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ON APPROXIMATION BY
TRIGONOMETRIC LAGRANGE INTERPOLATING POLYNOMIALS

T.F. X1 AND S.P. ZHoU

It is well-known that the approximation to f(z) € Cix by nth trigonometric La-
grange interpolating polynomials with equally spaced nodes in Cax has an upper bound
In(n)En(f), where E,(f) is the nth best approximation of f(z). For various natural
reasons, one can ask what might happen in L? space? The present paper indicates that
the result about the trigonometric Lagrange interoplating approximation in LP space for
1 < p < oo may be “bad” to an arbitrary degree.

Let L}, be the class of integrable functions of power p and of period 27, Cy, be
the class of continuous 2w-periodic functions and T}, be the trigonometric polynomials
of degree at most n.

For f € L}, Su(f,z) is the nth partial sum of the Fourier series of f(z); for f €
., E.(f),, is the nth best approximation of f(z) in L? space; for f € Czx Lu(f,2)
is the nth trigonometric Lagrange interpolating polynomial of f(z) with equally spaced

nodes; that is

Lu(f,2) = ) f(zi)li(=),

k=0

where

1 sin(n-+1/2)(z —zx)

(=) = 2n+1  sinl/2(z — zy)
2km
Zk:m, k=0,1,...,2n.

The norm of f € L}, is defined as follows.

27 1/p
ufuu=(/0 If(w)l"dx) . 1<p<oo,

A = I flleee = pJnax If(z)], p=oo.
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It is well-known that
(1) Snll = sup{lISnfll: IIfll =1} ~In(n +1),
which means that there exists a positive constant M independent of n such that
M In(n4+1) < ||Sa]| < MIn(n+1),
so the factor In(n 4- 1) in the following inequality

lf = Sa(H)ll = 0(ln(n + 1) En(f)) for f € Cox

cannot be omitted. However, in L? space for 1 < p < co, by the Riesz theorem (see
[2]), a beautiful result is obtained for f € L} _, namely:

(2) If = SalPllee < cpEn(f),,

where ¢, is a positive constant depending only upon p. Below for convenience the
symbol ¢; will denote a positive constant depending only upon at most p.
On the other hand, we can also see that (see {1])

3 Ll ~ 1o (n+1).
From (1) and (3), together with (2), it seemns reasonable to guess that for 1 < p < oo,

| f = La(F)llee < CpEn(f)p’ f € Cax.

Unfortunately, this is not true, as the following example shows.

THEOREM. Let 1 < p < oo and let {\,} be a positive decreasing sequence of
real numbers such that n’A, — 0 for any s > 0. Then there exists an infinitely
differentiable function f € Cy, such that

— _If = L)l

oo An If = Su(F)ller

LEMMA 1. Let 1 < p < 2. Then there exists a trigonometric polynomial g,(x)
such that

(4) "gn - Ln(gn)”LP z2 c’\;snl/q; l/p + l/q =1,
(5) lgn = Sn(gallze = 0(352/2n112).
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PROOF: Set
731 m(zn41)4n-1

=Y > coska.

m=1 k=m(2n+1)
Since cos(m(2n + 1)+ j)zx = cosjz, for 0 < j K n—1 and 0 < k < 2n, and
n-1
L.(f,z) € Tn, La(gn,z) = Y, [A;%]cosjz. Applying the Hausdorfl-Young inequality

=0
(see [2]) we have

1/q

n—1
lgn — La(galllze > cs| DA > cad;*nl/e.
i1

On the other hand ||gn — Sn(ga)llLr = |lgnllLr < csllgn|lL2, so, from the Parseval
equality, we have ||gn — Sn(gn)llzr = 0(/\,:3/2711/2) , and we have proved (4) and (5). [

Similarly, with a slight change to gn(z), applying the Holder inequality to ||lgn —
L.(gn)llzr, and the Hausdorfl- Young inequality to ||g, — Sn(gn)||Lr , we can obtain the
following lemma in the case of 2 < p < 00.

LEMMA 2. Let 2 < p < oo. Then there exists a trigonometric polynomial g}(z)

such that
(6) gt = La(g2)llze > c2AStnl/2,
(1) lgs = Salgmllzs = 0(A491/),  1/p+1/g=1.

PROOF OF THE THOEREM: First suppose that 1 < p < 2. Let n; = 8, select njy,
such that
; a.nd nj+1 ? A;‘?.

Define f(z) by

oo

=Y Algn;(=).
j=1

It is clear that f € Cy, is infinitely differentiable. Minkowski’s inequality implies that

If = Loy (F)lle = Ak llgn, — Ly (g, ) lze

(A73) m(2n;+1)+n—1

L /\n; }_‘ Z || cosiz — L, (coslt,z)|| e,

j=k+1 m=! A=m(2n;+1)
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so, by (3) and (4),

(8)  Nf = Lay(Fuoll > et nt/ -0 37 AU > caXitny/t —o(a32).
j=k+1

At the same time, from (5),
©) If = Su(N)llze < ZA,.J lgn; — Sni (9m; ) 12r = 0(Ap=4/20/%) = 0(2m2~2).

Combining (8) and (9) we get, for sufficiently large k,

If = Loy (llzs
_ e > A
1/ = S (Dllze = 7

thus in this case the theorem is proved. For the case 2 < p < o0, taking ¢t = 3p/2 and
starting from (6) and (7), we can construct the function required in a similar way. The
proof of the theorem is cownpleted. 1]

In L' space there is also such a “bad result”; we will discuss it in another paper
using a different method of construction.
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