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1. Introduction. Let X and Y be topological spaces.
If Y is a uniform space then one of the most useful function
space topologies for the class of continuous functions on X to Y
(denoted by C) is the topology of uniform convergence. The
reason for this usefulness is the fact that in this topology C is

closed in YX (see Theorem 9, page 227 in [2] ) and consequently,
if Y is complete then C is complete. In this paper I shall

show that a similar result is true for the function space of
connectivity functions in the topology of uniform convergence and
for the function space of semi-connectivity functions in the graph
topology when XX Y is completely normal. In a subsequent
paper the problem of connected functions will be discussed.

2. Connectivity Functions.

2.1. DEFINITION. The graph of a function f: X =+ Y
is
G(f) = {(x,f(x))|x e X} CX X Y.

For a subset K CX,

G(f|K) = {(x, f(x))] x ¢ K} .

2.2. DEFINITION. A function f:X = Y is called a
connectivity function if and only if for each connected subset
K CX, G(flK) is connected. I shall denote by C‘1 the class
of all connectivity functions on X to Y. (This notation is due
to Professor D.E. Sanderson.)

If Y is a uniform space with uniformity v , then a basis
X .
for the uniformity of uniform convergence for Y is the

collection {W(V)!Ve v } where

W(V) = {(f, g) ¢ YX X YX I (f(x), g(x)) e V for all xe X} .
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For details see page 226 [2].

2. 3. THEOREM. I Y is a uniform space with

-1 X
uniformity  ,-then C is closed in Y in the topology of
uniform convergence.

- -1
Proof. Suppose f is a limit point of C ! but f/ c .
Then there exists a connected subset K C X such that

Gf|K) =A, UA, where A1#¢, A2#¢, AiﬂA2=¢=A1ﬂA2. Let
D4={x[(x,f(x))'eAi} CK and DzzK-Di. Then D1 and
D2 are not empty. Let W be an arbitrary element of , and

let V be a symmetric member of , suchthat Vo VoV CW.

Since f is a limit point of C-i, there exists a g ¢ C-1 such
that g(x) e V[f(x)] for all x ¢ X. Since V is symmetric,
f(x) € V[g(x)] for all x e X. Let F1 = G(ngi) and FZ = G(g IDZ).

-1 — -

Since g e C , either F1ﬂ szd or FzﬂFif 9 . Suppose
fzﬂ IS‘1 # @ . Then there exists a set {p, p me T}, where T
is a directed set such that p e Di' P € D2 for all ne T,

lim p =p and lim g(p ) = g(p). So there exists an me T
n n
neT ne T
such that for all n>m, g(p ) e V[g(p)]. So for n>m,
n 2

fp )« Vielp )]V oV [glp)]CVoVoVI[ip)]cWlt(p)]

So lim f(p ) =f(p). Thus (p,f(p)) e Kzﬂ A, whichis a con-
neT 1
tradiction. So f e C

Remark: In contrast to the above result it is well known
that the limit of a uniformly convergent sequence of connected
functions is not necessarily a connected function (see [4]).

2.4, COROLLARY. If Y is a complete uniform

-1
space then C is complete in the topology of uniform con-
vergence.

3. Semi-Connectivity Functions.

3.1. DEFINITION. A function f: X =+ Y is a semi-
connectivity function if and only if for each component K CX,
G(f[K) is connected. Let Q denote the class of all semi-

350

https://doi.org/10.4153/CMB-1966-044-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1966-044-4

connectivity functions on X to Y.

3.2. DEFINITION. For each open set U in X X Y,
X
let Fo={feY | G(f) CU} . The collection {Fy | U open in
X X Y} 1is a basis for "Graph Topology" TI'. For properties of
T see [3].

3.3. DEFINITION. A topological space is completely
normal if and only if whenever M and K are two separated

sets, there are disjoint open sets, one containing M and the
other containing K (see page 42 [1]).
3.4. THEOREM. If XXY is completely normal
X
then Q is closed in Y in the graph topology T.
Proof. Suppose f is a limit point of Q but f ¢ Q.

Then there is a component K C X such that G(f’K) is not
connected in X X Y. Then G(f|K) CAiu AZ where A, and

A2 are disjoint non-empty open subsets of X X Y, (see 3. 3).

Now K, being a component of X, is a closed subset of X and
so X - K is open. Also G(f) CA1U AZU (X -K)X Y. Since f

is a limit point of Q, there exists a g e¢ Q such that
G(g) CA JA,U (X - K)X Y. Clearly Glg [K) CAa,UA, a

contradiction. So fe¢Q and Q is closedin Y .

If X and Y are linearly orderable then C-1 = Q and we
have the following corollary.

3.4. COROLLARY. If X and Y are linearly
orderable spaces such that X X Y is completely normal then

C-1 is closed in the graph topology T.
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