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IMAGINARY BICYCLIC BIQUADRATIC FIELDS
WITH THE REAL QUADRATIC SUBFIELD
OF CLASS-NUMBER ONE

HIDEO YOKOI

It has been proved by A. Baker [1] and H. M. Stark [7] that there
exist exactly 9 imaginary quadratic fields of class-number one. On the
other hand, G.F. Gauss has conjectured that there exist infinitely many
real quadratic fields of class-number one, and the conjecture is now still
unsolved.

In connection with this Gauss’ conjecture, we shall consider, in this
paper, a real quadratic field Q(v p) (prime p = 1 mod 4) as a subfield of
the imaginary bicyclic biquadratic field K = Q(v p, ¥ —q), which is a
composite field of Q(+v p) with an imaginary quadratic field Q(v —q) of
class number one, and give various conditions for the class-number of
Q' p) to be equal to one by using invariants of the relatively cyclic
unramified extension K/F over imaginary quadratic field F = Q(v —pq).

After notation in Section 1, we shall summarize in Section 2 well-
known properties of a relatively cyclic extension and an unramified ex-
tension respectively, which we shall use in this paper. In Section 3 we
shall consider the ideal class group of a cyclic unramified extension over
a finite algebraic number field. Finally, we shall investigate in Section
4 the imaginary bicyclic biquadratic field K = Q(v—q, v p), and give
some conditions for the class-number of real quadratic subfield Q(v/ p)
to be equal to 1.

§1. Notation

Generally, for an arbitrary finite abelian group B and its subgroup B/,
the order of B and the index of B’ in B are denoted by |B| and [B: B']
respectively.

For an arbitrary number field k, the following notation is wused
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throughout this paper:

E.: the group of units of &

C,: the group of ideal classes of &

h, =|C,|: the class-number of k

k: the absolute or Hilbert class field of k.

For a finite Galois extension K/F of a finite algebraic number field
F and the Galois group G = Gal(K/F), we shall denote by H’(G, B) the
r-dimensional Galois cohomology group of G acting on an abelian group B,
and by Q(B) the Herbrand quotient of B, i.e. @(B) = |HG, B)|/|HYG, B)|.

Furthermore, we shall use the following notation:

ITe(p): the product of ramification exponents of all finite prime divisors
p of F with respect to K/F

ITe(p..): the product of ramification exponents of all infinite prime
divisors p,, of F with respect to K/F

Ile(p) = He(p)-ITe(p.): the product of ramification exponents of all
finite and infinite prime divisors of F with respect to K/F

(e): the group of units of F

(): the group of those units of F which are norms of number of K

A: the group of ambiguous classes of C, with respect to K/F

a = |A|: the ambiguous class number of K/F

A,: the group of classes of C; represented by ambiguous ideals with
respect to K/F

a, = | Ay

Ay: the group of classes of C, represented by ideals of F

ar = |4p|

C4: the group of those classes of Cr whose ideals become principal
in K

h, = IC?W’|

Ng,»: the norm mapping with respect to K/F, and simultaneously
the homomorphism from Cy to C, induced by the norm mapping

J = jx/r: the homomorphism from Cr to C; induced by extension of
ideals

N = jo Ng,r: the endomorphism of C, defined as composed mapping
of Ny, and j.

§2. Preliminary results

In this section, we shall summarize several almost well-known
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results on a cyclic or an unramified extension, which we shall use in this
paper.

LeMma 1.° Let K[/F be a finite Galois extension of a finite algebraic
number field F, then
_ He(p)
(1) a,=hyr |HYG, Ey)|
(2) HAG,Ey) = (A)/(e) and |HYG, Ey)| = 0 (mod h,),
where (A,) is the group of ambiguous principal ideals of K with respect to
K|F and («) is the group of principal ideals of F.

LEmMA 2.2 Let K/F be a finite cyclic extension of a finite algebraic
number field F, then

_ _ Ile(p.)
(3) QEo=1, QE)= [

ITe(p)
4 =hp-— 2 = |NC|-|HYG, Cy
(4) e [K:Flle:n] | REK )
@ 1 .N. (E a, __ hy-ITe(p)

(8) Ile(p) =0 (mod [e: 1))

LemMa 3.» Let K/F be a finite Galois unramified extension of a finite
algebraic number field F, then

(7) H\G, Ey) = C%

(8) HXG,Ey) = A/A;

(9) a:hF.LHZ(G, E}g’)l.
|HY(G, Ey)|

§3. Cyclic unramified extension

Let F be a finite algebraic number field, and K be a finite cyclic
unramified (in all finite and infinite prime divisors) extension field. For
such extension K/F, we shall consider, in this section, the structure of
the ideal class group C; of K as Galois module.

ProrosiTioN 1. Let K/F be a finite cyclic unramified extension of a
finite algebraic number field F, then

1) For proofs, see Iwasawa [3], Yokoi [10].
2) For proofs, see Takagi [8, pp. 192-195], Yokoi [10].
3) For proofs, see Iwasawa [3].
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: _ he
(i) a= K F]’
where K* is the genus field with respect to K|F.

(ii) h, = |HG, Ex)| = [K: F]-[: Ng,»(Eg)]

(iﬁ) lHO(G’ CK)] = ng’nNK/F(CK)l

iv) [H%G, Cx)| =0 (mod|H(G, Eg))),
and |HG, Cy)| = |H G, Ey)| if and only if NCy = Ay

(v) any ambiguous class ideal of K|/F becomes principal in F.

ie. F=K*,

Proof.

(i), (ii) See Yokoi [10]

(iii) See Kisilevsky [4]

(iv) By Lemma 2, (5), [4: 4] is equal to [y: Nk, -(Ex)].
On the other hand, since [e: 5] =1 by Lemma 2, (6), it holds |H%G, Ey)|
= [: Nyg,z(Ex)], and so [4: 4] = |HYG, E)|. Hence it is clear from [4,:
A4;] = 1 that

|HYG, CK)I = [4: A)]-[A,: AF)-[4r: NCy]
= |H(G, EK)[ [4r: NC],

which implies easily assertion (iv).
(v) See Terada [9], and cf (i).

ProposITiON 2. In the extension K|F, any two conditions of the fol-
lowing (i) ~ (iii) are equivalent to each other:

(i) he=a, ie. Cyx=4

(i) K=K*, ie Cy =1,
where ¢ is a generator of the cyclic Galois group G = Gal(K/F).

(iil) Ker (Ny;r) =1, i.e. Ny,r: Cx — Cr is monomorphic.

Proof. Since [Cr: Ni,7(Cx)] = [K: F] and ¢ = h;/[K: F] hold by class
field theory and Proposition 1, (i) respectively, we get the following:

Ker (Ny/r) = 1 & | Ny#(Cy)| = hx
& hy = he|/[K; Fl &< hy = a.

On the other hand, it follows from C,/4 = C%° that
he=aé=Co=A& Ci' =1 K= K*,

ProposiTION 3. In the extension K|F, any two conditions of the fol-
lowing (i) ~ (iv) are equivalent to each other:

https://doi.org/10.1017/50027763000000441 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000000441

CLASS-NUMBER 95

(1) a=aq, le. A= A4,

(ii) [77: NK/F(EK)] =1

(i) HYG, Ep) =1

(iv) |H'(G, Ex)| = h, = [K: F]

Proof. (1) &< (i) It is evident by Lemma 2, (5) that (i) is equivalent
to (ii).

(ii) & (ili) Since K/F is a cyclic unramified extension, we get [e: 7]
= 1 immediately by Lemma 2, (6), and so

|HYG, Ey)| = [e: 7] [n: Ni/w(Ex)] = [t Niw(Ex)] .
Hence
|HYG, Ez) =1 if and only if [p: Ny -(Ex)]=1.

(ii) & (iv) It is clear by Proposition 1, (ii) that (ii) is equivalent to
@iv).

ProposITION 4. In the extension K|F, any two conditions of the fol-
lowing (i) ~ (iil) are equivalent to each other:

( i ) Cr = Cg’ X NK/F(CK)

(ii) Ker(N) = Ker(Ny,r)

({il)) HYG,Cyx) =1

Proof. (1) = (i1) Since N=jo Ng,r, it holds Ker (Ng,r) C Ker(N) in
general. If Cp = C% X Ng,#»(Cx), then Cr N Ng,7(Cx) = 1 holds, and hence
for any Cin Ker(N) we get N, »(C) € C%N Ny,»(Cx), and so C e Ker (Ng,r)-
Therefore we get Ker(N) C Ker (Ny,r).

(i) = (i1i) If Ker (Ny,r) = Ker(N), then for any C’ in C%N N, -(Cy),
it holds

¢ + Ng}p(C) € Nx)p(C%) = Ker(N) = Ker (Ng,r), and so C' = 1.

Hence we get C%N Ng,»(Cx) = 1, from which follows H(G, Cx) = 1 by
Proposition 1, (iii).

(il) == (@) If HYG, Cx) = 1, then C%N Ny,z(Cx) = 1 holds by Propo-
sition 1, (iii). On the other hand, by class field theory | N, z(Cx)|= h»[[K: F]
holds, and also by Proposition 1, (ii),

|ICel=hy,=0 (mod [K: F))

holds. Hence we get Cr = C% X Ny, »(Cx).
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CorOLLARY. In the extension K[F, if any one of 3 conditions in Propo-
sition 4 is satisfied, then each of 4 conditions in Proposition 3 is also
satisfied.

Proof. This assertion is an immediate consequence of Proposition 1,
(iv), Proposition 3 and Proposition 4.

§4. Imaginary bicyclic biquadratic field

Let p be a prime congruent to 1 mod 4, and ¢ be 1, 2 or a prime
congruent to —1 mod4. Put k, = Q(v — @), k.= QW p), F= QW —pq)
and K = QW — q, v p). Then, applying the results of Section 3, we shall
consider, in this section, the structure of the ideal class group Ci of K
as Galois module with respect to K/F, and under the assumption that the
class-number h; of &, is equal to 1, we shall give some kinds of conditions
for the class-number A, of k, to be equal to 1.

THEOREM 1. Let p be a prime congruent to 1 mod 4, and q be 1, 2 or
a prime congruent to —1 mod 4. Put F=Q(+ —pq) and K=Q(~ — q, v p).
Then, K|F is a cyclic unramified extension of degree 2, and moreover the
following (i) ~ (v) hold:

(i) K*=F

(ii) Ay = hp- e

(i) HYG, Ex) =1

iv) a=aq, ie A=A,

(V) ho =2
Here, h, and h, are the class-number of quadratic number fields k, = Q(v — q)
and k, = Q(+ p) respectively.

Proof. In the imaginary bicyclic biquadratic field K = Q(+v — q, v p),
the ramified finite primes are only p and g (or 2%), and their ramification
exponents with respect to K/Q are equal to theirs with respect to K/F
respectively (all of them are equal to 2). Hence K/F is unramified.

(i) F = K* follows immediately from Proposition 1.

(ii) Since p = 1 (mod 4), the fundamental unit ¢, of k, has norm —1.
Hence, we know first

hy = ﬁ%ﬁf—» (see, for example, Brown and Parry [2]).

4) In the special case of ¢ = 1, there is choosen 2 instead of q.
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(iii) Since Ny,z(e,) = N, (¢,) = —1, we get
(5) = —_{'-_ 1 = NK/F(EK) .
Hence
H(G, Ey) = ()| Ng,r(Ex) = 1.

@iv), (v) Both a =a, and h, = 2 are immediate consequences of
Proposition 3 and the above assertion (iii).

CoROLLARY. Let K/F be as in Theorem 1, then
(i) a=a,= hg/2
(ii) HY(G, Ey) is a cyclic group of order 2.

Proof. These two assertions are immediate consequences of Theorem
1 and Proposition 1.

THEOREM 2. If the class-number h, of Q(v'—q) is equal to 1, then any
two conditions of the following (i) ~ (v) are equivalent to each other:

(i) the class-number h, of Qv p) is equal to 1

(i) hx=aqa, ie. Cx=4

(i) K= K*, ie Ci =1

(iv) Nyr: Cx — Cy is monomorphic, i.e. Ker(Ny ) =1
(v) Jj: Cp— Cx is epimorphic, ie. j(Cp) = Cxg.

Proof. (1) & (ii) By Theorem 1, it follows from the assumption that
hy,=1 if and only if Ay = hz/2.
On the other hand, since a = h;/2 by Proposition 1, (i), we have that
h,=1 if and only if A, =a.

(il) &= (1ii) Since Cx/Ad = C¥%° and [Cg; C%°] = [K*: K], it is clear
that

Cr=A& Ci =16 K= K*.
(il) & (iv) Since Cy is finite,
Ker (Ny)p) =1 if and only if |Ng#(Ck)| = hx.
On the other hand, since [Cr: Ny, »(Cr)] = 2 by class field theory,
| Ny, pr(Cr)| = by if and only if Ay = h;/2,

which is equivalent to A; = a.
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(ii) & (v) Since Cy/C% = j(Cy) and |C%| = 2 by Theorem 1, we get
[J(Cr)| = [Cr: CF] = hg/2.
Hence, for C; D j(Cr) we have

Cx =j(CF) ES hy = hpl2 & by = a.
Consequently, j is epimorphic if and only if Ay, = a.

PropoSITION 5. If the class-number h, of Q(v — q) is equal to 1, then
it is necessary for the class-number h, of Q(W p) to be equal to 1 that the
following conditions (i) ~ (iil) are satisfied:

(1) HYG, Cyg) =1 or cyclic group of order 2

(ii) 2 rank s of the ideal class group Cx of K is equal to 0 or 1

(i) all ideals of K become principal in F.

Proof. (i) By Theorem 1, (v), it follows from C% D C% N Ng,»(Cx)
that

|CF N Nyp(C)l =1 or 2,
and hence we know by Proposition 1, (iii)
|HY(G, Cx)| =1 or 2.
(i) By Theorem 2 it holds Cx = A4, which implies
NCy =NA= A4 = C%.
Thus we get
|HYG, Cx)| = [4: NCx] = [Ck: C%k] = 2¢

b

and hence the assertion (ii) implies s = 0 or 1.

(iii) The assertion (iv) follows immediately from C; = 4 by Propo-
sition 1, (v).

ProposITION 6. Under the assumption h, = 1, if we assume moreover

h, = 1, then any two conditions of the following (i) ~ (iv) are equivalent to
each other:

(i) (%)=—1,

where (—) is the Legendre-Jacobi-Kronecker symbol.
(i1) hp %= 0 (mod 4), ie. 2||hz
(iil) 2 rank s of Cy is equal to 0, ie. (hg 2)=1
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(iv) H™G, Cx) =1 for any integer n.

Proof. (i)&= (ii) It is an immediate consequence of Rédei and
Reichardt’s theorem that

By = 0 (mod4) if and only if (ﬂ) -1
(see Rédei and Reichardt [6]) .

(i1) & (iii) Since assumption A, = h, = 1 implies h, = h;/2 by
Theorem 1, (ii), it is clear that

(hg,2) =1 if and only if A, = 0 (mod 4).

(iil)) & (iv) By Theorem 2, assumption h;, = h, = 1 implies C; = 4.
On the other hand,

(hx,2) =1 if and only if C% = C,.
Hence, if (hx, 2) = 1, then we get
NCy,=NA=A=C4=Cy=04A4,

which shows HG, Cy) = AINC, = 1, and by Lemma 2, (3) H (G, Cy) =1
holds for any integer n. Conversely, if H*(G,C;) =1 holds for any
integer n, then in particular HY(G, C;) = 1 implies 4 = NC;. Hence we
get

Cy=A"= NA=NC, = A4=Cg,
which shows (g, 2) = 1.

PropositioN 7. Under the assumption h, = 1, if the endomorphism N
of Cy is epimorphic or monomorphic, the following conditions (i) ~ (iii) are
satisfied:

(i) h,=1

(i1) H™(G, Cy) = 1 for any integer n

(iii) 2 rank s of Cx is equal to 0,

ie. (hg,2) =1

Proof. Since C, is a finite abelian group, the following conditions
(1°) ~ (8°) for the endomorphism N of C, are equivalent to each other:

1°) N is epimorphic

2°) N is monomorphic

3°) N is automorphic.
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In this case, it follows from C; = NCy that Cy = A = NC; holds,
which implies 2° = [Ck: C%] =1 because C% = A* = NA = NC; = Cy.
Thus we know s = 0, which is assertion (iii).

Moreover, by Theorem 2, C, = A4 implies h, = 1, which is assertion (i).

On the other hand, 4 = NC, implies HYG, Cyx) = A/NCy, = 1, and
hence by Lemma 2, (3) we get H(G, Cx) = 1 for any integer n. Thus,
we can complete the proof of Proposition 7.

Finally, we give some examples.

P : q I hy ] hy ] hp a ’ hx

5 1 1 1 2 1 1|

17 2 1 1 4 2 2 |

13 2 1 1 6 3 3

41 1 1 1 8 4 4 |
53 3 1 1 10 5 5

229 3 1 3 26 13 39 i
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