## A NOTE ON COMBINATIONS

## M. Abramson and W. Moser

We call k integers  $x_1 < x_2 < \dots < x_k$  chosen from  $\{1,2,\dots,n\}$  a k-choice (combination) from n. With  $1,2,\dots,n$  arranged in a circle, so that 1 and n are consecutive, we have a circular k-choice from n. A part of a k-choice from n is a sequence of consecutive integers not contained in a longer one. Let  $\overline{A}_r(n,k;w)$  denote the number of circular k-choices from n with exactly r parts all  $\leq w$ . Of course  $\overline{A}(n,k;w) = \sum_r \overline{A}_r(n,k;w)$  r=1

is the number of circular k-choices from  $\, n \,$  with all parts  $\, \leq \, w \,$ . In this note we prove that

(1) 
$$\overline{A}_{r}(n,k;w) = \frac{n}{n-k} {n-k \choose r} \sum_{i=0}^{r} (-1)^{i} {r \choose i} {k-iw-1 \choose r-1}, \quad 0 < k < n$$

and deduce an expression for  $\overline{A}(n, k; w)$ , the numbers mentioned in [1, p. 593].

To establish (1) observe that circular k-choices from n can be conveniently represented by n-k symbols 0 (one for each integer not in the k-choice) and k symbols 1 (one for each integer in the k-choice) arranged in a circle, with one of the symbols marked (by a\* say) corresponding to the integer 1 (rising order being clockwise). For example, for n = 8,

|   | 1  |   |   |  |   |   | 0 |   |    |
|---|----|---|---|--|---|---|---|---|----|
|   | 0* | 0 |   |  |   | 0 |   | 1 |    |
| 0 |    |   | 0 |  | 0 |   |   |   | 1* |
|   | 1  | 1 |   |  |   | 1 |   | 1 |    |
|   | 1  |   |   |  |   |   | 0 |   |    |

represents

represents

2, 5, 6, 7

1, 2, 4, 8

We find the arrangements representing the choices counted in  $\overline{A}_r(n,k;w)$  as follows. Array n-k symbols 0 in a circle, forming n-k cells (the spaces between); label the cells so that they are distinguishable. Choose r of them in  $\binom{n-k}{r}$  ways.

The k symbols 1 may be distributed into the r chosen cells, with none empty, in C(k,r;w) ways, where C(k,r;w) is the number of r-compositions of k with all parts  $\leq w$ . We now mark one of the n symbols with a\*, obtaining

 $n\binom{n-k}{r}$  C(k,r;w) configurations. Removing the labels from the cells, the configurations fall into sets of n-k each which are the same by rotation. These

$$\frac{n}{n-k}\binom{n-k}{r} C(k,r;w)$$

arrangements represent the k-choices from n with r parts all  $\leq$  w. Since [4, p. 124] C(k,r;w) is the coefficient of  $x^k$  in  $(x + x^2 + \ldots + x^w)^r$ , it easily follows that C(k,r;w) = r  $\sum_{r=0}^{r} (-1)^i \binom{r}{i} \binom{k-iw-1}{r-1}$ , and hence (1). Furthermore

$$\overline{A}(n, k; w) = \frac{n}{n-k} \sum_{i=0}^{r} (-1)^{i} \sum_{\substack{\Sigma \\ r=1}}^{k-iw-1} {n-k \choose r} {r \choose i} {k-iw-1 \choose r-1} 
= \frac{n}{n-k} \sum_{i=0}^{r} (-1)^{i} {n-k \choose i} \sum_{\substack{\Sigma \\ r=1}}^{k-iw-1} {n-k-i \choose r-i} {k-iw-1 \choose r-1} 
= \frac{n}{n-k} \sum_{\substack{i=0 \\ i=0}}^{r} (-1)^{i} {n-k \choose i} {n-iw-i-1 \choose n-k-1} .$$

A similar argument in the "straight line case yields

(3) 
$$A_r(n,k;w) = {n-k+1 \choose r} \sum_{i=0}^r {(-1)^i \choose i} {r\choose i} {k-iw-1 \choose r-1}$$
.

Summing (3) over r yields [1]

$$A(n,k;w) = \sum_{i=0}^{r} (-1)^{i} {n-iw-i \choose n-k} {n-k+1 \choose i}$$

If we agree to let A(n, k; w) = 0 when n < 0 or k < 0 or n < k, the following recurrence relation holds for all values of n, k, w except n = k = w + 1:

(4) 
$$A_{r}(n, k; w) = A_{r}(n-1, k; w) + A_{r-1}(n-2, k-1; w) + A_{r}(n-1, k-1; w) - A_{r}(n-2, k-1; w) - A_{r}(n-w-2, k-w-1; w).$$

For sufficiently large values of w (say w = n), (1), (3) and (4) reduce respectively to relations (5), (3) and (7) given in [2]. (The proof of (5) in [2] is incorrect, because of an unfortunate error, although the formula is correct.)

Calling a pair of consecutive integers i, i+1 a succession, we see that a k-choice from n with exactly r parts contains exactly k-r successions. Hence the number of straight line or circular k-choices from n containing s successions and having all parts  $\leq$  w is respectively  $A_{k-s}(n,k;w)$  or  $\overline{A}_{k-s}(n,k;w)$ . With w large, the former reduces to a theorem of Riordan [3].

## REFERENCES

- M. Abramson, Restricted choices. Canad. Math. Bull. 8 (1965) 585-600.
- 2. M. Abramson and W. Moser, Combinations, successions and the n-kings problem. Math. Mag.
- 3. J. Riordan, Permutations without 3-sequences. Bull. Amer. Math. Soc. 51 (1945) 745-48.
- 4. , An Introduction to Combinatorial Analysis, New York, 1958.

McGill University