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Anatomy of a diffracting
detonation in a circular
arc of explosive

John B. Bdzil†

Shock and Detonation Physics Group, Los Alamos
National Laboratory, Los Alamos, NM 87545, USA

Using high-resolution numerical simulation, Short et al. (J. Fluid Mech. vol. 835,
2018, pp. 970–998) study diffraction of a detonation as it traverses a 270◦ finite-
thickness condensed-phase explosive arc. This geometry admits a steady solution in
a frame rotating with angular speed ω0, which thereby facilitates a detailed analysis
of how the loss of energy from the detonation reaction zone due to the diffraction
process slows the propagation of the detonation. There exists a region of subsonic
flow, between the detonation shock and the curve of sonic flow (labelled the DDZ),
which is responsible for setting ω0. Although the DDZ spans the entire thickness for
thin arcs, it is localized to a region near the inside surface as the arc is thickened.
Thus the explosive energy release near this inside surface plays a disproportionate
role in the diffraction process.
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1. Introduction

We have all watched waves come onto a beach, encounter an object, diffract
around that object and weaken. Something similar happens when a high-speed planar
square-topped shockwave, running parallel to a rigid wall and in a non-reactive
compressible material, encounters a convex corner; the shock diffracts around the
corner in a weakened form. Such a two-dimensional flow is scale-free and thus
expressible in terms of the two similarity variables, ξ = x/t, η= y/t. Then, it becomes
possible to locate the zone of influence of the corner and define where the flow
is subsonic and supersonic, and the separating sonic locus, as one would do for a
steady-state two-dimensional high-speed flow. This flow is sketched in figure 1(a).
The dashed curve denotes the locus of sonic flow in the corner-attached frame and
separates the disturbed subsonic flow on the right from the undisturbed flow on the
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FIGURE 1. A sketch of the main features for inert shock diffraction (a) compared with
the solution of detonation diffraction for an idealized CJ explosive (b).

left. Energy flows from the upper undisturbed region into the disturbed (diffracted)
region and thus supports the diffracted shock (although at reduced pressures).

Given the same scenario as above, but replacing the inert compressible material
with a detonating condensed-phase explosive, we find a somewhat different flow.
In detonation, the high-speed shock triggers rapid energy-releasing reactions in
the explosive which in turn support the shock. When this reaction zone is very
short compared with other problem scales, we can approximate the detonation with
the scale-free instantaneous Chapman–Jouguet (CJ) detonation, which yields the
diffraction scenario pictured in figure 1(b). The detonation propagation speed, DCJ

(the shock speed in this problem), is the same in both the undisturbed and the
diffracted regions, as the instantaneous reaction provides all of the energy needed to
fully support the diffracting detonation shock. The locus of sonic flow is again the
nearly circular region surrounding the corner. However, now the circular diffracting
DCJ-speed detonation shock is separated from the region of subsonic flow by a
supersonic buffer zone, where only information travelling away from the shock,
boundary and undisturbed flow defines the solution.

The picture given for the CJ detonation is an idealized description. When the finite-
thickness reaction zones of real explosives are considered, the description needs to be
modified to account for the lateral loss of energy from the reaction zone. This flow is
not scale-free, and the diffracting detonation shock speed is reduced to sub-DCJ values,
resulting in reduced pressures and temperatures in the diffracting reaction zone. In
turn, this leads to an increased length of the reaction zone the closer one moves to
the corner and the turned wall, where the energy loss due to diffraction is the greatest
(see Kapila et al. 2007).

2. Overview

This class of sudden convex-corner wall-expanding flows subjects a finite-length
reaction zone to diffraction of widely varying strengths, and can include such features
as vortices, slip lines, shocks embedded in the interior flow, etc. (see figure 1b and
Kapila et al. 2007), which leads to a fully time-dependent two-dimensional flow. Such
a scale-dependent flow is not suitable for detailed analysis, since the flow is neither
self-similar nor steady. The finite-thickness circular arc explosive geometry studied by
Short et al. (2018) represents a controlled-strength diffraction geometry that allows
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FIGURE 2. A sketch of the explosive-arc geometry used by Short et al. (2018) (a) and
results showing the DDZ as a function of the arc dimensions and confinement (b).

the simplification of a steady-state solution in a rotating frame (a frame fixed to the
centre of curvature of the cylindrical surfaces of the arc, as displayed in figure 2a).
Experiments by Nakayama et al. (2012) show steady propagation in this geometry.
Since the rigid-wall boundary assumption, suitable for gas flows, is inappropriate for
condensed-phase high explosives, Short et al. (2018) consider the case of deformable
explosive boundary confinement. Now additional reaction zone energy is lost as the
confining walls are pushed outward by the detonating high explosive.

What Short et al. (2018) observe in their numerical simulations is the flow
becoming steady. Then, it becomes possible to define the subsonic and supersonic
regions of the flow. Now, a subsonic region sits behind the detonation shock, and
the flow only turns supersonic (as in the instantaneous-reaction CJ detonation case)
towards the end of the reaction zone. This subsonic zone defines the rotation speed
of the diffracting detonation and is what the authors define as the detonation-driving
zone (DDZ). Importantly, although the DDZ extends to the inner surface of the arc,
it does not necessarily extend to the outer surface of the arc even though the reaction
zone deposits energy there. The factors that influence the extent of the DDZ are the
inner and outer radii, Ri and Re, of the explosive arc and the nature of the materials
confining the explosive on the inside and outside cylindrical surfaces of the arc. For
this steady flow, the sonic parameter along the shock can be written as

c2
− ũ2

θ − ũ2
r =

((
cos φ

cos φsonic

)2

− 1

)
(ω0R)2 , (2.1)

where the normal detonation speed is given as

Dn = (ω0R) cos φ, (2.2)

where Dn is an order-one quantity. Here, c is the sound speed and ũθ and ũr are the
two components of the particle velocity in the θ - and R-dependent rotating frame;
ω0 is the constant angular velocity of the frame, while φ is the angle between the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

81
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2018.81


4 J. B. Bdzil

normal to the detonation shock and the normal to R at the shock (see figure 2a). What
(2.1)–(2.2) show is that as R increases, cos φ→ 0 (φ→ 90◦), and the flow becomes
supersonic at the outer surface for sufficiently large and finite Re. Until this critical
Re is reached, the DDZ extends to Re, with the details of the DDZ near the outer
surface depending on the outer confinement layer properties. Organic solids provide
weak confinement and a sonic flow along the outer edge in the rotating frame, while
metals provide strong confinement with a subsonic, Dn>DCJ Mach reflection possible
there. Short et al. (2018) show that after the flow at the outer surface has become
supersonic, the solution there is independent of the properties of the outer confinement
layer. Then, information about the confinement can only flow backwards and away
from the front, and thus does not influence the detonation shock. As Re increases
beyond the critical transition value, the flow near the outer surface becomes more
supersonic and the DDZ recedes from the outer surface irrespective of the nature of
the outer confinement layer. A comparison of the DDZ (i.e. the shocks and sonic loci)
as Re changes is displayed in Short et al. (2018) figure 17, and is reproduced here as
figure 2(b). Thus, as Re increases, the speed of rotation and the shape of the detonation
shock are set by only the portion of the reaction zone near Ri, with the detonation
near Re being dragged along by the subsonic flow region (DDZ) that sits near Ri.
Significantly, it is the inner layer of explosive that plays a dominant role in setting
the properties of a steadily diffracting detonation in an arc of explosive, as compared
with the outer layer playing the dominant role for inert-material shock diffraction.

3. Future

One sees that for a fixed Ri, the angular speed of the diffraction, ω0, depends on
the geometry of the DDZ, with ω0 not changing once Re exceeds a critical value, and
the DDZ pulls away from the outer surface of the arc. Most importantly, ω0 depends
on the details of the flow nearer the inside surface of the arc (see also Short et al.
2016). Only a single value of Ri and weak confinement were considered on the inner
surface. One can only speculate that as Ri and the inner surface confinement change,
the DDZ will remain attached to the inner arc surface. This leaves open how ω0 and
the DDZ change as Ri is decreased, which increases the flow divergence, to the point
where detonation near the edge is extinguished. Then, at some critical Ri, the reaction
zone would decouple from the shock near the inner edge, and the energy release in
the interior of the arc would play the dominant role in setting ω0. Both the poorly
understood problems of detonation extinction and detonation Mach reflection could
greatly benefit from being studied as steady-state flows that the arc geometry supports.
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