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Abstract

Necessary and sufficient conditions are presented for a function involving the divided difference of the
psi function to be completely monotonic and for a function involving the ratio of two gamma functions to
be logarithmically completely monotonic. From these, some double inequalities are derived for bounding
polygamma functions, divided differences of polygamma functions, and the ratio of two gamma functions.
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1. Introduction

A function f is called completely monotonic on an interval I ⊆ R if f has derivatives
of all orders on I and

(−1)k f (k)(x) ≥ 0

holds for all k ≥ 0 on I. For convenience, in what follows, the class of completely
monotonic functions on I is denoted by C[I ]. The class of completely monotonic
functions may be characterised by [14, p. 161, Theorem 12b] which reads that a
necessary and sufficient condition for f (x) to be completely monotonic for 0 < x <∞
is that

f (x) =

∫ ∞

0
e−xt dα(t),

where α(t) is nondecreasing and the integral converges for 0 < x <∞. This means that
f ∈ C[(0,∞)] if and only if f is a Laplace transform of the measure µ.

A function f is said to be logarithmically completely monotonic on an interval I ⊆ R
if it has derivatives of all orders on I and its logarithm log f satisfies

(−1)k(log f (x))(k) ≥ 0
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for k ∈ N on I. In what follows, the set of all logarithmically completely monotonic
functions on I will be denoted by L[I ]. The logarithmically completely monotonic
functions on (0,∞) are characterised in [1] as the infinitely divisible completely
monotonic functions studied in [4].

The inclusive relationship L[I ] ⊂ C[I ] has been proved in several papers. For
detailed information, see [7, Section 1.5], [9, Section 1.3], [10, Section 1] and closely
related references therein. Furthermore, it was discovered in [1] that every Stieltjes
transform belongs to L[(0,∞)], where a function f defined on (0,∞) is called a
Stieltjes transform if it can be expressed in the form

f (x) = a +

∫ ∞

0

1
s + x

dµ(s)

for some nonnegative number a and some nonnegative measure µ on [0,∞) satisfying∫ ∞
0

dµ(s)/(1 + s) <∞. For more information on this topic, see [11].
The classical Euler gamma function may be defined for x > 0 by

Γ(x) =

∫ ∞

0
tx−1e−t dt. (1.1)

The logarithmic derivative of Γ(x), denoted by ψ(x) = Γ′(x)/Γ(x), is called the psi
function, and ψ(k)(x) for k ∈ N are called the polygamma functions. The special
functions Γ(x), ψ(x) and ψ(k)(x) for k ∈ N are fundamental and important and have
many applications in mathematical sciences.

In [6, Thorem 1.3], the following necessary and sufficient conditions were
established: the function

ψ(x) − log x +
α

x
(1.2)

belongs to C[(0,∞)] if and only if α ≥ 1, as does the negative of (1.2) if and only
if α ≤ 1

2 . For more information on equivalences of these necessary and sufficient
conditions, see [2, 5], [8, pp. 1977–1978, Section 1.5], and the review articles [7, 9]
and the many references cited therein.

In order to alternatively verify the monotonicity and convexity of the function(
Γ(x + t)
Γ(x + s)

)1/(t−s)

− x (1.3)

for x ∈ (−α,∞), where s and t are real numbers and α = min{s, t}, the following
complete monotonicity of the divided difference of the psi functions was discovered
in [5, 8]: for real numbers s and t and α = min{s, t}, the function

δs,t(x) =


ψ(x + t) − ψ(x + s)

t − s
−

2x + s + t + 1
2(x + s)(x + t)

, s , t

ψ′(x + s) −
1

x + s
−

1
2(x + s)2

, s = t
(1.4)
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for |t − s| < 1 and its negative −δs,t(x) for |t − s| > 1 belong to C[(−α,∞)]. For the
history, background, and recent developments of the study of the function (1.3),
see [3, 8], [7, Sections 3.9, 3.20.1 and 6.1] and closely related references therein.

We now generalise the function δs,t(x) in (1.4) by introducing a parameter λ as
follows. For real numbers s and t, define

δs,t;λ(x) =


ψ(x + t) − ψ(x + s)

t − s
−

2x + s + t + 2λ
2(x + s)(x + t)

, s , t

ψ′(x + s) −
1

x + s
−

λ

(x + s)2
, s = t

(1.5)

on (−α,∞), where λ ∈ R and α = min{s, t}. It is clear from (1.4) and (1.5) that
δs,t;1/2(x) = δs,t(x).

Motivated both by the necessary and sufficient conditions for the function (1.2) to
belong to C[(0,∞)] and by the complete monotonicity of the function (1.4), it is natural
to ask: what are the necessary and sufficient conditions such that the function (1.5)
belongs to C[(−α,∞)]? This question is answered by our Theorem 1.1 below.

T 1.1. Let s and t be real numbers and let α = min{s, t}.

(1) For |t − s| < 1:

(a) δs,t;λ(x) ∈ C[(−α,∞)] if and only if λ ≤ 1
2 ;

(b) −δs,t;λ(x) ∈ C[(−α,∞)] if and only if λ ≥ 1 − 1
2 |t − s|.

(2) For |t − s| > 1:

(a) δs,t;λ(x) ∈ C[(−α,∞)] if and only if λ ≤ 1 − 1
2 |t − s|;

(b) −δs,t;λ(x) ∈ C[(−α,∞)] if and only if λ ≥ 1
2 .

(3) For |t − s| = 1:

(a) δs,t;λ(x) ∈ C[(−α,∞)] if and only if λ < 1
2 ;

(b) −δs,t;λ(x) ∈ C[(−α,∞)] if and only if λ > 1
2 ;

(c) the function δs,t;λ(x) is identically zero if and only if λ = 1
2 .

As a direct application of Theorem 1.1, the logarithmically complete monotonicity
results of a function involving the ratio of two gamma functions can be deduced as
follows.

T 1.2. For real numbers s and t, define

Hs,t;λ(x) =


(x + t)λ/(t−s)−1/2

(x + s)λ/(t−s)+1/2

(
Γ(x + t)
Γ(x + s)

)1/(t−s)

, s , t

1
x + t

exp
(
ψ(x + t) +

λ

x + t

)
, s = t

on (−α,∞), where λ ∈ R and α = min{s, t}. The following conclusions are valid.

(1) For |t − s| < 1:

(a) Hs,t;λ(x) ∈ L[(−α,∞)] if and only if λ ≥ 1 − 1
2 |t − s|;

(b) (Hs,t;λ(x))−1 ∈ L[(−α,∞)] if and only if λ ≤ 1
2 .
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(2) For |t − s| > 1:

(a) Hs,t;λ(x) ∈ L[(−α,∞)] if and only if λ ≥ 1
2 ;

(b) (Hs,t;λ(x))−1 ∈ L[(−α,∞)] if and only if λ ≤ 1 − 1
2 |t − s|.

(3) For |t − s| = 1:

(a) Hs,t;λ(x) ∈ L[(−α,∞)] if and only if λ > 1
2 ;

(b) (Hs,t;λ(x))−1 ∈ L[(−α,∞)] if and only if λ < 1
2 ;

(c) the function Hs,t;λ(x) identically equals 1 on (−α,∞) if and only if λ = 1
2 .

As consequences of Theorems 1.1 and 1.2, the following double inequalities
are immediately derived for the polygamma functions, the divided differences of
polygamma functions, and the ratio of two gamma functions.

T 1.3. The following statements are true.

(1) For x > 0, the double inequality

β1
k!

xk+1
< (−1)k+1ψ(k)(x) −

(k − 1)!
xk

< γ1
k!

xk+1
(1.6)

holds if and only if β1 ≤
1
2 and γ1 ≥ 1.

(2) Let a and b be positive numbers and k ∈ N.

(a) For 0 < |b − a| < 1, the double inequality

(k − 1)!
2

( 1
ak

+
1
bk

)
+ β2

(k − 1)!
b − a

( 1
ak
−

1
bk

)
<

(−1)k−1(ψ(k−1)(b) − ψ(k−1)(a))
b − a

<
(k − 1)!

2

( 1
ak

+
1
bk

)
+ γ2

(k − 1)!
b − a

( 1
ak
−

1
bk

) (1.7)

holds if and only if β2 ≤
1
2 and γ2 ≥ 1 − 1

2 |b − a|.
(b) For |b − a| > 1, the double inequality (1.7) is reversed if and only if β2 ≤

1 − 1
2 |b − a| and γ2 ≥

1
2 .

(3) Let a and b be positive numbers and k ∈ N.

(a) For 0 < |b − a| < 1, the double inequality

aβ3/(b−a)+1/2

bβ3/(b−a)−1/2
<

(
Γ(b)
Γ(a)

)1/(b−a)

<
aγ3/(b−a)+1/2

bγ3/(b−a)−1/2
(1.8)

holds if and only if β3 ≥ 1 − 1
2 |b − a| and γ3 ≤

1
2 .

(b) For |b − a| > 1, the double inequality (1.8) is reversed if and only if β3 ≤

1 − 1
2 |b − a| and γ3 ≥

1
2 .
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(4) Let s and t be real numbers, α = min{s, t}, and x ∈ (ρ,∞) ⊂ (−α,∞).

(a) For 0 < |t − s| < 1, the double inequality

(ρ + t)β4/(t−s)−1/2

(ρ + s)β4/(t−s)+1/2

(
Γ(ρ + t)
Γ(ρ + s)

)1/(t−s) (x + s)β4/(t−s)+1/2

(x + t)β4/(t−s)−1/2

<
(
Γ(x + t)
Γ(x + s)

)1/(t−s)

<
(ρ + t)γ4/(t−s)−1/2

(ρ + s)γ4/(t−s)+1/2

(
Γ(ρ + t)
Γ(ρ + s)

)1/(t−s) (x + s)γ4/(t−s)+1/2

(x + t)γ4/(t−s)−1/2

(1.9)

holds if and only if β4 ≤
1
2 and γ4 ≥ 1 − 1

2 |t − s|.
(b) For |t − s| > 1, the inequality (1.9) is reversed if and only if β4 ≥

1
2 and

γ4 ≤ 1 − 1
2 |t − s|.

R 1.4. We remark that taking a = x + 1
2 and b = x + 1 in the right-hand side

of (1.8) yields (
Γ(x + 1)

Γ(x + 1
2 )

)2

<
(x + 1

2 )3/2

(x + 1)1/2
=

(
1 −

1
2(x + 1)

)1/2(
x +

1
2

)
on (− 1

2 ,∞), which is obviously better than the inequality(
Γ(x + 1)

Γ(x + 1
2 )

)2

< x +
1
2

(1.10)

on (− 1
2 ,∞). The inequality (1.10) is a long-standing upper bound obtained in [12]. For

more information about the inequality (1.10), see [7, pp. 21–22, Section 3.1].

R 1.5. There have been some results similar to but different from our
Theorems 1.2 and 1.3. For details, see [10] or related contents in [7, 9].

2. Proofs of theorems

We are now in a position to prove our theorems.

P  T 1.1. For |s − t| = 1, by (1.5), we may equivalently discuss the
complete monotonicity of the function

δs,s+1;λ(x) =
1 − 2λ

2(x + s)(x + s + 1)
,

which follows obviously from the fact that the product of finitely many completely
monotonic functions is still completely monotonic.

For s = t, we may equivalently discuss the complete monotonicity of the function

ψ′(x) −
1
x
−
λ

x2

on (0,∞), which can be derived directly from [2, Theorem 2] and [6, Thorem 1.3]
mentioned above.
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For s , t and s − t , ±1, the function δs,t;λ(x) can be rewritten as

δs,t;λ(x) =
1

t − s

∫ t

s
ψ′(x + u) du −

1
2

((
1 −

2λ
t − s

) 1
x + t

+

(
1 +

2λ
t − s

) 1
x + s

)
.

Differentiating consecutively and employing the well-known formulas

ψ(k)(x) = (−1)k+1
∫ ∞

0

tk

1 − e−t
e−xt dt

and
1
xr

=
1

Γ(r)

∫ ∞

0
tr−1e−xt dt

for k ∈ N and positive numbers x > 0 and r > 0, we obtain

δ(k)
s,t;λ(x) =

1
t − s

∫ t

s
ψ(k+1)(x + u) du

−
(−1)kk!

2

((
1 −

2λ
t − s

) 1
(x + t)k+1

+

(
1 +

2λ
t − s

) 1
(x + s)k+1

)
=

(−1)k

t − s

∫ t

s

∫ ∞

0

vk+1

1 − e−v
e−(x+u)v dv du

−
(−1)k

2

((
1 −

2λ
t − s

) ∫ ∞

0
vke−(x+t)v dv+

(
1 +

2λ
t − s

) ∫ ∞

0
vke−(x+s)v dv

)
= (−1)k

∫ ∞

0

( 1
t − s

∫ t

s

v
1 − e−v

e−uv du

−
1
2

((
1 −

2λ
t − s

)
e−tv+

(
1 +

2λ
t − s

)
e−sv

))
vke−xvdv

= (−1)k
∫ ∞

0

( e−sv − e−tv

(t − s)(1 − e−v)
−

e−sv + e−tv

2
−
λ(e−sv − e−tv)

t − s

)
vke−xv dv

= (−1)k
∫ ∞

0

(( 1
1 − e−v

− λ
)e−sv − e−tv

t − s
−

e−sv + e−tv

2

)
vke−xv dv

= (−1)k
∫ ∞

0

( 1
1 − e−v

− λ −
(t − s)(e−sv + e−tv)

2(e−sv − e−tv)

)e−sv − e−tv

t − s
vke−xv dv

= (−1)k
∫ ∞

0

( 1
1 − e−v

−
t − s

2 tanh((t − s)v/2)
− λ

)e−sv − e−tv

t − s
vke−xv dv

for k ∈ {0} ∪ N. Therefore, if

λ ≤
1

1 − e−v
−

t − s
2 tanh((t − s)v/2)

=
2ev tanh((t − s)v/2) − (t − s)(ev − 1)

2(ev − 1) tanh((t − s)v/2)
, λ(v, t − s)

(2.1)
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for all v ∈ (0,∞), then

(−1)kδ(k)
s,t;λ(x) ≥ 0 and δs,t;λ(x) ∈ C[(−α,∞)];

if the inequality (2.1) reverses, then

(−1)kδ(k)
s,t;λ(x) ≤ 0 and −δs,t;λ(x) ∈ C[(−α,∞)].

Straightforward computation gives

∂λ(v, r)
∂v

=
1
4

r2 csch2
(rv

2

)
−

ev

(ev − 1)2
=

1
v2

((rv
2

)2

csch2
(rv

2

)
−

( v
2

)2

csch2
( v
2

))
.

Since the function x csch x is strictly positive and decreasing on (0,∞), it follows that

∂λ(v, r)
∂v

<0 if r > 1,

>0 if 0 < r < 1.

Accordingly, the function λ(v, r) is increasing for 0 < r < 1 and decreasing for r > 1 on
(0,∞). Using L’Hôpital’s rule yields

lim
v→0+

λ(v, r) = lim
v→0+

ev(2 tanh(rv/2) + r(sech2(rv/2) − 1))

2ev tanh(rv/2) + r(ev − 1) sech2(rv/2)
=

1
2
.

It is easy to see that

lim
v→∞

λ(v, r) = 1 −
|t − s|

2
.

Since the function λ(v, r) is even with respect to the variable r ∈ R with r , 0, for
0 < |t − s| < 1,

1
2
< λ(v, s − t) < 1 −

|t − s|
2

. (2.2)

Inequality (2.2) is reversed for |t − s| > 1. Consequently:

(1) the function δs,t;λ(x) is completely monotonic on (−α,∞) if either λ ≤ 1
2 and

0 < |t − s| < 1 or λ < 1 − 1
2 |t − s| and |t − s| > 1;

(2) the function −δs,t;λ(x) is completely monotonic on (−α,∞) if either λ ≥ 1 −
1
2 |t − s| and 0 < |t − s| < 1 or λ ≥ 1

2 and |t − s| > 1.

Conversely, if the function δs,t;λ(x) is completely monotonic, then δs,t;λ(x) ≥ 0 on
(−α,∞), which can be rearranged as

λ ≤ (x + s)(x + t)
( 1
t − s

∫ t

s
ψ′(x + u) du −

1
2

( 1
x + s

+
1

x + t

))
, λs,t(x).

From the proof of [8, p. 1981, Lemma 2.4],

1
2x2
−

1
6x3

<
1
x
− ψ′(x + 1) <

1
2x2
−

1
6x3

+
1

30x5
(2.3)
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for x > 0. From the left-hand inequality in (2.3) it follows that

λs,t(x) < (x + s)(x + t)

×

( 1
t − s

∫ t

s

( 1
x + u

+
1

2(x + u)2
+

1
6(x + u)3

)
du −

1
2

( 1
x + s

+
1

x + t

))
=

(x + s)(x + t)
t − s

log
x + s
x + t

− x +
1
2
−

s + t
2

+
(x + t)2 − (x + s)2

12(t − s)(x + s)(x + t)
→

1
2

as x→∞. Similarly, using the right-hand inequality in (2.3) yields

λs,t(x) > (x + s)(x + t)
( 1
t − s

∫ t

s

( 1
x + u

+
1

2(x + u)2
+

1
6(x + u)3

−
1

30(x + u)5

)
du

−
1
2

( 1
x + s

+
1

x + t

))
→

1
2

as x→∞. As a result, we have the limit

lim
x→∞

λs,t(x) = 1
2 .

Since xψ(x) = xψ(x + 1) − 1,
lim
x→0+

(xψ(x)) = −1.

From this it follows using a standard argument that

lim
x→(−α)+

λs,t(x) = 1 −
|s − t|

2
.

Therefore, if |t − s| < 1, then

λ ≤ lim
x→∞

λs,t(x) =
1
2
< 1 −

|s − t|
2

= lim
x→(−α)+

λs,t(x)

and if |t − s| > 1, then

λ ≤ lim
x→(−α)+

λs,t(x) = 1 −
|s − t|

2
< lim

x→∞
λs,t(x) =

1
2
.

The necessity for the function −δs,t;λ(x) to be completely monotonic can be similarly
reasoned by repeating the above procedure. The proof of Theorem 1.1 is complete. �

P  T 1.2. This follows from the fact that (log Hs,t;λ(x))′ = δs,t;λ(x), as
defined in Theorem 1.1, and the definition of logarithmically completely monotonic
functions. �

P  T 1.3. The double inequalities in (1.6) may be deduced readily from
the complete monotonicity of the function δ0,0;λ(x) shown in Theorem 1.1.
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With the help of the complete monotonicity of the function δs,t;λ(x) for s , t, it easily
follows that the double inequality

β2
(k − 1)!

t − s

( 1
(x + s)k

−
1

(x + t)k

)
<

(−1)k−1(ψ(k−1)(x + t) − ψ(k−1)(x + s))
t − s

−
(k − 1)!

2

( 1
(x + s)k

+
1

(x + t)k

)
< γ2

(k − 1)!
t − s

( 1
(x + s)k

−
1

(x + t)k

) (2.4)

holds on (−α,∞) if and only if β2 ≤
1
2 and γ2 ≥ 1 − 1

2 |s − t| for 0 < |t − s| < 1, and that
the double inequality (2.4) is reversed if and only if β2 ≤ 1 − 1

2 |s − t| and γ2 ≥
1
2 for

|t − s| > 1. Setting x + s as a and x + t as b in (2.4) produces (1.7).
As early as in 1948, by applying Hölder’s integral inequality to the definition (1.1)

of the gamma function Γ(x) and using the well-known formula Γ(x + 1) = xΓ(x), it was
established in [13] that the classical asymptotic relation

lim
x→∞

Γ(x + s)
xsΓ(x)

= 1

holds for real s and x. This implies that

Hs,t;λ(x) =
(x + t)λ/(t−s)

(x + s)λ/(t−s)
·

x
√

(x + s)(x + t)

(
xs−t Γ(x + t)

Γ(x + s)

)1/(t−s)

→ 1 (2.5)

as x→∞ for s , t. By virtue of Theorem 1.2, when 0 < |t − s| < 1, the function
Hs,t;λ(x) is decreasing on (−α,∞) if and only if λ ≥ 1 − 1

2 |t − s| and it is increasing
on (−α,∞) if and only if λ ≤ 1

2 . Hence, employing the limit (2.5) implies that the
inequality

(x + t)λ/(t−s)−1/2

(x + s)λ/(t−s)+1/2

(
Γ(x + t)
Γ(x + s)

)1/(t−s)

> 1 (2.6)

holds on (−α,∞) if and only if λ ≥ 1 − 1
2 |t − s| and reverses on (−α,∞) if and only

if λ ≤ 1
2 . Similarly, when |t − s| > 1, the function Hs,t;λ(x) is decreasing on (−α,∞) if

and only if λ ≥ 1
2 and it is increasing on (−α,∞) if and only if λ ≤ 1 − 1

2 |t − s|. This
leads to the conclusion that the reversed version of inequality (2.6) is valid. Finally,
the double inequality

(x + s)β3/(t−s)+1/2

(x + t)β3/(t−s)−1/2
<

(
Γ(x + t)
Γ(x + s)

)1/(t−s)

<
(x + s)γ3/(t−s)+1/2

(x + t)γ3/(t−s)−1/2
(2.7)

holds on (−α,∞) if and only if β3 ≥ 1 − 1
2 |t − s| and γ3 ≤

1
2 for 0 < |t − s| < 1; the

double inequality (2.7) is reversed if and only if β3 ≤ 1 − 1
2 |t − s| and γ3 ≥

1
2 for

|t − s| > 1. Furthermore, replacing x + s by a and x + t by b reproduces (1.8).
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The double inequality (1.9) comes from the fact that the inequality Hs,t;λ(ρ) >
Hs,t;λ(x) holds on (ρ,∞) if and only if either λ ≥ 1 − 1

2 |t − s| for 0 < |t − s| < 1 or λ ≥ 1
2

and |t − s| ≥ 1, and that it is reversed if and only if either λ ≤ 1
2 for 0 < |t − s| < 1 or

λ ≤ 1 − 1
2 |t − s| and |t − s| ≥ 1. The proof of Theorem 1.3 is complete. �

Acknowledgements

This paper was completed during the first author’s visit to the Research Group
in Mathematical Inequalities and Applications (RGMIA), School of Engineering and
Science, Victoria University, Australia, between March 2008 and February 2009, with
a grant from the China Scholarship Council. The first author would like to express
his sincere appreciation to RGMIA colleagues for their invitation and hospitality
throughout this period. The authors would like to thank the anonymous referees for
helpful corrections to and valuable comments on the original version of this paper.

References

[1] C. Berg, ‘Integral representation of some functions related to the gamma function’, Mediterr. J.
Math. 1(4) (2004), 433–439.

[2] C.-P. Chen and F. Qi, ‘Logarithmically completely monotonic functions relating to the gamma
function’, J. Math. Anal. Appl. 321 (2006), 405–411.
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