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Abstract

The backfitting algorithm is an iterative procedure for fitting additive models in which, at each step,
one component is estimated keeping the other components fixed, the algorithm proceeding component
by component and iterating until convergence. Convergence of the algorithm has been studied by Buja,
Hastie, and Tibshirani (1989). We give a simple, but more general, geometric proof of the convergence
of the backfitting algorithm when the additive components are estimated by penalized least squares. Our
treatment covers spline smoothers and structural time series models, and we give a full discussion of the
degenerate case. Our proof is based on Halperin's (1962) generalization of von Neumann's alternating
projection theorem.
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1. Introduction

We consider a model where the observations are a sum of m unknown functions plus
noise and we wish to estimate the unknown functions by penalized least squares. Thus
we have

m

(1.1) y(i) = ^Mxij) + e(i)

with the Xjj, i = 1,... ,«, j = 1 , . . . , m being the design points and e(i) the
noise. Although it is usually very expensive computationally to simultaneously es-
timate / i , . . . , fm, if we fix any m — 1 of the components, then an O(n) algorithm
is generally available for estimating the remaining component. This suggests the
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following iterative scheme for solving the penalized least squares problem. Starting
with some initial estimates of / ] , . . . , fm (possibly zero), estimate f\ by penalized
least squares holding / 2 , . . . , fm fixed at their current estimates, then estimate f2 hold-
ing f\,fi,...,fm fixed at their current estimates, and continue this process until the
estimates converge. This iterative method for estimating unknown components of an
additive model is called backfitting and was used by Friedman and Stuetzle (1981) for
projection pursuit regression, and by Wecker and Ansley (1982) and Buja, Hastie and
Tibshirani (1989) for fitting additive spline models. Buja et al. (1989) analyzed the
backfitting algorithm for a class of important problems and showed that it converged
both for the regular case where there is only one solution and also for the degenerate
case where there are multiple solutions.

This paper provides a geometric approach to the backfitting method for a general
class of penalized least squares problems by showing that the solution to a penalized
least squares problem is a projection in an appropriate space S say, and that backfitting
corresponds to successive projections onto subspaces Mu ... ,Mm whose intersection
is 5. Therefore, backfitting corresponds to the alternating projection method proposed
by von Neumann (1950) and extended by Halperin (1962). We can therefore apply von
Neumann's convergence result on alternating projections to deduce the convergence
of the backfitting method to the solution of the penalized least squares problem, von
Neumann's alternating projection method, generalized by Halperin (1962), can be
described as follows.

THEOREM 1.1. (Halperin, 1962) Suppose that H is a Hilbert space, S is a subspace
of H and P is the projection onto S. Let Mx, ..., Mm be subspaces of H so that
S = M\C\ • • • n Mm, and let Ts be the projection onto Mj, j = 1 , . . . , m. Form T =
TmTm_x •Tx. Then TN converges strongly to P as N ^ oo; that is TN{f) -+ P{f)
as N -*• oofor any f e H.

The alternating projection method is useful when projection onto the space S is
difficult, but projecting onto the subspaces M, is relatively easy, so that the projection
P can be obtained by sequentially applying the projections 7}. This is true, in
particular, for the additive model (1.1).

The key to our approach is to treat the residuals as an extra component, thus reducing
the penalized least squares problem to an interpolation problem whose solution is a
projection in an appropriately defined Hilbert space. Our treatment is more general
than that in Buja et al. (1989) as we prove convergence of the backfitting algorithm
not only at the design points xtj but also at all values of the arguments of the functions.
In addition we allow the evaluation functionals /y(x,;) to be replaced by general
linear functionals. This generalization is of more than just theoretical interest. Two
examples requiring this extra generality are cubic spline smoothing with a periodic
component which is discussed in Example 2.2 and the estimation of an additive model
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with trend and seasonal components discussed in Example 3.1.
The main feature of our approach, however, is that it provides a geometric solution

to penalized least squares making the existence, uniqueness and convergence results
transparent. To simplify our discussion, we first give results for the non-degenerate
case where there is a unique solution for each of the components. In Section 3 we
extend the results to the degenerate case, where there may be multiple solutions.
Buja et al. (1989) refer to this as the problem of concurvity. Related methods for
the block iterative solution of equations are given by Kaczmarz (1937) and Elfving
(1980).

2. Nondegenerate Case

Consider the following mathematical structure. Suppose that Fu..., Fm are linear
spaces and (•, )Oy is a semi-inner product on Fn j = 1 , . . . , m, with corresponding
semi-norm || • \\Oj. By a semi-inner product we mean that (•, -)Oj is an inner product
except that ||/;||0; can be zero with fj ^ 0. For / = 1,...,«, let y0 be a linear
functional in the space Fj, j = 1 , . . . , m. Define F as the product space F =
Fi <g> • • • ® Fm, with typical element / = ( / i , . . . , fm) and for i = 1 , . . . , n let
Yi(f) = Yn(fi) + ••• + Yim(fm). We will assume that

ASSUMPTION 2.1. For / e F, if ||/,||0; = 0 for j = 1 , . . . , m and y,(/) = 0 for
/ = 1, . . . , n,then / = 0.

Assumption 2.1 implies that

(2.1) (fj, gj)j = {fj, gj)Oj + J2 Yu(fj)Yu(gj), fj, 8l e Fj

is a proper inner product for Fj, (j = 1 , . . . , m) and

(2.2) (/, g)F = J2(fj, gj)oj
i=\ 1=1

is a proper inner product for F. Let ||/ ; | | ; = (/,, fj)-2 and | | / | | F = (/. / ) /? be the
corresponding norms. We assume further that

ASSUMPTION 2.2. F; is a Hilbert space, that is, complete, under the inner pro-
duct (2.1), (j = 1 , . . . , m) and F is a Hilbert space with inner product (2.2).

We observe
m

(2.3) y(i) = J2Yu(fj) + e{i) = y,(f) + e{i) (i = 1 , . . . , « )
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where /, e Fj and e(i) is the unobserved noise. We propose to estimate the unobserved
function fu ..., fm by the penalized least squares criterion

(2.4) minimum £{y( i ) - y,(/)}* + £ Wfj
f€F

or
, = 1 y = l

EXAMPLE 2.1. Additive spline model. We consider the additive model (1.1) with
the components fu ..., fm defined on the interval [0, 1]. Let FA be the space of
functions on [0, 1] having square integrable second derivatives. Let X be the n x m
matrix withx,, in the ijth position and let i = ( 1 , . . . , 1)' be n x 1. We assume that the
n x (m + 1) matrix XA = (X, i) has full column rank. We estimate the components
/ i , . . . , fm in (1.1) by penalized least squares by minimizing

(2.5)
\2

over / . e FA, where the A, are given positive constants and f(1)(x) = d2f(x)/d2x.
The integrals in (2.5) represent roughness penalties. Let / = (fi,..., fm) minim-
ize (2.5). Then each / ; is a cubic smoothing spline, that is fj is a piecewise cubic.
Spline smoothing is a popular statistical method of estimating a function when it is
observed with noise; see Buja et al. (1989) for a discussion. Application of the back-
fitting algorithm is useful here because one dimensional smoothing is computationally
straightforward, see for example Hutchinson and de Hoog (1985), whereas simultan-
eously smoothing all m functions is far more difficult. To express the minimization
of (2.5) geometrically define

(8,h)0A = I
Jo

This makes (g, h)0A a semi-inner product with corresponding semi-norm \\h\\M =
(h,h)l\. If \\h\\0A = 0 then h is l inear. F o r j = l,...,m, t ake Fj = FA and
define the semi-inner products (fj,gj)j = k~l(fj,gj)oA and the linear functionals
Yij(fj) = fj(Xjj), i — 1,...,«. Then (2.1) is a proper inner product for each Fr

Without further assumptions, however, (2.2) is only a semi-inner product for F as
|| / 1 | F can be zero with / being nonzero. To see this note that if || / 1 | F = 0 , then each
fj,j = 1 , . . . , m, is a linear function which we can write as fj(x) = a},+fijX, with a,
and fij constants. Because y,(/) = 5Z, Ytjifj) = 0 we have that 5^(a/ + PjXtj) = 0
for / = 1 , . . . , n. By assumption the matrix XA is of full column rank so that
fi\,...,fim are zero and J2j ai = 0- By choosing the a, so that not all of them are
zero but their sum is zero we obtain an / e F such that | | / | | F = 0 but / ^ 0. This
degeneracy, which leads to multiple minima of (2.5) is called the concurvity problem
by Buja et al. (1989) and is fully dealt with in the next section.
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In most problems of practical interest it is easy to define the spaces Fj so that
Assumptions 2.1 and 2.2 are satisfied and hence Theorem 2.1 below holds. We now
show two ways of doing so for the cubic spline smoothing problem. Let FB be the
subspace of FA consisting of all functions h such that /i(0) = 0, and define F\ = FA

and Fj = FB for j = 2 , . . . , m, with semi-inner products (, )OA for all spaces. It
can be readily checked that (2.2) is now a proper inner product. A second way of
redefining the spaces Fj is to take Fj< = FB for j = 1 , . . . , m and define Fm+i as the
space of constant functions on [0, 1] with semi-inner product identically zero. Put
F = Fi (g) F2 <8> • • • 0 Fm (g> Fm+i and minimize

£{?<'•) - !><*y) - A + E V1 ml*
1=1 I j=\ > j=i

over / i , . . . , fm e FB and /x = fm+i. It can again be readily checked that
m n t m \2

II/II2F = EIWSA + E E ^ - ^ O + M
; = 1 (=1 I ; = 1 J

defines a proper norm.
We now express the penalized least squares problem as an interpolation problem

as in Weinert, Byrd and Sidhu (1980) and hence express the solution to (2.4) as
a projection. Define the product space H = W i8> F where IR" is n dimensional
Euclidean space. For convenience we will write e = (e i , . . . , en)' and denote a
typical element of H by (e, / ) . Then define the linear functionals fj,iti = 1 , . . . , n on
H by /x,(e, / ) = e(i) + y,(/). It is now straightforward to check that H is a Hilbert
space with inner product

m n

(2.7) <(e, / ) , (£, £)>„ = (e, §)0 + £ < £ . &-)oy + ^M/(e, /)/*,-«, g)

and corresponding norm

(2.8)
y=i 1=1

where (e , | ) 0 = H,^?/- Assumption 2.1 guarantees that (2.7) is a proper inner
product.

Next we show that (2.4) is equivalent to solving an interpolation problem whose
solution is obtained as a projection. With the norm (2.8) the functional fit is bounded,
and thus there exists a p, e H, called the representer of /x,, such that /x,(e, / ) =
((e, / ) , pj), i = 1,.. . ,«. Let 5 be the subspace of / / generated by pu ..., pn, and
P be the projection operator onto 5. Further, let

U = { ( € , / ) : **/(€, / ) = y(0, i = 1,...,«}
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and note that U is nonempty because (y, 0) e U, where y = { j ( l ) , . . . , y(n)}'.

LEMMA 2.1.

(i) Solving (2.4) is equivalent to solving the interpolation problem

(2.9) minimize ||(e, f)\\H: y(/) = j*,-(e, / ) , i = 1 , . . . , n.

(ii) For any (e, / ) e //, /x,P(e, / ) = Ml-(c, / ) .
(iii) For any (e, / ) e t/, P(e, / ) minimizes (2.9), and .so tfie solution to (2.9),

and Zience fne penalized least squares problem (2.4), exists (because U is
nonempty) and is unique.

(iv) //>,•(€, / ) = At,-(|, *), i = 1, • • •, n, then P{e, / ) = />(f, g).

PROOF. For (e, / ) e £/, the final term in (2.8) is 5Z, j ( 0 2 and hence the solutions
to (2.4) and (2.9) are the same. Parts (ii) and (iii) are immediate consequences of the
projection theorem (see Weinert and Sidhu, 1978), and Part (iv) follows from Part (iii).

The backfitting algorithm applied to the penalized least squares problem proceeds
as follows. Assign initial estimates / / 0 ) , . . . , /^0) to fi,..., fm; these can be the
zero functions. At a typical point in the iteration suppose that we have the estimates
/ i ( / ) , . . . , ff\, / / ' " " , . . . , f«-X). We obtain / / " by minimizing (2.4) with respect to
fj keeping f\, • • •, fj~\, fj+\, • • •, fm fixed at their current estimates. We continue
the iteration until convergence. The corresponding algorithm for the interpolation
problem initializes/!,..., fm as above and in addition initializes e,-0) = y{i)~ y,(/(0>),
i = 1 , . . . , n. A typical step of the backfitting algorithm can be written as the solution
to the penalized least squares problem

n

(2.10) minimize Y\y{i) - Utif))2 + ||/;||L

where /; is fixed for / ^ j .
To write the solution to (2.10) as a projection, we proceed exactly as for (2.4).

Define the product space //, = R" <g> F, with typical element (e, / ; ) , and define the
linear functionals fxtj in //, by /*,•;(€, /,) = e, + Yij(fj), i = 1,... ,«. Then Hj is a
Hilbert space with inner product

(2.11) ((€, fi), (f, gj))j = J^ e.-fc + (fj, gj)oj + J2 ^y<6' >i)My«, gj)

and corresponding norm

(2.12) ||(€, fj)\\* =
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The functionals /z,y are bounded in Hj. Now let p,y be the representer of /i,-y- in //,, Sj
be the subspace of //, generated by p i ; , . . . , pnj, and let Pj be the projection operator
onto Sj. Finally, for given // e Ft,l ^ j , define the subset Uj of //, by

j = !(e, fj) € Hj : VL,J(€, fj) = y(i) - £ Yu(fi), i = 1 , . . . ,»

and note that Uj is nonempty because (y, 0) e £/,. The following lemma is just a
special case of Lemma 2.1.

LEMMA 2.2.

(i) Solving (2.10) is equivalent to solving the interpolation problem

(2.13) minimize ||(e> /)\\j : /x,7(e, / , ) = j(z) - V K / ( / / ) . » = 1 , . . . , n

(ii) For any (e, /y) e W,-, fiuPi(€, fj) = /i,7(e, / y ) .
(iii) /y(e, /7) minimizes (2.13) for any (e, fj) e (/y, and so the solution to (2.13),

and hence the step of the backfitting algorithm represented by the penalized
least squares problem (2.10), exists (because Uj is nonempty) and is unique.

Thus we have expressed the solutions to both the penalized least squares prob-
lem (2.4) and the steps of the backfitting algorithm (2.8) as projections in Hilbert
spaces, but in different Hilbert spaces. To apply Theorem 1.1, we reexpress the
steps of the backfitting algorithm as projections in H. First, for j = 1 , . . . , m, write
Pj(€, fj) = (€j, fj)£ Hj, define the operator 7} in H by

(2.14) Tj(€, f) = (e, / , , . . . , /,-_,, /y , fJ+l,...,/„)

and the subset Mj of H by

(2.15) Mj = {(€, f) z H : (e, fj) e Sj in / / , } .

LEMMA 2.3.

(i) Given fi, I ^ j , suppose that e and fj are such that (e, fj) e Uj, that is,
(e, f) = (e, / i , . . . , fm) € U. Then Tj(e, f) is the solution to the step of the
backfitting algorithm given by (2.10), in the sense that e and fj as defined
in (2.14) are such that (e, fj) € Hj solves (2.13) while f is fixed for I ^ j .

(ii) The set Mj is a Hilbert subspace of H and Tj is the projection operator onto
Mj (j = l,...,m).

(iii) The space S = Mx D • • • n Mm.
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The proof is given in the appendix.
Using Lemma 2.3, we can describe a typical cycle of the backfitting algorithm as

taking (e*'"1', Z''"1') 6 U as estimates of (e, / ) from one step and applying to it the
mapping T = TmTm-X • • • Tt to obtain the next estimate (e((), / ( / ) ) e U. Because
S = M\ n • • • D Mm, and 7} is the projection operator onto M,, j = 1 , . . . , m we
obtain from Theorem 1.1,

THEOREM 2.1.

(i) The penalized least squares problem (2.4) has a unique solution.
(ii) The linear operator TN converges strongly to the projection P as N —> oo,

thatis\\(TN-P)(e{0\ / ( 0 ) ) | | - • OasN - • oo. Thus the backfitting algorithm
applied to the penalized least squares problem converges to the unique op-
timum solution from any initial f ( 0 ) , because by writing e\0) = y (i) — fit(f

(0)),
i = 1,...,«, we have (e(0), /<0)) e U.

It is straightforward to extend our results to the case where some functionals are
observed without error. Thus suppose that

(2.16)

and / is estimated by minimizing (2.4) subject to (2.16). Define /x,(e, / ) = /,(/)>
i = n + 1,...,« + r, and replace (2.8) by

j=i 1=1

Then Theorem 2.1 still holds. We illustrate the usefulness of this extension by two
examples.

EXAMPLE 2.2. Suppose that in Example (2.1) we know that the first component
/i is periodic so that ^(0) = /,(1) and //"(0) = / / " ( I ) . Define the functionals
y.+i(/) = /i(0) - / , (D andyn+2(/) = /,(1)(0) - /,(1)(1) and the extra two observa-
tions y(n + 1) = Yn+iif) and y(n + 2) = yB+2(/) with y(n + 1) = y(n + 2) = 0.
Then the estimate of f\ is a periodic cubic spline. Periodic cubic splines are discussed
by Cogburn and Davis (1974) and Wahba (1980). Both these papers use periodic
splines to estimate the spectral density of a stationary process.

EXAMPLE 2.3. Suppose that in Example 2.1 the curves fx and f2 coincide for
x < x* and for x > x* the curve f2 branches out from /\ . For example /i may be
a control curve and f2 a treatment curve with the treatment applied at time x = x*
so that /i and f2 are distinct for x > x*. We assume that at x = x* the two curves
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324 Craig F. Ansley and Robert Kohn [9]

coincide so that f\(x*) = fi(x*). To enforce this restriction define the functional
Yn+i(f) = fdx*) - Mx*) and let y(n + 1) = yn+i(f) with y(n + 1) = 0. The
functions f\ and f2 are now estimated as above. Silverman and Wood (1987) and
Kohn and Ansley (1991) discuss the estimation of such branching curves by spline
smoothing and give a number of examples.

3. Degenerate Case

Although the results in Section 2 are sufficient to solve most problems of prac-
tical interest, it is sometimes computationally convenient to relax Assumption 2.1 so
that (2.2) is a semi-inner product in F. In this case (2.4) no longer has a unique
solution and this is called the concurvity problem by Buja et al. (1989). For instance,
in Example 2.1 we may want to take each Fj as FA (the space of functions with square
integrable second derivatives) because the algorithm we have available carries out un-
constrained cubic spline smoothing. We showed in Example 2.1 that Assumption 2.1
does not hold with this choice of Fj. We now show that as long as (2.1) is a proper
inner product for each space F, (y = 1 , . . . , m) then the backfilling algorithm still
converges to a solution of (2.4) and if / and g are two solutions then \\f — g\\F = 0.

We replace Assumptions 2.1 and 2.2 with

ASSUMPTION3.1. Fo r / ; e F;,if | | / ; | | 0 ; = 0andy, ; ( / y ) = Ofori = 1, . . . , n , t hen
fj = 0 for j = 1 , . . . , m. This is sufficient to ensure that (2.1) is an inner product
on Fj.

ASSUMPTION 3.2. Fj is a Hilbert space with inner product (2.1) (j — 1 , . . . , m).

Now Assumptions 3.1 and 3.2 are not sufficient to ensure that (2.2) is a proper
inner product on F. In general, it is only a semi-inner product. We accommodate this
problem by considering the space F* of equivalence classes of elements of F, where
we say that / , g e F are equivalent if | | / — g\\F = 0. Let [/] be the equivalence
class generated by / . If [/] = [g] then

\\fj-gj\\oj=O {j = \,...,m) and y,(f) = Yi(g) (» =

It is clear that if / is a solution to (2.4) then so are all members of its equivalence
class.

If [/] = [g] then YJ ( / ) = y, (g) (/ = 1 , . . . ,« ) showing that the linear functionals
Yi are well defined in F*, and F* is a Hilbert space with inner product (2.2). We
now show that the results in Section 2 apply to the elements of F* rather than F.
First we define the space H* = W ® F* whose elements are equivalence classes of
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elements in H. We write a typical element of H* as (e, [/]) so that (<?, [/]) = (e, [g])
if [/] = [g]. This means that (2.7) and (2.8) are a proper inner product and norm,
respectively, in H*. Let U* be defined with respect to H* in the same way that U
is defined with respect to H. Then Lemma 2.1 holds without modification while
Lemma 2.2 concerns //, = W ® Fj and is not affected. To check that Lemma 2.3
holds, we first show that the linear operator Tj in (2.14) is well defined in H*. This is
obtained from the following lemma.

LEMMA 3.1. Suppose that z = (zx,..., zm) e F and [z] = [0]. Then Fy(0, zy) =

PROOF. Let v0 = Yij(zj), i = \,...,n, j = l,...,m. Because [z] = [0],
\\zj \\OJ = 0, and thus (0, zj) is the solution to the minimization problem

minimize ||(e, fj)\\j : /io(e, /y) = v,7, i = 1,.. . ,«.

By Lemma 2.1 the solution is unique and P,-(0, z7) = (0, Zj), j = 1, . . . , m.

Forz e F, if [z] = [0], then 7}(0, z) = (0, z) by Lemma 3.1. Hence if / , g e F are
equivalent, then 7}(e, / ) = 7}(e, g) + (0, / - g) showing that T;(e, / ) and 7}(e, g)
are equivalent. This shows that T; is well defined in H*. Let M* be the range of the
projection T*. Then Lemma (2.3) holds in H* if M, is replaced by M*.

The operator T and the projection operator P are well defined in H*. We can
deduce the following results from Theorem (2.1). If (e, f) e U then any member
of the equivalence class P(e, [/]) minimizes (2.4) and if (e, / ) and (e, g) belong to
P(e, [/]) then [/ - g] = [0]. The iterates TN(e, [/]) converge to P(e, [/]) so that
\\TN(e, f) - (e, / ) | | w - • 0 as N -> oo, where (e, / ) is a solution to (2.4). This
means that \\TN(e, /)||wisnonincreasingandtendsto||(e, /)\\H- Now.foranyN > 0
either TN+\e, f) = Tw(e, / ) in which case we have converged, or \\TjTN(e, f)\\H <
\\TN(e, f)\\H for some j in which case \\TN+l(€, f)\\H < \\TN(€, f)\\H. This shows
that TN(e, f) converges to a unique element of F. Finally, if z e F and [z] = 0
then 7X0, z) = (0, z) so that if [/] = [g] then TN(<=, / ) = TN(e, g) + (0, / - g)
showing that the separation between / and g is preserved by TN. This discussion is
summarized in the following theorem.

THEOREM 3.1. Suppose Assumptions 3.1 and 3.2 hold. Then

(i) the penalized least squares problem (2.4) has a solution that is unique up to
equivalence in F*, that is, up to a displacement z = (zu • • •, zm) such that
llzyllo; = 0, j = 1,..., m and Yi(z) = 0, i = \,..., n.

(ii) The linear operator TN in H* converges strongly to the projection P as
N ^ oo, that is \\{TN - P){€, [/])|| -+0asN -> oofor(e,f) eU <zH.
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(iii) The backfitting algorithm converges to a unique element of F which is an
optimum solution from any initial value f e F. Equivalent solutions can be
found from any optimum solution by displacements as in (i).

The following corollary can be immediately deduced from Theorem 3.1 and is
Theorem 9 of Buja et al. (1989).

COROLLARY 3.1. Suppose that the functional /z,y are the evaluation functional
Vij(fj) = fjUij), j = l,...,m and i = 1 , . . . , n. Let fj = {/;(*],),..., /;(*„;)}'.
and let \\fj\\oj = fjAjfj where Aj is a positive-semidefinite matrix, j = 1 , . . . , m.
Assume that Assumption 3.1 holds. Then Theorem 3.1 holds.

EXAMPLE 2.2. (continued). Consider again the additive model (1.1) estimated by
cubic splines with no restrictions on initial conditions so that Fj = FA for all j . To
satisfy Assumptions 3.1 and 3.2, we require only that the vector X, = (xxj,..., xnj)' is
linearly independent of the vector t = ( 1 , . . . , 1)' for each j = 1 , . . . , m, so that each
step of each iteration of the backfitting procedure has a unique solution. Then, from
any set of starting values, the backfitting algorithm converges to a unique solution
/ = (fi, •• •, fm)' in F, with each fj a cubic spline. From Example 2.1 and the
discussion above, there are multiple solutions equivalent to / and given by / + z with
[z] = [0]. Let z = (zu . . . , zm) e F. We showed in Section 2 that if [z] = [0] then
Zj (x) = aj + fijXj with the constants a} and fy constrained by J^j (aj + Pjxi) — 0 f°r

j = 1,...,/». In particular [z] = [0] if we take all the fij to be zero and £ ; a; = 0
without all the a;s being zero.

Our results also show that we can introduce redundant components into the model
and still have convergence. For example, suppose that x,; = a + bxxy, j ^ j ' and
/ = 1,... ,«. Although one of fj and fy is redundant because the knots for the yth
component are a linear combination of those for the j'th component, the backfitting
algorithm will still converge to the estimates fj and fy of fj and fy determined by the
initial conditions. It is sometimes faster to apply the backfitting algorithm to subsets
of components rather than individual components in which case the functionals y,;
will not be evaluation functionals. An important application of this observation is
smoothing with time series structural component models.

EXAMPLE 3.1. Time series structural component model. Suppose that we have
quarterly data collected in time order so that

f2(xi2) + e ( i ) , i = l , . . . , / i

where t(i) is the trend, s(i) is the seasonal, and fiix^ is a function of a regressor of
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interest. We define the semi-norms

i) -s(i ~ 4 ) } 2 -
1=1

Following Kitagawa and Gersch (1984) we estimate t, s and f2 by minimizing

n

(3.1) Y,M) - '(«) - 5(0 - / 2 fe)} 2 + |UHo, + IMlL + \\M\Y , o , + IMlL + \\M\A
1=1

over? = {/(()),...,/(«)} e R"+1, s = [s(-3),..., s(n)}' € Kn+4, and f2 e ft.
Although we can minimize (3.1) by applying the backfitting algorithm to the in-
dividual components t, s, and / 2 , it is computationally more efficient to form the
composite component/i(/) = {t(i), s(i)}, define the functional y,i(/i) =t(i)+s(i)
and Yi2{fi) = fiixn), i = 1, ...,n and apply the backfitting algorithm to the two
component model y(i) = Yu(fi) + hixn) + e(0- Thus t and s are estimated simul-
taneously as in Kitagawa and Gersch (1984). We note that the functionals yn are not
evaluation functionals.

Appendix: Proofs

We now prove Lemma 2.3 and Theorem 1.1. Halperin (1962) proves a stronger
result than Theorem 1.1 but if we look carefully at his argument we obtain a very
simple proof of Theorem 1.1 which we present for completeness.

PROOF OF LEMMA 2.3. Part (i) follows immediately from Lemma 2.2 and the defin-
ition of Tj. For Part (ii), note first that because P, is a projection operator in //,, 7}
is a linear operator in H and Mi = {(e, f)eH: Tj(e, f) = (e, / ) } , so that M, is
a Hilbert subspace of H. Now by (2.14), for any (e, f) e H, Tj(e, f) e M, and
(€, f) - Tj(e, f) = (e-€,O,...,fj-fj,O,..., 0). Hence for any (§, g) e M,,

{(e, / ) - 7}(e, / ) , (£, g)) = ((e, fj) - Pj(e, fj), (£, 8j))j = 0

so that (e, / ) — 7}(e, / ) e Mf, the orthogonal complement of M,, and 7} is the
projection operator onto M,.

To show that S = Mi n • • • n Mm, note first that by (2.14) and Lemma 2.2, for
any (e, f) 6 H, HiTj(€, f) = /x,(e, / ) , i = 1 , . . . , « , and hence by Lemma 2.1
/>7}(<:, / ) = P(€, / ) . Thus for (e, / ) e Mf, P(e, f) = PTj(e, f) = 0, so that
(e, f) € S1, and Mf- C Sx, j = 1,.. .,m. Hence S c M , n - n M B ,

To complete the proof, we show that Sx c M^ -\ (- M^. The required result
follows because M,x + • • • + M^ c (Mi n • • • n Mm)x . Take (e, / ) e 5X. Then
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For j = 1 , . . . , m, define the element ( e u \ / 0 ) ) 6 H such that /,0) = /,, / ;
0 ) = 0

(/ # 7) and e,0) = - / , , ( / , ) , y = 1,... ,«, so that (6«\ /,0>) € S/ in //, and
hence (f <», /u>) e M/ in // . By (A.I), (e, / ) = £,.(<^\ /<»), so that (e, / ) e

PROOF OF THEOREM 1.1. The proof of Theorem 1.1 depends on the following three
results.

(i) 5 = {x : Tx = x] and for any x e H, either Tx = x or \\Tx\\ < \\x\\.
(ii) If y e R(I - T), where R(I - T) is the range oil -T, then T'y -+ 0 as

(iii) S1 CR(I -T).

It follows from (iii) that we can write any hsHash—x + y with * e S and
j 6 R(I - T) so that from (i) and (ii), TNh = x + TNy ->• ^ as N -»• oo.

To show that (i) holds we note that for any x € H either 7}* = * for y = 1 , . . . , m,
in which case Tx = x and x e 5, or ||7};c|| < ||JC|| for at least one j , and then
\\Tx\\ < \\x\\ and x $ S. We show that (ii) holds for y e R(I — T) as the extension
to its closure is straightforward. We show below that

(A.2) | | x - 7 x | | 2 <

It follows that

||TJ';c - Ti+1x\\2 <

Because | | r ;x | | is a nonincreasing sequence for a given x, it follows that ||r;jc||2 —
|| TJ+lx ||2 ->• 0 as y - • oo, and so TJ(I - T)x -> 0 implying that (ii) holds. To show
that (A.2) holds, it is sufficient to consider the case m = 2 and write

x — Tx = (JC — Txx) + (T\x — T{T\X)

so that

2 < (||* - r,*n + im* - T2TlX\\f < 2(||* - TlXf + iir,* - T2TIX\\2)

Because Tx and T2 are projections, | |* - r i* | | 2 = |U ||2 —1| T] X i|2 and || T^ — 7^^^: ||2 =
II7UH2 - \\T2TlX\\2 and (A.2) follows.

We show that /?(/ - T)L c 5 from which (iii) follows. If x e /?(/ - T)1 then
(*, (/ - T)x) = 0 so that Tx = x.
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