term “splitting” because the condition asserts that we can split the
active components of a structural rule instance: the i th active component �(Si)
appended with the disjunct �̂(Ai) is cut-free derivable from the premises of the rule
without using (r). This can be depicted as follows:

�(T1) ... �(Tl )
�(S1) | ··· | �(Sn)

(r)
�

⎧⎨
⎩

{�(T1), ...,�(Tl )}.... FLe∗
�̂(A1)#�(S1) , ... ,

{�(T1), ...,�(Tl )}.... FLe∗
�̂(A1)#�(Sn)

⎫⎬
⎭

By (provability), we assure that the disjunction form is not too strong, i.e., it must
be a theorem of the logic under consideration.

Example 11. (Γ̂2 → Γ̂1)∨ (Γ̂1 → Γ̂2) is a disjunction form of

G | Σ1,Γ1 ⇒ Π1 G | Σ2,Γ2 ⇒ Π2

G | Σ1,Γ2 ⇒ Π1 | Σ2,Γ1 ⇒ Π2
(com)

over HLJ (cf. Example 2 and the case study in the introduction). �

Lemma 12. Every disjunction form is weakenable over FLe∗.

Proof. Directly follows from the fact that all the disjuncts of a disjunction form
are weakenable over FLe∗. �

4.2. Multiset-axiomatisations/analyticity via the disjunction form. We are ready
to prove the main result of this section.

Theorem 13. Let HFLe∗ +R be an extension of HFLe∗ by structural hypersequent
rules and suppose that every rule in R has a disjunction form over FLe∗. Denote this
set of disjunction forms as A. Then

(i) Thm(HFLe∗ +R) = Thm(FLe∗ +A),
(ii) FLe∗ +A is a multiset-analytic sequent calculus, and

(iii) Thm(FLe∗) +A is a multiset-axiomatisation over Thm(FLe∗) w.r.t. A.

Proof. First observe that (ii) and (iii) are equivalent by Lemma 8.
To prove (i) and (iii) we make use of the following claim.
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(†) Every analytic HFLe∗ +R-derivation � of ⇒F can be transformed into a
FLe∗-derivation of B1, ...,Bm⇒ F where Bi ∈ �ms(A,F ) for every i ≤m.

Indeed: Thm(HFLe∗ + R) ⊇ Thm(FLe∗ + A) by the (provability) property of
disjunction forms, and the reverse inclusion Thm(HFLe∗ +R) ⊆ Thm(FLe∗ +A) is
a consequence of (†), so (i) follows.

Also, Thm(FLe∗) +A = Thm(FLe∗ +A) and this is Thm(HFLe∗ +R) by (i).
Therefore F ∈ Thm(FLe∗) +A implies—using (†)—that some B1 · ... ·Bm → F ∈
Thm(FLe∗) with each Bi ∈ �ms(A,F ). So (iii) follows.

It remains to prove the claim (†).
We generalize the procedure illustrated in Section 1 for HLJ + (com). To deal

with derivations containing more than one application of R-rules we first transform
� into an intermediary derivation of B1, ...,Bm ⇒ F in HFLe∗. Moreover, as the
elimination of each R-rule entails a duplication of parts of the derivation and hence
might introduce new instances of rules in R, we eliminate all lowermost R-rules in
� simultaneously. In doing so, we ensure that after each reduction step, the maximal
number of R-instances on a branch in the proof—henceforth called the R-rank of
the derivation—decreases, and hence the whole procedure terminates.

Let �1(r1), ...,�k(rk) the lowermost R-instances in �. Assume �i(ri) is:

�i(G) | �i(T1) ... �i(G) | �i(Tli )
�i(G) | �i(S1) | ··· | �(Sni )

�i(ri). (1)

By assumption, there is a disjunction form Ai =Ai1 ∨···∨Aini ∈A for ri . Recall that
Ai is built from variables Γ̂ where Γ is a multiset schematic-variable in the rule ri ,
and that the substitution �̂i is defined by setting �̂i(Γ̂) := ��i(Γ).

From the subformula property of the derivation � it follows that:
(∗) every instance of an R-rule instantiates its multiset schematic-variables with

a multiset of elements from subf(F ),
and consequently, �̂i(Ai) ∈ �ms(A,F ). By the (splitting) property of the

disjunction form we can eliminate the instance �i(ri) by introducing a formula
�̂i(Aij) to the antecedent of the j-active component in the conclusion (j ≤ ni). This
gives us ni ways of eliminating �i(ri).

Hence, in order to eliminate all lowermost instances �1(r1), ...,�k(rk), we have
to make n1 · ... ·nk many choices. We may encode every such combined choice by a
function in the set

Ω := {f : {1, ...,k}→ N | ∀i (f(i) ≤ ni)}.

We fix one f ∈ Ω and formally describe a transformation f(�) of the original proof
� which ‘for all i ≤ k eliminate �i(ri) by adding �̂i(Aif(i))’. Indeed we simultaneously
replace all instances �i(ri) (cf. (1) above) in �, for i ≤ k, by

�i(G) | �i(T1) ... �i(G) | �i(Tli ).... FLe∗

�i(G) | �̂i(Aif(i))#�i(Sf(i))

�i(G) | �i(S1) | ··· | �̂i(Aif(i))#�i(Sf(i)) | ··· | �(Sni )
(ew).
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Here, the dotted line indicates the FLe∗-derivation guaranteed by the (splitting)
property; the side hypersequent �i(G) can simply be appended to all sequents
in this derivation. In words, the rule instance �i(ri) in � has been replaced by
a derivation (in HFLe∗) of the conclusion of �i(ri) from its premises where
the formula �̂i(Ai,f(i)) has been appended to the antecedent of the component
�i(Sf(i)). Next, the formula �̂i(Ai,f(i)) is added to the corresponding antecedents
of all hypersequents from the denoted (ew) down to the endsequent ⇒F . When
propagating �̂i(Ai,f(i)) downwards from the premise to the conclusion of a binary
additive rule, it is necessary to supply a copy of �̂i(Ai,f(i)) to the antecedent of
corresponding component in the other premise. This can be done using the rule
(wl ), if it is present in FLe∗. Otherwise, the effect of (wl ) can be simulated as follows,
using the fact that �̂i(Ai,f(i)) is weakenable (which is guaranteed by the (weakening)
property of disjunction forms):

�̂i(Ai,f(i)) ⇒ 1
H | Σ ⇒ Δ
H | Σ,1 ⇒ Δ

1L

H | Σ,�̂i(Ai,f(i)) ⇒ Δ
(cut).

Now having propagated all the �̂i(Aif(i))’s (i ≤ k) down to the endsequent, we
obtain a derivation of

�̂1(A1
f(1)), ...,�̂k(A

k
f(k)) ⇒ F.

Call this derivation f(�), and note that its R-rank is smaller than that of �. Recall
that each disjunction form Ai =Ai1 ∨···∨Aini . To get the proof Ω(�) of

�̂1(A1), ...,�̂k(Ak) ⇒ F,

we connect all the proofs f(�) for every f ∈ Ω by repeatedly applying the (∨L)-rule
to their conclusion. We already remarked that �̂i(Ai) ∈ �ms(A,F ). Furthermore,
Ω(�) still satisfies (∗) because no new R-instances have been introduced and every
R-instance of � has either been eliminated or left unchanged. Lastly, the R-rank of
Ω(�) equals the maximal R-rank of one of the f(�)’s, and therefore is smaller than
the R-rank of �. It follows that we can repeat the above transformation to eventually
obtain an R-free derivation Ω∗(�) of

B1, ...,Bm⇒ F where each Bi ∈ �ms(A,F ).

Since this is a derivation in HFLe∗ and since this calculus contains no rule schemas
that act on multiple components of the conclusion simultaneously, Ω∗(�) can be
reduced to an FLe∗-proof by pruning components and branches. This concludes the
proof of (†), and hence the proof of the theorem. �

Remark 14. Although the hypersequent calculi we consider have cut-elimination
and the subformula property, the above proof argument relies only on the latter.

§5. Disjunction form for substructural logics. In the previous section the disjunc-
tion form was used to show that the corresponding sequent calculus is multiset-
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analytic. Here we show how to compute a disjunction form from the analytic
hypersequent structural rules introduced in [12]. This leads to multiset-analytic
sequent calculi for a large class of commutative substructural logics.

5.1. Analytic structural hypersequent rules. Analytic structural hypersequent
rules (analytic rules, for short) are structural hypersequent rules that have exactly
one active component in each premise and satisfy the following properties:

(linear conclusion) Every schematic-variable that occurs in the conclusion occurs
exactly once there.

(separation) No multiset schematic-variable occurs in an antecedent position and
in a succedent position.

(coupling) For each conclusion component with a multiset schematic-variable
Π as succedent, there is a multiset schematic-variable Σ in the antecedent of
the same component such that the pair (Σ,Π) always occur together in the
premises, and when Σ occurs in a premise it occurs exactly once.

(subformula property) Each schematic-variable that occurs in the premise also
occurs in the conclusion.

The addition of analytic rules to HFLe leads to cut-free hypersequent calculi with
the subformula property for many substructural logics. These rules can be computed
for a large class of axiomatic extensions of Thm(FLe) in a uniform and systematic
way. This result is based on the following syntactic classification of Hilbert axioms
in the language of FLe. Let P0 = N0 be the set Var of propositional variables, and
define

Pn+1 := 1 | ⊥ | Nn | Pn+1 ∨Pn+ | Pn+1 ·Pn+1,

Nn+1 := 0 | � | Pn | Nn+1 ∧Nn+ | Pn+1 →Nn+1.

Observe that Ui ⊂ Vi+1 (U,V ∈ {P,N}). For axiomatic extensions of FLew every
formula in P3 can be transformed into analytic rules. In absence of weakening, only
formulas in P ′

3 ⊂ P3 that are acyclic (i.e., those that do not lead the transformation
into cycles) can be transformed into analytic rules. HereP ′

3 is defined by the grammar
1 | ⊥ | N2 ∧1 | P ′

3 ·P ′
3 | P ′

3 ∨P ′
3.

Definition 15 (Amenable). A set A of formulas is amenable if (i) A ⊆ P3 and
left weakening p ·q→ p ∈ A, or (ii) A⊆ P ′

3 consists of acyclic formulas.
A formula A is amenable if {A} is an amenable set.

Theorem 16 [12]. (i) A finite setRA of analytic rules is computable from a finite
set A of amenable formulas such that HFLe +RA is a calculus for FLe +A with
cut-elimination and the subformula property.

(ii) Every analytic rule extension HFLe +R is a calculus for an amenable axiomatic
extension of FLe.

Example 17. For the amenable set A = {p · q→ p,lin} ⊂ P3, the set RA that is
computed using the algorithm in [12] consists of the analytic rules of weakening and
(com) (see Example 2).

Meanwhile for the amenable set A′ = {((p→ q)∧1)∨ ((q→ p)∧1)} ⊂ P ′
3, the set

RA′ = {(com)}.
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Theorem 16(i) in this paper is Theorem 5.6 in [12]. The proof in the latter relies
on expressing every P ′

3 axiomatic extension of FLe as an axiomatic extension by
disjunctions of N2∧1 formulas (see [12, Lemma 3.5]). The latter proof is incomplete
as it does not cover cases like ((P ′

3 ∨ P ′
3) · (P ′

3 ∨ P ′
3)) ∨ ((P ′

3 ∨ P ′
3) · (P ′

3 ∨ P ′
3)).

Nevertheless the result stands. An algebraic argument can be found in [13, Lemma
4.5]. Here is an alternative argument. By induction on the structure of A we have
FLe 
 A⇒ 1, and thus FLe 
 A,B ⇒ B , for every A,B ∈ P ′

3. Making use of the
latter it can be seen that for every extension L of FLe and A,B,C ∈ P ′

3: Thm(L+
A ·B) = Thm(L+A+B) and Thm(L+ (A∨ (B ·C ))) = Thm(L+A∨B+A∨C ).
Repeatedly apply the latter two equalities to express a P ′

3 axiomatic extension as a
disjunctions of N2 ∧1 formulas.

Remark 18. The amenable formulas define infinitely many substructural logics,
including most of the t-norm and uninorm based logics [35], as well as the
propositional interpolable intermediate logics (except Bd2). Moreover, as shown
in [25], the hierarchy collapses at the next level in the sense that every formula is
equivalent in FLe to some formula in N3.

5.2. Computing the disjunction form of an analytic rule. We now describe an
algorithm which turns an analytic rule into a disjunction form. We occasionally
write A∧1 for A∧1 for brevity.

As the first step, select exactly one multiset schematic-variable occurrence in
the active component of each premise (‘distinguished variable occurrence’) of the
analytic rule. This induces an association of the distinguished variable (and the
premise it is contained in) to the unique conclusion component containing this
variable. For premises with a multiset schematic-variable Π as succedent, we will
choose as distinguished variable occurrence the multiset schematic-variable Σ to
which it is coupled (i.e., the coupling (Σ,Π) in the definition of analytic rule).

The analytic rule together with the choice of distinguished variables can be
pictured in association form (see Figure 2). Observe that:

– A multiset schematic-variable declared as distinguished in a premise whose
active component has empty succedent may appear in a conclusion component
with or without empty succedent.

– Distinct premises may be associated with the same conclusion component due
to the same or different distinguished variables.

– Some conclusion components with empty succedent might not be associated
with any premise (captured by the possibility that si = 0).

– The S,T , and U multisets may contain further (non-distinguished) occurrences
of the distinguished variables Γ and Δ, but no further occurrences of Σ due
to the coupling property. The multisets V and W do not contain any further
occurrences of distinguished variables due to the linear conclusion property.

For a multiset S = {Γ1, ...,Γn} of multiset schematic-variables, let Ŝ denote the
multiset {Γ̂1, ...,Γ̂n} of propositional variables.

Definition 19 (Form(r,i)). For a rule (r) in association form (Figure 2), let
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G ij , Σ i Πi i I,j Ji G ijl , Γij i I,j ri ,l ij G ijl, Δ ij i L,j si,l ij

G i , Γi1 , . . . , Γiri , Σ i Πi i I i , Δ i1 , . . . , Δ isi i L

Figure 2. Association form. S,T ,U,V,W denote multisets of multiset schematic-
variables. The distinguished variable occurrences in the premises and their associated
occurrences in the components of the conclusion are indicated in boldface. The index
sets I ,L,Ji,Mij , and Nij are assumed to be pairwise disjoint.

Form(r,i) :=

⎛
⎝�V̂i ·�

⎧⎨
⎩Γ̂ij ∧ (¬

∨
l∈Mij

�T̂ijl ) | j ≤ ri

⎫⎬
⎭→

∨
j∈Ji

�Ŝij

⎞
⎠
∧1

(i ∈ I ),

Form(r,i) :=

⎛
⎝¬
⎛
⎝�Ŵi ·�

⎧⎨
⎩Δ̂ij ∧ (¬

∨
l∈Nij

�Ûijl ) | j ≤ si

⎫⎬
⎭
⎞
⎠
⎞
⎠
∧1

(i ∈ L).

Finally, let Form(r) :=
∨
i∈I∪LForm(r,i).

Example 20. Here are association forms of three well-known structural rules. In
(com), the choice of distinguished variables Σ1 and Σ2 is forced since the coupled
variable in the antecedent is always chosen. In (lq), the Γ could have been chosen
as distinguished instead of Δ. In (wc), the second occurrence of Δ could have been
chosen as distinguished instead.

G | Γ1,Σ1 ⇒ Π1 G | Γ2,Σ2 ⇒ Π2

G | Γ2,Σ1 ⇒ Π1 | Γ1,Σ2 ⇒ Π2
(com)

G | Δ,Γ ⇒
G | Δ ⇒| Γ ⇒ (lq)

G | Δ,Δ ⇒
G | Δ ⇒ (wc).

– Pattern-matching the (com) rule with Figure 2 we obtain:

G |
S11︷︸︸︷
Γ1 ,Σ1 ⇒ Π1 G |

S21︷︸︸︷
Γ2 ,Σ2 ⇒ Π2

G | Γ2︸︷︷︸
V1

,Σ1 ⇒ Π1 | Γ1︸︷︷︸
V2

,Σ2 ⇒ Π2
(com),

I = {1,2},L= ∅,V1 = {Γ2},V2 = {Γ1}, J1 = J2 = {1},S11 = {Γ1},S21 = {Γ2},
r1 = r2 = 0, and therefore:

Form(com,1) :=

⎛
⎝�V̂1 ·�

{
Γ̂1j ∧ (¬

∨
l∈M1j

�T̂1jl ) | j ≤ r1
}
→

∨
j∈{1}

�Ŝ1j

⎞
⎠

∧1

,

Form(com,2) :=

⎛
⎝�V̂2 ·�

{
Γ̂2j ∧ (¬

∨
l∈M2j

�T̂2jl ) | j ≤ r2
}
→

∨
j∈{1}

�Ŝ2j

⎞
⎠

∧1

.

In the above, we have written �V̂ to indicate that the term evaluates to 1.
(Recall that in HFLe∗, �A denotes the fusion of all formulas in A, and 1 if A
is empty.) So Form(com) = (Γ̂2 ·1 → Γ̂1)∧1 ∨ (Γ̂1 ·1 → Γ̂2)∧1.

– Pattern-matching the (lq) rule with Figure 2 we obtain:
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G | Δ,

U111︷︸︸︷
Γ ⇒

G | Δ︸︷︷︸
Δ11

⇒| Γ︸︷︷︸
W2

⇒ (lq),

I = ∅, L= {1,2}, s1 = 1, s2 = 0, N11 = {1}, W1 = ∅, W2 = U111 = Γ, Δ11 = Δ,
and therefore:

Form(lq,1) :=

⎛
⎝¬
⎛
⎝�Ŵ1 ·�

⎧⎨
⎩Δ̂1j ∧ (¬

∨
l∈N1j

�Û1jl ) | j ≤ 1

⎫⎬
⎭
⎞
⎠
⎞
⎠
∧1

,

Form(lq,2) :=
(
¬
(
�Ŵ2 ·�

{
Δ̂2j ∧ (¬

∨
l∈N2j

�Û2jl ) | j ≤ s2
}))

∧1
.

So Form(lq) = (¬(1 · (Δ̂∧¬Γ̂)))∧1 ∨ (¬(Γ̂ ·1))∧1.
– Similarly, for (wc) one obtains Form(wc) = (¬(1 · (Δ̂∧¬Δ̂)))∧1. �

Theorem 21. Form(r) is a disjunction form of the analytic rule (r) over HFLe∗.

Proof. Given an analytic rule (r), obtain Form(r) from its association form. We
require (cf. Definition 10) (i) provability, i.e., 
HFLe+(r)⇒ Form(r), and (ii) splitting.
Weakening is satisfied by construction.

(i) First repeatedly apply to ⇒ Form(r) the rules (ec) and (∨R) to obtain the
hypersequent ⇒ Form(r,i) | ··· |⇒ Form(r,l), for all i ∈ I and l ∈ L. Then apply
the invertible rules (∨L), (→R), (·L) backwards from each component to get the
hypersequent below. The instantiation � making this hypersequent the conclusion
of an instance �(r) of (r) in association form (cf. Figure 2) is obtained by pattern-
matching (refer to variables shown above the hypersequents),⎡

⎢⎢⎣V̂i,{
Γij Σi ∅︷ ︸︸ ︷

Γ̂ij ∧ (¬
∨
l∈Mij

�T̂ijl ) | j ≤ ri}⇒

Πi︷ ︸︸ ︷∨
j∈Ji

�Ŝij

⎤
⎥⎥⎦
i∈I

|

×

⎡
⎢⎢⎣Ŵi,{

Δij︷ ︸︸ ︷
Δ̂ij ∧ (¬

∨
l∈Nij

�Ûijl ) | j ≤ si}⇒

⎤
⎥⎥⎦
i∈L

.

– For i ∈ I : �(G) := ∅ �(Σi) := ∅ �(Πi) :=
∨
j∈Ji

�(Ŝij),

for every Vi = {Q1, ...,Qn}, set �(Qs) := Q̂s,

finally, set �(Γij) := Γ̂ij ∧¬
∨
l∈Mij

�(T̂ijl ) (j ≤ ri,l ∈Mij).

– For i ∈ L: for every Wi = {Q1, ...,Qn}, set �(Qs) := Q̂s,

finally, set �(Δij) := Δ̂ij ∧¬
∨
l∈Nij

�(Ŝijl ) (j ≤ si,l ∈Nij).
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After applying �(r) backwards to the hypersequent above, it suffices to derive each
premise of �(r) in HFLe.

We illustrate with the premise G | Sij,Σi ⇒ Πi of (r) (i ∈ I , j ∈ Ji). In �(r),
since �(Σi) = ∅ = �(G) this becomes �(Sij) ⇒

∨
j′∈Ji �(Ŝij′). Obtain �(Sij) ⇒

�( �̂S ij) using (∨R). Let �Sij = {P1, ...,Pn} (each Ps is a multiset schematic-variable).
Applying (·R) backwards to the latter sequent we obtain �(Ps) ⇒ P̂s (1 ≤ s ≤ n).
It remains to verify derivability of the latter. Since Ps occurs in the premise in the
antecedent, it must occur in the conclusion (subformula property) in the antecedent
(separation). Additionally it cannot be a Σ variable since coupled variables occur
only as indicated in Figure 2 by the (coupling) condition. Therefore either Ps ∈ Vi ,
Ps ∈ �Wi , Ps = Γuv , or Ps = Δuv . In the first two cases, due to the definition of �( �Vi)
and �( �Wi), we have the assignment �(Ps) := P̂s and hence derivability. In the latter
two cases we get Γ̂uv ∧¬

∨
l∈Muv �(T̂uvl ) ⇒ Γ̂uv and Δ̂uv ∧¬

∨
l∈Nuv �(Ŝuvl ) ⇒ Δ̂uv

respectively. Applying (∧L) backwards we get Γ̂uv ⇒ Γ̂uv and Δ̂uv ⇒ Δ̂uv .
(ii) Proving that Form(r) satisfies (splitting) follows from a straightforward

inspection so we simply set out what needs to be proved. Let (r) be given as

H
G | [Si ]i∈I∪L

(r).

We have to show that for any instantiation � and i ∈ I ∪L, �(�̂(Form(r,i))#Si ) is
derivable from the active components of the premises in �(H) in FLe∗. We illustrate
the case i ∈ I . The sequent �(�̂(Form(r,i))#Si) is

�̂(Form(r,i)),�(Vi),�(Γi1), ...,�(Γiri ),�(Σi) ⇒ �(Πi). (2)

From Definition 19 we have that �̂(Form(r,i)) has the following form:⎛
⎝��(Vi) ·�

⎧⎨
⎩�(Γij)∧

⎛
⎝¬ ∨

l∈Mij

��( �Tijl )
⎞
⎠ | j ≤ ri

⎫⎬
⎭→

∨
j∈Ji

��(Sij)

⎞
⎠

∧1

.

Applying the logical rules backwards to suitably decompose the formula
�̂(Form(r,i)), one obtains a proof of (2) from the active components of (r). �

Remark 22. An alternative way of obtaining a disjunction formula is by reversing
the algorithm in [12]. The resulting formula would be different, although equivalent,
to the one we compute. For example, in absence of weakening, for the (com) rule
we would get the formula (Γ̂2 → Γ̂1)∧1 ∨ (Γ̂1 → Γ̂2)∧1 which is slightly simpler than
Form(com) in Example 20. The reason for not taking the reversing approach is that
the method given here works uniformly for substructural and modal logics, and it
does not require any familiarity with the algorithm in [12].

5.3. Multiset-axiomatisations/analyticity for substructural logics.

Theorem 23. Let A be an amenable set. Then:

1. There is a set A′ computable from A such that Thm(FLe∗ +A′) = Thm(FLe∗ +
A) and FLe∗ +A′ is a multiset-analytic sequent calculus.

2. Thm(FLe∗ +A) is multiset-axiomatisable over Thm(FLe∗).
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Proof. By Theorem 16, we can compute from A a set RA of hypersequent rules
such that Thm(FLe∗ +A) = Thm(HFLe∗ +RA) and HFLe∗ +RA is analytic. By
Definition 19 and Theorem 21, we can compute from the set RA of rules a set A′

of disjunction forms. Then from Theorem 13 we have that FLe∗ +A′ is a multiset-
analytic sequent calculus, and that Thm(FLe∗+A′) is a multiset-axiomatisation over
Thm(FLe∗) w.r.t. A′. To conclude the proof, it suffices to observe that Thm(FLe∗ +
A′) = Thm(HFLe∗ +RA) = Thm(FLe∗ +A).

§6. Stronger forms of boundedness. In the last section we identified a large class
of substructural logics that are multiset-axiomatisable. We now consider sufficient
conditions for strengthening this result to set- and formula-axiomatisable, and study
its consequences. We also study the properties of variable-axiomatisations, which
appeared as the ‘simple substitution property’ in the literature.

The stronger forms of axiomatisable rely on the presence of certain structural
rules, notably contraction. Formula-axiomatisations (resp. set-axiomatisations) lead
to a PTIME (resp. EXPTIME) embedding. An EXPSPACE upper bound then
follows for every amenable intermediate logic. It turns out that contraction and
mingle suffice for set-axiomatisable. We then obtain a 2EXPTIME upper bound for
amenable extensions of FLecm∗. To the best of our knowledge, a bound applying to
all these extensions is new. Finally we discuss how variable-axiomatisations can be
exploited to obtain interpolation.

6.1. Set-axiomatisations. Multiset-axiomatisations imply set-axiomatisations
whenever the structural rules of contraction and mingle (or weakening) are present.

Lemma 24. Let FLecm∗ +A be multiset-axiomatisable over FLecm∗. Then FLecm∗ +
A is a set-axiomatisable over FLecm∗.

Proof. FLecm∗ establishes A↔ A ·A, and hence also its contextualized version
B(A) ↔ B(A ·A). From this it follows that for any sets of axioms A and formula F,
the sets A[�ms(F )] and A[�s(F )] are equivalent over FLecm∗. �

Corollary 25. Every amenable extension FLecm∗ +A is set-axiomatisable over
FLecm∗.

Proof. From Theorem 23 and Lemma 24. �
An embedding of a logic L into a logic K is a function � on formulas such

that F ∈ L↔ �(F ) ∈K . The embedding is PTIME (EXPTIME) if the function is
computable in PTIME (EXPTIME).

Lemma 26. 1. If FLec∗ +A is a set-axiomatisable over FLe∗ then there is an
EXPTIME embedding from Thm(FLec∗ +A) into Thm(FLec∗).

2. If FLec∗ + A is a formula-axiomatisable over FLe∗ then there is a PTIME
embedding from Thm(FLec∗ +A) into Thm(FLec∗).

Proof. 1. By the definition of set-axiomatisable, F ∈ Thm(FLec∗ +A) iff

∃A1, ...,An ∈ �s(A,F ) such that 
FLec∗ A1, ...,An⇒ F. (*)

Since �s(A,F ) is a finite set, we have that (*) is equivalent to the following
(contraction is needed in the left-to-right direction of the equivalence since a formula
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A ∈ �s(A,F ) might appear multiple times in the list A1, ...,An).


FLec∗ �{A∧1 | A ∈ �s(A,F )}⇒ F.

Therefore the following is an embedding of Thm(FLec∗ +A) into Thm(FLec∗).

F �→ �{A∧1 | A ∈ �s(A,F )}→ F.

The time to compute values of this function is polynomial in the size of the set
�s(A,F ) and that is exponential in F.

2. Arguing as in 1., we see that the following function is an embedding of
Thm(FLec∗ +A) into Thm(FLec∗).

F �→ �{A∧1 | A ∈ �f(A,F )}→ F.

It is computable in PTIME because the size of �f(A,F ) is polynomial in F. �

We obtain the following uniform decidability and complexity upper bound.

Corollary 27. Derivability in amenable extensions of FLecm∗ is 2EXPTIME.

Proof. By Theorem 23 and Lemmas 24 and 26, derivability for every amenable
extension of FLecm can be reduced to derivability in FLecm, in EXPTIME. By
Theorem 29 below we have that Thm(FLecm) is itself in EXPTIME. The 2EXPTIME
upper bound follows. �

Example 28. Our decidability and complexity results apply to a large class of
logics including Uninorm Mingle Logic UML [34] axiomatized as FLecm + (p→
q)∧1 ∨ (q→ p)∧1 (see [33] for a proof of decidability), as well as the substructural
logics FLecm +((p ·¬p) → p)∧1, and FLecm +(Bwk) (k ≥ 2). Here (Bwk) is the well-
known formula ∨ki=0(pi → ∨j �=ipj)∧1 whose addition to intuitionistic logic yields
the logic of bounded width intuitionistic Kripke models. �

In terms of the algebraic semantics [18], the corollary above applies to the
equational theory of the corresponding classes of residuated lattices.

A 2EXPTIME upper bound for FLecm already appears in [44]. The following
improves on this bound. A PSPACE lower bound for this logic was given in [21].

Theorem 29. Derivability in FLecm is EXPTIME.

Proof. Since 
cfFLecm
Γ ⇒A iff 
cfFLecm

⇒�Γ →A, it suffices to decide derivability
of a formula. Let FLs

ecm be the calculus whose rule figures are the same as those
of FLecm, but whose sequents have the form X ⇒ A where X is a set of formulas
(instead of a multiset as in FLecm). Since 
cfFLecm

A↔ A ·A, the claim below follows
from a standard induction on the height of the derivation.

For every formula A: 
cfFLecm
⇒ A iff 
cfFLs

ecm
⇒A.

It suffices therefore to search for a proof of ⇒A in FLs
ecm. In a cut-free derivation in

FLs
ecm of ⇒ A, each antecedent is a subset of subf(A). Since |subf(A)| ≤ |A|, there

are at most 2|A| such subsets, and at most |A| possibilities for the succedent. There
are thus at most K := 2|A| · |A| sequents that can occur in a cut-free proof of ⇒ A.
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Using forward proof search, we can decide in exponential time3 if ⇒ A is derivable
as follows.

First, write down on a tape of the Turing Machine, each of the K sequents that
can occur in the proof (this takes time polynomial in K). Mark each initial sequent
in this list as proved. Now consider the following algorithm:

1. For each triple of sequents (S1,S2,S3) such that S1 and S2 are marked proved
and S3 is unmarked, if there is a binary rule instance in FLs

ecm with premises
S1 and S2 and conclusion S3, then mark S3 as newly proved. Proceed similarly
with the unary rules of FLs

ecm using a tuple.
2. If none of the sequents is marked newly proved after Step 1 then terminate.

Otherwise, replace every newly proved mark with proved, and go to Step 1.

It is easily verified that ⇒ A is derivable iff ⇒ A is marked proved at termination.
Step 1 takes time polynomial in K for each triple, and there are at mostK3 different
triples (K2 different tuples). At each iteration, by Step 2, the algorithm terminates
unless the number of sequents marked proved increases. Hence the algorithm must
terminate after at most K iterations. It follows that the algorithm has a runtime that
is polynomial in K, and thus exponential in |A|.

6.2. Formula and variable boundedness. The previous subsection made use of
contraction and mingle to obtain set-axiomatisations. Replacing mingle with
weakening, and hence considering the LJ calculus for intuitionistic logic, opens
the door to even sharper results. Here we present two sufficient conditions for a
multiset-axiomatisation of LJ to imply a formula-axiomatisation. Adding a further
condition implies a variable-axiomatisation and regains the sufficient condition for
the simple substitution property presented in [23]. Recall that A∧ 1 ↔ A holds in
the presence of weakening, and hence all references to the constant 1 are omitted in
this section.

LetA(B/p) denote the formula obtained from A by substituting every occurrence
of the propositional variable p in A with the formula B.

Definition 30 (Ω-propagation property). Formula A has the Ω-propagation
property for a set Ω of binary connectives if for variables p,q,r and every � ∈ C ,


LJ A(q/p),A(r/p) ⇒ A(q � r/p). (*)

Note that this condition is trivial for variables p not occurring in A.

Lemma 31. Let LJ +A be a multiset-axiomatisation over LJ w.r.t. A. It is a
formula-axiomatisation if every A ∈ A has the {∧}-propagation property.

Proof. Suppose that 
LJ+A F . Since LJ + A is a multiset-axiomatisation,
there exist A1, ...,An such that 
LJ A1, ...,An ⇒ F and each Ai is a multiset-
substitution, i.e., a substitution of the propositional variables of some formula in A
by conjunctions of subformulas of F. By repeatedly using the {∧}-propagation
property, some sequent 
LJ A

′
1, ...,A

′
m ⇒ F is derivable such that each A′

i is a
substitution of the propositional variables of some formula in A by subformulas
of F, i.e., a formula-substitution. �

3We thank B. Lellmann for bringing this argument to our attention.
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Determining if an axiom has the {∧}-propagation property can be tedious, e.g.,
try checking this property for the Bck axiom (Kripke models with k worlds) p0 ∨
(p0→p1)∨···∨ (p0 ∧···∧pk–1→pk).

We now introduce an inductive criterion to simplify this check.
In the following, let p ∈ Var be an arbitrary propositional variable, and let

A(B) abbreviate A(B/p). Let Up denote the set of formulas that possess the {∧}-
propagation property with respect to the variable p:

Up = {A | ∀q,r ∈ Var. 
LJ A(q),A(r) ⇒ A(q∧ r)}.

The following is immediate.

Lemma 32. If A ∈ Up for every variable p occurring in A, then A has the {∧}-
propagation property.

Recall that an occurrence of a propositional variable p is negative (positive) in
a formula A if it occurs on the left hand side of an odd (resp. even) number of
implications. Define the following sets of formulas:

U ∗
p ={A | ∀q,r ∈ Var. 
LJ A(q) ⇒A(q∧ r)};

Dp ={A | ∀q,r ∈ Var. 
LJ A(q∧ r) ⇒A(q)& 
LJ A(q∧ r) ⇒ A(r)};

Np ={A | poccurs only negatively in A}.

As a mnemonic, U stands for ‘ u pwards propagation’ (going from simple instances
up to conjunctive instances), U ∗ for ‘strong upwards propagation’, D stands for
‘ d ownwards propagation’ (going from conjunctive instances down to simple
instances), and of course N stands for n egative. For sets M,N of formulas and
a binary connective �, defineM �N to be the set {A�B | A ∈M,B ∈N}.

Lemma 33. The following holds.

1 p ∈Up;
2 If p does not occur in A, then A ∈U ∗

p ∩Up ∩Dp;
3 Np ⊆U ∗

p ;
4 Dp→Up ⊆Up;
5 U ∗

p ∨Up ⊆Up.

Proof. (1) Since 
LJ q,r⇒ q∧ r. (2) holds trivially. (3) Let A ∈Np, and let � be
the standard proof ofA(q) ⇒A(q). Start constructing a proof �′ ofA(q) ⇒A(q∧r)
bottom up by imitating the proof steps in �. Whenever the formula q ∧ r appears
isolated in �′, then this is on the left hand side of a sequent because A ∈ Np. We
can thus apply a cut with q∧ r⇒ q to (again, reading the proof bottom up) replace
q ∧ r with q. Then copy the remaining steps of �. (4) Let A ∈Dp and B ∈ Up, and
consider the following derivation showing that A→B ∈Up:

since A ∈Dp
A(q∧ r) ⇒ A(q)

since A ∈Dp
A(q∧ r) ⇒ A(r)

since B ∈Up
B(q),B(r) ⇒ B(q∧ r)

B(q),(A→B)(r),A(q∧ r) ⇒ B(q∧ r)
(A→B)(q),(A→B)(r),A(q∧ r) ⇒ B(q∧ r)

(A→B)(q),(A→B)(r) ⇒ (A→B)(q∧ r)
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(5) Let A ∈U ∗
p and B ∈Up. Start constructing a proof of (A∨B)(q),(A∨B)(r) ⇒

(A∨B)(q∧ r) by applying the rule (∨L) twice. We then have to check provability of
the following four sequents:

(i) A(q),A(r) ⇒ (A∨B)(q∧ r);
(ii) A(q),B(r) ⇒ (A∨B)(q∧ r);
(iii) B(q),A(r) ⇒ (A∨B)(q∧ r);
(iv) B(q),B(r) ⇒ (A∨B)(q∧ r).

Now (i)–(iii) are provable since A ∈U ∗
p . Also (iv) is provable since B ∈Up. �

Together, Lemmas 32 and 33 provide a convenient sufficient condition for the
{∧}-propagation property. Here are two examples.

Example 34. The Bck axiom p0 ∨ (p0→p1)∨···∨ (p0 ∧···∧pk–1→pk) enjoys the
{∧}-propagation property. Indeed by Lemma 33(1) p0 is in Up0 ; by Lemma 33(3)
the remaining disjuncts are in U ∗

p0
and hence by Lemma 33(5) the axiom is in Up0 .

Next observe that by Lemma 33(1,2,4) p0 → p1 is in Up1 ; by Lemma 33(2,3) the
remaining disjuncts are in U ∗

p0
and hence by Lemma 33(5) the axiom is in Up1 .

Continuing in this way we can argue that the axiom is in Upi for all i ≤ k and hence
enjoys the {∧}-propagation property. �

Example 35. Consider the linearity axiom A = (p→q)∨ (q→p). To show that
A∈Up, we observe that (p→q)∈U ∗

p by Lemma 33(3) and (q→p)∈Up by Lemmas
33(1,2,4). So A ∈ Up by Lemma 33(5). By a symmetric argument, A ∈ Uq . So by
Lemma 32, (p→q)∨ (q→p) has the {∧}-propagation property and by Lemma 31
we obtain that the standard axiomatisation for Gödel logic LJ + (p→q)∨ (q→p) is
a formula-axiomatisation. �

6.3. Variable-axiomatisations. Variable-axiomatisations in intermediate logics
were investigated in [23, 40–42] as the simple substitution property.

It is important to note that this is a property of a specific axiomatisation rather
than a property of the logic, i.e., alternative axiomatisations of the same logic
may not have the property. For example, the standard axiomatisation LJ + (p→
q)∨(q→ p) for Gödel logic is not a variable-axiomatisation. The formula¬p∨¬¬p
is a counterexample since it is a theorem of Gödel logic and LJ does not prove
(p→p)∨(p→p) ⇒¬p∨¬¬p. As shown in [40], a variable-axiomatisation of Gödel
logic is LJ + (p→q)∨ ((p→q)→p) + (¬p∨¬¬p).

A simple sufficient criterion for a variable-axiomatisation is presented in [23] using
a propagation property. We reformulate that proof in our setting.

Lemma 36. An arbitrary extension LJ +A is a variable-axiomatisation w.r.t. A if
every A ∈ A has the {∧, ∨ ,→}-propagation property.

Proof. If 
LJ+A (⇒ F ) for some formula F, then 
LJ A1, ...,An ⇒ F for some
instances Ai of axioms in A. By repeatedly applying the {∧, ∨ ,→}-propagation
property of the axioms, we can replace the list A1, ...,An of assumptions by a
list A′

1, ...,A
′
m of variable instances (i.e., the variables of the axiom substituted

by variables). If any variable occurring in some A′
i does not occur in F, we can

uniformly rename such a variable with one that does occur in F. We obtain a proof
of A′′

1 , ...,A
′′
m ⇒ F where each A′′

i ∈ A[�v(F )]. In this way we witness that LJ +A
is a variable-axiomatisation w.r.t. A. �
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Observe that Lemma 36 applies to arbitrary extensions of LJ but Lemma 31
requires a multiset-axiomatisation. This is because an arbitrary formula instance A′

of A cannot be transformed to an element of A[�f(F )] by variable renaming. In
contrast, an arbitrary variable instance A′ of A is transformable to an element in
A[�v(F )] via variable renaming. Lemma 36 is used in [23] to show that classical
logic LJ + (¬p∨p) and LQ = LJ + (¬p∨¬¬p) are variable-axiomatisations.

A logic L has the Craig interpolation property if A→ B ∈ L implies the existence
of a formula I with (A→ I )∧ (I → B) ∈ L and Var(I ) ⊆ Var(A)∩Var(B). We
reproduce below the elegant argument from [40] where the Craig interpolation
property for LQ is induced from LJ by using a variable-axiomatisation. An
analogous argument applies to classical logic.

Theorem 37. LQ has the Craig interpolation property.

Proof. For a formula X, letAX denote the conjunction of all formulas ¬q∨¬¬q
such that q ∈ Var(X ). If 
LQ B→C , then since LQ is a variable-axiomatisation
over LJ w.r.t. (¬p∨¬¬p) we know 
LJ AB→C→(B→C ). Since ¬q∨¬¬q has only
one variable, every conjunct in AB ∧AC appears in AB→C and vice versa. Thus

LJ AB→C ↔ AB ∧AC , and hence 
LJ (AB ∧AC )→(B→C ). It follows that 
LJ
(AB ∧B)→(AC→C ). By the interpolation property of LJ, there is a formula I such
that Var(I ) ⊆ Var(A)∩Var(B) and 
LJ ((AB ∧B)→I )∧ (I→(AC→C ). Then the
latter formula is also provable in LQ. Since AB,AC ∈ LQ, by rearranging and some
cuts 
LQ (B→I )∧ (I→C ). Hence I is a Craig interpolant of A→B in LQ. �

In [41] it is shown that classical logic and LQ are the only consistent variable-
axiomatisable logics over LJ that are axiomatisable by a single-variable formula.
The same paper shows that all finite-valued Gödel logics are variable-axiomatisable
over LJ. We remark that these results have been generalised in [42] using algebraic
methods to establish necessary and sufficient criterion for variable-axiomatisable
intermediate logics on a finite slice (see [22]).

§7. Methodology extended to modal logics. In this section we demonstrate how
the methodology applies to other non-classical logics, taking here the example of
modal logics. In Section 7.1 we establish formula-axiomatisations for the case study
of S4.2. Next we apply our methodology to the uniform hypersequent calculi in [29]
for a large class of modal logics extending S4 by Lahav’s simple frame properties.
Finally, in Section 7.3 we sharpen the technique even further to obtain a new
syntactic proof of a well-known result: the sequent calculus for S5 is analytic.

7.1. Formula-axiomatisation of S4.2. Throughout, a formula is called boxed if it
has the form �A.

The modal logic S4 of pre-ordered (reflexive and transitive) Kripke frames is
obtained by the addition of the following two rules to the standard multi-conclusion
sequent calculus LK for classical propositional logic.

A,Γ ⇒ Δ
�A,Γ ⇒ Δ

(T ) �Γ ⇒ A
�Γ ⇒�A

(4).

The modal logic S4.2 extends S4 by the axiom ��p→��p. This logic is
characterised semantically as the logic of directed pre-ordered Kripke frames. A
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cut-free hypersequent calculus HS4.2 for S4.2 is obtained (see [28]) by lifting S4 to
a hypersequent calculus HS4 and then adding the modal rule

G |�Γ,�Δ ⇒
G |�Γ ⇒|�Δ ⇒ (RMS).

Paralleling the argument in Section 4.2, we now transform cut-free HS4.2-proofs
into bounded analytic sequent calculus proofs. First, using the rules (ec) and (wl )
it is easy to see that any instance of (RMS) can be replaced by multiple applications
of its single formula variant

G |�A,�Δ ⇒
G |�A⇒|�Δ ⇒ (RMS1).

As a disjunction form for (RMS1), we choose the formula �¬��p∨�¬�¬�p (the
formal computation of the modal disjunction form is explained in Section 7.2). This
is equivalent to the axiom instance ��(�p)→��(�p) and hence the provability
property is satisfied. The following two derivations show the splitting property for
�(p) =A:

�A⇒�A
�A⇒��A

(4)

�A,¬��A⇒
�A,�¬��A⇒ (T )

�Δ,�A⇒
�Δ ⇒¬�A
�Δ ⇒�¬�A (4)

�Δ,¬�¬�A⇒
�Δ,�¬�¬�A⇒ (T )

We can then eliminate applications of (RMS1) in proofs of ⇒F by adding the
formula �¬��A or the formula �¬�¬�A into the corresponding antecedent of
the rule conclusion. We then propagate these formulas downwards in each of the two
derivations. Crucially, since both formulas are boxed, adding them to the antecedent
of applications of (4) yields a legal instance of (4).

Finally, combine the two derivations by a disjunction introduction to obtain a
proof of �¬��A∨�¬�¬�A⇒ F . As �A appeared in the cut-free hypersequent
calculus proof, it must be a subformula of F. Eliminate all instances of (RMS1) and
reduce the resulting HS4 proof into a sequent calculus proof.

Theorem 38. The logic S4.2 is formula-axiomatisable over S4. In other words,
this means F ∈ S4.2 iff there are boxed subformulas A1, ...,An of F such that∧n
i=1(�¬�Ai ∨�¬�¬Ai)→F ∈ S4.

We obtain formula-axiomatisations—as opposed to set-axiomatisations—
because we replaced �Γ in (RMS) with �A in (RMS1).

7.2. Bounded-analytic sequent calculi for simple frame properties. Bounded-
analytic sequent calculi for modal logics—extending the methodology for substruc-
tural logics—can be obtained from a uniform presentation of the hypersequent rules.
We illustrate using the rules in [29] for extensions of S4.

Let n be a positive natural number and S = {(SiR,S
i
=)}i∈I for some finite index

set I such that every SiR and Si= is a subset of {1, ...,n} and every SiR ∪ Si= is
non-empty. This is what is called a “normal description of an n-simple L1-formula”
[29, Definition 4]. Any such description defines a first-order formula
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∀w1 ...∀wn∃u
∨
i∈I

⎛
⎜⎝∧
i∈SiR

wiRu∧
∧
i∈Si=

wi = u

⎞
⎟⎠ .

This gives rise to the class of Kripke frames satisfying this formula. The modal logic
of S is defined as the set of formulas valid on this class of frames. For each such logic,
an analytic hypersequent calculus is obtained in [29] by computing the following
hypersequent rule “induced by S for transitive modal logics”

G | ∪j∈SiR �Γ′
j, ∪j∈Si= Σj ⇒∪j∈Si=Πj (i ∈ I )

G |�Γ′
1,Σ1 ⇒ Π1 | ··· |�Γ′

n,Σn⇒ Πn

�Γi and �Γi are standard notation for multiset schematic-variables that are
instantiable by sets {�A1, ...,�Ak} and {A1,�A1, ...,Ak,�Ak} respectively.

Example 39.

– SetSlin = {(SiR,S
i
=)}i∈{1,2} withS1

R = {1},S1
= = {2},S2

R = {2}, andS2
= = {1}.

The modal logic of Slin is the set of modal formulas valid on the class of
frames satisfying ∀w1w2∃u.(w1Ru ∧w2 = u)∨ (w2Ru ∧w1 = u). This defines
the analytic rule

G |�Γ′
1,Σ2 ⇒ Π2 G |�Γ′

2,Σ1 ⇒ Π1
r(Slin).

G |�Γ′
1,Σ1 ⇒ Π1 |�Γ′

2,Σ2 ⇒ Π2

Therefore HS4 + r(Slin) is a cut-free hypersequent calculus for Slin.
– For S = {({i,j},∅)|1 ≤ i < j ≤ n}, the corresponding first-order formula

is ∀w1 ...∀wn∃u
∨

1≤i<j≤n(wi = u ∧wj = u) (bounded cardinality) and the
hypersequent rule is

{G | Σi,Σj ⇒ Πi,Πj}1≤i<j≤n
r(S).

G |�Γ′
1,Σ1 ⇒ Π1 | ··· |�Γ′

n,Σ1 ⇒ Πn
�

We shall obtain the following analogue of Theorem 13 for the function Form�

defined below that maps an analytic hypersequent rule to a modal formula.

Theorem 40. For every normal description S and the analytic hypersequent rules
R induced by it, the modal logic Thm(HS4 +R) is a set-axiomatisation over S4 w.r.t.
{Form�(R)|R ∈R}.

Proof. Let the normal description S = {(SiR,S
i
=)}i∈I be given.

In order to compute the disjunction form for the hypersequent rule induced by S,
we first rewrite the rule as follows:

G | ∪j∈SiR �Γ′
j ⇒ (i ∈ I2),

G | ∪j∈SiR �Γ′
j, ∪j∈Si= Σj ⇒∪j∈Si=Πj (i ∈ I1)

r(S).
G |�Γ′

1,Σ1 ⇒ Π1 | ··· |�Γ′
n,Σn⇒ Πn
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In the above, we have partitioned I = I1 � I2 such that Si= = ∅ iff i ∈ I2. For the
purpose of obtaining an association form as done in Section 5.2 we begin by reading
�Γ′

j and �Γ′
j as the same multiset schematic-variable. Following that algorithm,

the distinguished variable occurrences of each active component in the premises are:
some Σj (j ∈ Si=) for i ∈ I1, and some �Γ′

j (j ∈ SiR) for i ∈ I2. Associating �Γ′
j and

�Γ′
j to the same propositional variable, construct Form(r(S)) from the association

form (Definition 19). The required formula Form�(r(S)) is obtained by amending
Form(r(S)) as follows:

(i) Replace every leading disjunct B ∧1 by B (if B is boxed) or �B (otherwise).
(ii) A � is placed in front of every propositional variable.

Now follow the proof for Form(r(S)) (Theorem 21) to prove that Form�(r(S))
is a disjunction formula (provability, weakening, and splitting property). Regarding
the amendments, observe that these can be emulated by applying the appropriate
modal rules: for (i), use (4) to introduce a leading �; for (ii), start with �p⇒ �p
rather than p ⇒ p. We do have to account for our reading of �Γ′

j and �Γ′
j

as the same variable despite these multiset schematic-variables having different
instantiations (the former permits instantiation only by {�A1, ...,�Ak} and the
latter only by {A1,�A1, ...,Ak,�Ak}). It turns out that this is not problematic
because every instantiation of “strong box variable ⇒ its box variable” and “box
variable ⇒ its strong box variable” is derivable in S4.

�(∧X ) ⇒ �(∧X )

(∧X )∧�(∧X ) ⇒ �(∧X )

(∧X ) ⇒ (∧X )
(T )

�(∧X ) ⇒ (∧X ) �(∧X ) ⇒ �(∧X )

�(∧X ) ⇒ (∧X )∧�(∧X )

To obtain a multiset-axiomatisation we follow the proof of Theorem 13. The
only thing to check is that each disjunct in the disjunction form can be permuted
downwards, i.e., adding this formula to the antecedents of the premise(s) and
conclusion of a rule instance should not invalidate the rule instance. This holds
for the instances of the (4) rule because this formula is boxed due to (i), and it is
immediate for the other rules. Finally, a set-axiomatisation follows from the presence
of contraction and weakening, refer to Lemma 24. �

The above proof relies on the presence of the (T ) and (4) rules. In particular, if
the (4) rule was replaced by the standard modal rule for K, then the addition of a
boxed formula to the premise and conclusion of the latter would invalidate the rule
instance. This is why the theorem is framed with respect to S4.

Example 41. Consider r(Slin) in Example 39. Read �Γ′
1 and �Γ′

1 as the same
variable, and read �Γ′

2 and �Γ′
2 as the same variable to obtain the association form.

Associating �Γ′
1 and �Γ′

1 with the propositional variable p, and �Γ′
2 and �Γ′

2 with
the propositional variable q, we obtain

Form(r(Slin)) := ((p→ q)∧1)∨ ((q→ p)∧1).

Applying (i) we get �(p→ q)∨�(q→ p). After (ii) we obtain

Form�(r(Slin)) := �(�p→�q)∨�(�q→�p).
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Let us prove that �(�p→�q)∨�(�q→�p) is a disjunction form of r(Slin). The
following derivation in HS4 witnesses one half of the splitting property (the other
derivation is analogous).

�Γ′
2 ⇒∧(�Γ′

2)
(4)

�Γ′
2 ⇒�∧(�Γ′

2)

�Γ′
1,Σ2 ⇒ Π2

(T ),(c),(∧L)
�∧(�Γ′

1),Σ2 ⇒ Π2

�∧(�Γ′
2) →�∧(�Γ′

1),�Γ′
2,Σ2 ⇒ Π2

�(�∧(�Γ′
2) →�∧(�Γ′

1)),�Γ′
2,Σ2 ⇒ Π2

Observe that the instance of the right disjunct of the disjunction formula above
is obtained by the substitution q �→ ∧�Γ′

2 and p �→ ∧�Γ′
1, analogous to the

substructural case. The following establishes the provability property.

�p⇒�p �q⇒�q
r(S)

�p⇒�q |�q⇒�p

⇒�p→�q |⇒�q→�p

⇒�(�p→�q) |⇒�(�q→�p)

⇒�(�p→�q)∨�(�q→�p) |⇒�(�p→�q)∨�(�q→�p)

⇒�(�p→�q)∨�(�q→�p) �

7.3. A new syntactic proof of analyticity for S5. A sequent calculus for S5 is
obtained by the addition of the rules (T ) and (5) to the sequent calculus LK for
classical propositional logic:

Γ,A⇒ Δ
Γ,�A⇒ Δ

(T )
�Γ ⇒ A,�Δ
�Γ ⇒�A,�Δ

(5).

In response to the failure of cut-elimination for this calculus, Takano [45] gave an
intricate syntactic proof of analyticity, establishing that only cuts on subformulas
are required. Prior to that, only a semantic argument had been shown, see [17].

A formula-axiomatisation for S5 can be established along the lines of Theorem 38.
Is it possible to tweak the methodology of this paper to obtain Takano’s (stronger)
analyticity result? The answer is affirmative, as shown below.

Theorem 42. The sequent calculus for S5 is analytic.

Proof. Our starting point is a cut-free hypersequent calculus for S5 presented in
[28]. It extends HS4 by the rule

G |�Δ,Γ ⇒ Π
G |�Δ ⇒| Γ ⇒ Π

(MS).

This is a special case of Avron’s rule (MSAv) (cf. Example 2). Cut-free HS4 + (MS)
derives exactly the same sequents as the sequent calculus for S5. Moreover, any
instance of the rule (MS) can be simulated using (ec), (wl ), and using multiple
instances of its single formula version (MS1) below:
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G |�A,Γ ⇒ Π
G |�A⇒| Γ ⇒ Π

(MS1).

Consider a cut-free derivation d in HS4 + (MS1) of a sequent S. For simplicity,
suppose that d contains a single instance of (MS1) (in the general case, bottommost
instances of (MS1) are eliminated at each step, refer to the proof of Theorem 13).
From this instance, we can obtain the following derivations in HS4 + (MS1):

�A⇒ �A (ew)
G |�A⇒ �A|Γ ⇒ Π,�A

G |�A,Γ ⇒ Π
(ew).

G |�A⇒ |�A,Γ ⇒ Π

Above left (right), the component �A⇒ �A (resp. �A,Γ ⇒ Π) has a �A in
the succedent (resp. antecedent) that was not present in the original derivation d.
Proceed downward from each hypersequent mimicking the rules in d. Although
these hypersequents each contain an additional occurrence of �A that needs to be
propagated downwards, the same rule can be used for this purpose provided it is
not (4). The issue with (4) is that it permits only a single formula in the succedent
and the additional �A in the succedent would violate this. The solution is to use (5)
instead. In this way we obtain (MS1)-free hypersequent derivations (hence in HS5)
of �A#S and S#�A (the latter denotes that �A is added to the succedent of S).
Applying the cut-rule on �A on these sequents, we obtain a derivation of S in HS5.
Since �A occurred in the cut-free derivation d, it is a subformula of S. Since every
rule in HS5 has one active component, we can extract an analytic derivation of S in
the sequent calculus for S5. �

§8. Conclusions and open problems. We investigated generalisations of the
subformula property that enabled us to retain the simplicity of the sequent
calculus for various families of logics, and to establish meta-logical properties. This
represents a departure from the typical approach in structural proof theory where
the subformula property is treated as the primary goal, even if this means structural
enrichment and new proof formalisms; think, e.g., the | in the hypersequent calculus,
the nesting of structural parentheses in the nested sequent calculus, or the display
calculus [8] where each logical connective corresponds to a structural one. While the
difficulties of dealing with an enriched structural language are well known, a formal
assessment of this cost has never been investigated. Our transformations suggest a
nuanced assessment method by pegging the strength of the subformula property in
the hypersequent calculus to restrictions of the axiom instances. We aim to extend
these transformations to formalisms beyond the hypersequent calculus such as the
nested sequent (preliminary work along this line appears in [37]), display calculus,
and bunched sequent calculus. This could pave the way for a new classification of
logics and formalisms, according to the degree of boundedness of their bounded-
analytic sequent calculi.

The starting point for the bounded-analytic sequent calculi presented here were
the analytic hypersequent calculi obtained in [12, 28] from axiomatic extensions
of Hilbert calculi, and those in [29] from adding frame conditions. This means
that, implicitly, there is an algorithm transforming Hilbert calculi for these
logics into bounded-analytic sequent calculi. How could we define a step-by-step
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transformation that takes a proof in the Hilbert calculus (or sequent calculus proofs
with arbitrary cuts) and yields a bounded-analytic sequent calculus without taking
a detour through another formalism? That is, from arbitrary cuts to cuts on specific
axiom instances. Cut-elimination is the bedrock of structural proof theory and what
we are proposing here is a new paradigm: cut-restriction, with cut-elimination as a
special case.

The perspective using logical embeddings allowed us to abstract from the
minute details of the proof theory. This was exploited to obtain new complexity
results for contractive-mingle substructural logics, and to situate earlier results
within our theory. Investigating the correspondence between embedding functions
and their amenability to meta-theoretic argument (think decidability, complexity,
interpolation, and so on) could lead to boundedness-specific methods that are
applicable over a range of different logics.
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