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Abstract
Geometric parameters in general and curvature in particular play a fundamental role in our understanding of the
structure and functioning of real-world networks. Here, the discretisation of the Ricci curvature proposed by
Forman is adapted to capture the global influence of the network topology on individual edges of a graph. This
is implemented mathematically by assigning communicability distances to edges in the Forman–Ricci definition
of curvature. We study analytically both the edge communicability curvature and the global graph curvature and
give mathematical characterisations of them. The Forman–Ricci communicability curvature is interpreted ‘phys-
ically‘ on the basis of a non-conservative diffusion process taking place on the graph. We then solve analytically
a toy model that allows us to understand the fundamental differences between edges with positive and negative
Forman–Ricci communicability curvature. We complete the work by analysing three examples of applications of
this new graph-theoretic invariant on real-world networks: (i) the network of airport flight connections in the USA,
(ii) the neuronal network of the worm Caenorhabditis elegans and (iii) the collaboration network of authors in
computational geometry, where we strengthen the many potentials of this new measure for the analysis of complex
systems.

1. Introduction

Graphs G = (V , E) are excellent mathematical objects to represent the networked nature of complex
systems [21, 22]. One way of characterising the structure of these networks is by using functions of
matrices [40] representing graph structure, e.g., adjacency matrix, Laplacian matrices, shortest-path
distance matrix, etc. [7]. In particular, the definition of the so-called network communicability functions
[28, 31] has opened many avenues for exploring the relations between network structure and dynamical
processes taking place on them [1, 2, 13, 30, 33, 37]. A very attractive characteristic of these functions
is that they induce geometric embedding of the graphs into Euclidean spherical spaces [32], allowing
the definition of communicability distance functions [20, 23] and angles [29], which can be proved to be
connected with non-conservative (NC) diffusive dynamics on the graphs [24] (see references in [24] for
the context in which NC diffusion is important). Consequently, communicability geometric functions
represent a way to connect graph structure with geometric concepts and dynamical processes taking
place on them.

In network geometry [9], where the study of communicability geometry is framed, the concept of
curvature [47] plays a fundamental role. Therefore, it has naturally triggered interest for its use to char-
acterise network structure [12]. As a way of characterising the deviation of a geometrical object from
being flat, the concept of curvature has found many applications in network theory in a variety of real-
world scenarios [6, 11, 18, 19, 35, 45, 49, 51–53, 55, 58, 60]. There have been several approaches to
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characterise the discrete curvature in graphs, such as the Gromov-hyperbolic curvature [12, 39, 41], the
combinatorial curvature [18, 48], discretizations of Ricci curvature [8, 56], such as the Ollivier–Ricci
curvature [50], the Bakry–Émery Ricci curvature [3] and the Forman–Ricci curvature [34], as well as
ad hoc network curvatures [15, 16] which are related to discretizations of Ricci curvature. The three
discrete Ricci curvatures previously mentioned have been compared [51] for the analysis of biological
networks where they were shown to yield similar results. However, Forman–Ricci curvature has been
pointed out by several authors as having some advantages over the others. For instance, it can be defined
on directed positively weighted networks [51]. It does not require such intensive calculations like the
Ollivier–Ricci curvature, which necessitates solving a linear programming problem [55], and it is nat-
urally related to edges, which are the discrete analogue of a vector in a graph/network. Also, the fact
that the Forman–Ricci curvature (see next section) is defined using weights for edges allows the use of
edge invariants based on communicability functions, such as communicability distance, to characterise
the influence of the global topology of a network on the curvature of an edge. The use of other dis-
tances, such as the resistance distance [42], is also appropriate in this context. It has been implemented
in some ad hoc curvature measures, such as in refs. [15, 16]. However, contrary to what happen with
the communicability distance, the resistance distance and the shortest path distance are identical for
trees. This makes that the Forman–Ricci curvature based on resistance distance for trees depends only
on the degree of the corresponding edge (see further in this work), removing any influence of the global
topology of the graph on its curvature. It has also been proved that the resistance distance is useless
for network navigability in relatively large graphs [57], which also adds a negative point on its use for
network analysis.

Here, we consider the Forman–Ricci curvature of a graph in which every edge is characterised by
its communicability distance. In this way, every edge ‘feels‘ the influence of the global topology of the
graph. We first define the edge Forman–Ricci communicability curvature and give some characterisation
of it. We then define the global Forman–Ricci communicability curvature as the sum of edge curvatures
and give a structural and physical interpretation of its meaning. We build a toy model which we solve
analytically allowing us to understand the fundamental differences between edges with positive and
negative communicability curvature. Additionally, we provide analytical and computational evidence
about the meaning of the positive/negative global curvature of graphs on the basis of NC diffusive
dynamics taking place on the graph. Finally, we provide three examples of applications of this new
graph invariant on real-world networks: (i) the network of airport flight connections in the USA, (ii) the
neuronal network of the worm C. elegans and (iii) the collaboration network of authors in computational
geometry.

2. Preliminaries

Here, we consider undirected graphs G = (V , E) with set of vertices V = {v1, . . . , vn} and set of edges
E = {e1, . . . , em}. The adjacency matrix of the graph is designated by A with entries Aij equal to the
weight of the corresponding edge or zero otherwise. The degree of a vertex v is the sum of the weights
of edges incident to it and is designated by kv. Except if we say otherwise, we will mainly consider
unweighted graphs, i.e., Ai,j = 1 if (i, j) ∈ E or zero otherwise. The following standard graph theoretic
notation is used: Pn for path graph on n vertices – a graph with all vertices of degree two but two vertices
of degree one; Cn for cycle graph on n vertices – the graph with every vertex of degree two and Kn for
complete graph on n vertices – the graph with every pair of vertices connected. A complete bipartite
graph Kn1,n2 is a graph formed by two disjoint sets of vertices V1 ∪ V2 of n1 and n2 vertices, respectively,
such that every vertex in V1 is connected to every vertex in V2 and vice versa. The star graph is the
complete bipartite graph Kn−1,1. A hypercube graph Qn is the graph formed from the vertices and edges
of an n-dimensional hypercube.

A walk of length k is a sequence of (not necessarily different) vertices x1, x2, . . . , xk, xk+1 such that
for each i = 1, 2, . . . , k there is an edge from xi to xi+1. The walk is closed if xk+1 = x1. A path between
two vertices is a walk without repetition neither of vertices nor of edges. A closed path is a cycle.
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The number of walks of length k between vertices v and w is given by
(
Ak
)

vw
. Then, we have the following

[28, 31].

Definition 1. Let G = (V , E) be a graph and let v, w ∈ V be two vertices (not necessarily adjacent).
Then, the communicability function between the two vertices counts the total number of walks between
them by giving more weight to the shorter than to the longer ones by means of a factorial penalisation:

Γv,w (G) :=
∞∑

k=0

(
Ak
)

vw

k! = (eA
)

vw
, (1)

where eA is the matrix exponential of A (see [40] for matrix functions).

The term Γv,v (G) is also known as the subgraph centrality [31] of the vertex v and accounts for the
total number of weighted walks that starts and ends at the same vertex. That is, it accounts for the number
of a sort of dead ends walks. The term Γv,w (G) for v �= w accounts for the communicable routes between
the two vertices. Therefore, the following quantity has been defined [20].

Definition 2. Let v and w be two distinct vertices of the graph G. Let

ξv,w := Γv,v (G)+ Γw,w (G)− 2Γv,w (G). (2)

Theorem 3. [20] Let Λ be the diagonal matrix of eigenvalues of A and let V be the matrix whose
columns are its orthonormalised eigenvectors. Then, the quantity ξv,w is a squared Euclidean distance
between the vertices v and w of G, which can be written as

ξv,w = ‖xv − xw‖2 , (3)

where xv := eΛ/2ϕv is the position vector of the vertex v in the Euclidean space and ϕv is the vth
row of V .

Therefore, the term ξ̃v,w :=√ξv,w is called the communicability distance between the pairs of vertices
v and w of the graph.

The communicability function can be generalised to Γv,w (G, β) := (eβA
)

vw
where β ∈R [27] is a

parameter and so ξv,w (β) := Γv,v (G, β)+ Γw,w (G, β)− 2Γv,w (G, β) is the squared communicability dis-
tance. Let D (β) ∈R

n×n be the matrix whose non-diagonal entries are ξv,w (β) and zero otherwise. Then,
D (β) is called a Euclidean distance matrix, and the vertices of the graph represent points p1, p2, . . . , pn

in some Euclidean space R
r [4, 17, 38, 43].

The communicability function and the geometry induced by it are related to some parameters of
diffusive dynamics taking place on the graph. Therefore, we will introduce here the basic concepts
of such dynamics to be used in this work. Let C (t) ∈R

n×1 be a vector of concentrations of items at
the vertices of G at the time t, and let the entries of Ċ (t) be the change of these concentrations in
time, i.e., Ċi (t)= dCi (t) /dt, according to a diffusive process of the type: Ċ (t)= −LC (t) , with initial
condition C (0)= C0, where the graph Laplacian operator is L = K − A, where K is the diagonal matrix
of vertex degrees and A is the adjacency matrix of the graph [24]. The solution of the diffusion equation is
C (t)= exp (−tL)C0. Let us take the sum of the entries of C (t) at an arbitrary time t, 1TC (t)= 1Te−tLC0,
and expand it using the Taylor series:

1TC (t)= 1TC0 − t1TLC0 + t2

2!1TL2C0 + · · · +
(
(−1)k tk

k!
)

1TLkC0 + · · · . (4)

Then, because L is positive semidefinite, we have that 1TL = 0 and so
(
1TL
)

Lk−1 = 0, so that 1TC (t)=
1TC0 for any t. This means that the total concentration of items is conserved at the vertices of the graph
in time. We call this process a conservative diffusion.

Let us now replace the standard graph Laplacian L by the Lerman–Ghosh Laplacian Lχ := χ I − A,
which was first analysed in [36, 44]. Let us then consider the following diffusive process

Ċ (t)= − (χ I − A)C (t)= −LχC (t), (5)
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with initial condition C (0)= C0. The solution of (5) is given by

C (t)= e−t(χ I−A)C0. (6)

Obviously, the communicability function is exactly the concentration C (t) when χ = 0 and t = 1.
Other connections will be evident across this paper.

Theorem 4. [24] Let G be a simple graph and let λ1 be the spectral radius of its adjacency matrix.
Let ψ1 be the normalised eigenvector corresponding to λ1. Then, the solution of the diffusion model (5)
is given by

lim
t→∞

C (t)=

⎧⎪⎨
⎪⎩
(
ψT

1 C0
)
ψ1et(λ1−χ) = ∞ for χ < λ1(∑

j C0
jψ1 (j)

)
ψ1 for χ = λ1(

ψT
1 C0
)
ψ1e−t(χ−λ1) = 0 for χ > λ1.

(7)

Therefore, the concentration of items at the vertices of G is not conserved in time, i.e., it may
diverge if χ < λ1, vanish if χ > λ1, or reach a steady state with sum of concentrations smaller than the
ones in C0 if χ = λ1. If G is a regular graph, then, the diffusion model (5) with χ = λ1 is conservative

for any initial condition, where lim
t→∞

Ci (t)= 1

n

∑
j C0

j for all j ∈ V . If the graph is not regular and C0 �=ψ1

then the process is NC and 0<C (t) <C0 <∞. Thus, we call this process the NC diffusion model on
the graph.

3. Definition of edge communicability curvature

Let us start by introducing the definition of the Forman–Ricci curvature of an edge in a graph (for details
see [34]).

Definition 5. The Forman–Ricci curvature of an edge e = (v, w) ∈ E is defined by

Fe := we

(
wv

we

+ ww

we

−
∑
el∼v

wv√
wewel

−
∑
el∼w

ww√
wewel

)
, (8)

where wv, ww and we are the weights of vertices v and w, and of edge e. The sums over el ∼ k run over
all edges el incident on the vertex k excluding e, and in case the vertex has degree one, this term is taken
to be zero.

Remark 6. Let G be an unweighted graph, i.e., wv = ww = we = 1. Then,

Fe := 2 − (kv − 1)− (kw − 1)= 4 − kv − kw, (9)

which will be called here the unweighted Forman–Ricci curvature.

In this definition, an edge e of the graph could be weighted by any we ∈R. Therefore, a natural way
of proceeding is to consider that every edge of the graph is weighted by its communicability distance.
We introduce this formulation here in a formal way.

Let us consider every edge e = vw in E as a compact one-dimensional manifold with boundary ∂e =
v ∪ w. Let the edge e = vw be given the metric Lvw, such that [10, 46]

ẽvw
∼=

isom

{
[0, ξvw] (v, w) ∈ E

0 (v, w) /∈ E

]
. (10)

We then extend the distance metric Lvw on the edges of G via infima of lengths of curves in the
geometrisation of G [10, 46]. This can be practically implemented as follows.

Definition 7. Let D (β) be the square, symmetric matrix whose v, w entries are ξvw (β). Then, W (β) :=
A � D (β)= D (β)� A is the weighted adjacency matrix of G, where every edge receives a weight equal

https://doi.org/10.1017/S0956792525000014 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000014


European Journal of Applied Mathematics 5

Figure 1. Illustration of four trees for which we report the values of the edge curvature for the edge
marked by the two black vertices.

to the communicability distance between the pair of vertices forming the edge. Here, � is the Hadamard
product (also Schur or entrywise product) of two matrices defined for any two matrices P � Q as the
matrix with entries (P � Q) ij = (P)ij (Q)ij .

Definition 8. Let G̃ (β) be the weighted graph whose adjacency matrix is given by W (β). Then, the
communicability Forman–Ricci curvature of an edge e = (v, w) ∈ E in G̃ (β) is given by

Ce=v,w (G, β) := 2 −
∑
k∼v

√
ξvw (β)

ξvk (β)
−
∑
k∼w

√
ξvw (β)

ξwk (β)
, (11)

where k �= v, w, and where the first sum is carried out for all edges which are incident to the vertex v and
the second sum is for all edges incident to the vertex w. If such edge does not exist, the term is taken to
be zero.

Example 9. Let us consider the trees illustrated in Figure 1. We selected these trees because of the
following reasons. The first is that the edge (v, w) ∈ E marked in black in the graphs has the same edge
degree (kv + kw − 2); therefore, they have the same unweighted Forman–Ricci curvature. Because the
resistance distance and the shortest path distances coincide for trees, the resistance curvature [15] for
these edges is exactly the same for this edge in the four trees. However, the edges are surrounded by very
different topological environments in those trees.

In Table 1, we give the values of C(v,w) using β = 1 for the marked edge in the four trees of Figure 1.
As can be seen, the communicability curvature changes systematically from graph a) to d) indicating
the influence of the global topology on the otherwise locally equivalent edges.

We then have the following result.

Lemma 10. Let Fe=v,w (G) be the unweighted Forman–Ricci curvature edge (v, w) ∈ E in the sim-
ple graph G, and let Ce=v,w (G, β) be the Forman–Ricci communicability curvature of the same edge.
Then,

lim
β→0

Ce=v,w (G, β)= Fe=v,w (G). (12)
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Table 1. Values of the communica-
bility curvature for the four trees
in Figure 1. The edge v, w has the
same unweighted Forman–Ricci cur-
vature as well as the same resistance
distance curvature [15] in the four
graphs, which are equal to −4. All the
calculations were performed by using
β = 1

graph C(v,w)

a −4
b −4.7642
c −5.0955
d −5.1839

Proof. Let us define s (β) := diag
(
eβA
)

as the column vector formed by the main diagonal entries of
eβA. Then,

D (β)= s (β) 1T + 1s (β)T − 2eβA. (13)

Then, lim
β→0

eβA = Id where Id is the identity matrix. Therefore, lim
β→0

D (β)= 2 (J − Id), where J = 11T is
an all-ones matrix and lim

β→0
Ce=v,w (G, β)= 4 − kv − kw, which proves the result.

Remark 11. If we interpret β = (kT)−1 (see [27]) as the inverse temperature of a thermal bath in which
the graph is submerged to, then, the unweighted Forman–Ricci curvature represents the Forman–Ricci
communicability curvature when the temperature goes to infinity, which is an extreme case where the
structure of the graph beyond the nearest neighbours of the vertices is not taken into account.

Lemma 12. Let Pn be the path graph with n vertices labelled in increasing order from one of its pendant
vertices. Then, for any β ∈R,

C1,2 (Pn, β) > 0. (14)

Proof. As we have proved before in this case C (Pn, β)= F (Pn)= 2, which is positive. Then, let us
focus on β �= 0. Let us label the vertices of Pn in consecutive order from one of the pendant vertices. Let
i ≤ n/2 (n even) or i ≤ (n + 1) /2 (n odd) be any vertex of Pn, then the communicability distance of the
edge (i, i + 1) ∈ E for sufficiently large n is given by [20]

ξi,i+1 (β)= 2I0 (2β)− 2I1 (2β)− I2i (2β)− I2(i+1) (2β)+ 2I2i+1 (2β), (15)

where

Iγ (z) := 1

π

∫ π

0

ez cos θ cos (νθ) dθ , (16)

is the modified Bessel function of the first kind. Let

C1,2 (Pn, β)= 2 −
√
ξ1,2 (β)

ξ2,3 (β)
(17)

We now prove that √
ξ1,2 (β)

ξ2,3 (β)
< 2. (18)
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For it, we write √
2I0 (2β)− 2I1 (2β)− I4 (2β)− I2 (2β)+ 2I3 (2β)

2I0 (2β)− 2I1 (2β)− I4 (2β)− I6 (2β)+ 2I5 (2β)
?
< 2, (19)

so that

2I0 (2β)− 2I1 (2β)− I4 (2β)
?
> 2I3 (2β)− I2 (2β)− 8I5 (2β)+ 4I6 (2β), (20)

which is arranged to

2I0 (2β)+ I2 (2β)+ 8I5 (2β)
?
> 2I1 (2β)+ 2I3 (2β)+ I4 (2β)+ 4I6 (2β). (21)

Using the recursive formula for the modified Bessel function of the first kind: Ir+1 (z)= Ir−1 (z)− 2

z
Ir (z),

we have

2I0 (2β)+ 3

β
I3 (2β)+ 8I5 (2β)

?
> 2I1 (2β)+ 2I3 (2β)+ 4I6 (2β). (22)

Because I0 (2β) > I1 (2β) and 8I5 (2β) > 4I6 (2β) we have that, for any β < 3/2,
3

β
I3 (2β) > 2I3 (2β),

such that the previous inequality is true. Let us now consider the case β > 3/2 and prove whether
3

β
I3 (2β)+ 8I5 (2β)

?
> 2I3 (2β)+ 4I6 (2β). (23)

We rewrite it as (
3

β
− 2

)
I3 (2β)

?
> 4I6 (2β)− 8I5 (2β), (24)

so that we have (
3

β
− 2

)
I3 (2β) > 0> 4 (I6 (2β)− I5 (2β))− 4I5 (2β), (25)

which proves that C1,2 (Pn, β) > 0 for any β ∈R.

Definition 13. Two edges e1 and e2 are automorphically equivalent if there is a permutation of the two
edges that leave the adjacency matrix of G unaltered. That is, if P is the permutation matrix correspond-
ing to a permutation π of the vertex set of a graph G, and A is the adjacency matrix of the graph, then
π is an automorphism of G iff PAPT = A. The orbit of an edge d is the set of all edges e ∈ E in the graph
G = (V , E) such that there is an automorphism φ such that φ (d)= e. The graph in which all the edges
are in the same orbit is known as edge-transitive graph.

Lemma 14. Let G be an edge graph in which every pair of vertices are automorphically equivalent.
Then,

Ci,j (G, β)= Fi,j (G), (26)

Proof. Two edges which are automorphically equivalent have the same communicability distance.
Therefore, in the edge-transitive graph, all edges have the same communicability distance, i.e., ξwk (β)=
ξvw (β) for every edge (w, k) ∈ E. Consequently,

∑
k∼v

√
ξvw (β)

ξvk (β)
= kv − 1 and so Ce (G, β)= 4 − kv −

kw = :Fe (G).

Corollary 15. Let Cn, Qd, Kn1,n2 , and Kn be the cycle graph on n vertices, the hypercube graph of dimen-
sion d, the complete bipartite with partition V1 ∪ V2 = V and #V1 = n1, #V2 = n2 and the complete graph
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on n vertices, respectively. Let (i, j) ∈ E be any edge in each of these graphs. Then,

Ci,j (G, β)= Fi,j (G)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 G = Cn

4 − 2d G = Qd

4 − n1 − n2 G = Kn1,n2

2 (3 − n) G = Kn.

(27)

3.1 What is the meaning of the communicability curvature?

To understand the meaning of the communicability curvature of an edge, we will start by considering
the NC diffusion dynamics described in Preliminaries (see also [24]). For the sake of simplicity, let us
consider the case χ = 0 in Lχ := χ I − A, such that Lχ = −A, (for χ �= 0 the results are qualitatively the
same), and let us focus on a couple of vertices designated by v and w. At the local level, the concentration
of items at a vertex i at time t is given by

Ċi (t)=
(∑
(i,j)∈E

Cj (t)

)
, (28)

because −χCi (t)= 0. The solution of the NC diffusion model can be written as

C (t)= et(λ1−χ) (ψT
1 C0
)
ψ1 + et(λ2−χ) (ψT

2 C0
)
ψ2 + · · · + et(λn−χ) (ψT

n C0
)
ψn, (29)

where λ1 >λ2 ≥ . . .≥ λn are the eigenvalues of A and ψj is the normalised eigenvector corresponding
to λj.

Then, at a given time, the concentration at these nodes are

Cv (t)=
∑

j

(exp (tA))vj C0
j (30)

and

Cw (t)=
∑

j

(exp (tA))wj C0
j . (31)

Then, let us define

Evw|C0
j =δjv = Cv|C0

j =δjv (t)− Cw|C0
j =δjv (t). (32)

As we have placed all the concentration at vertex v at the initial time, i.e., Cv|C0
j =δjv (t = 0)= 1, at

t = 0, there is no concentration at w and the difference Evw|C0
j =δjv is maximum. As the time passes,

the concentration Cw|C0
j =δjv (t) increases, while that at v drops, making Evw|C0

j =δjv smaller. At the equi-
librium, we expect that Cv|C0

j =δjv (t)= Cw|C0
j =δjv (t), such that the term Evw|C0

j =δjv reaches its minimum
value, which is zero. Therefore, we claim that Evw|C0

j =δjv quantifies the distance from equilibrium (DFE)
for the pair of vertices v to w in a graph when the initial concentration is totally located at the vertex
v, C0 (j)= δj,v, where δi,j is the Kronecker delta. Let us define the same in the other direction when the
initial concentration is completely located at the vertex w,

Ewv|C0
j =δjw = Cw|C0=δjw (t)− Cv|C0

j =δjw (t). (33)

Let us now define the sum of the DFE between the two nodes in both directions, which is given by

Evw|C0
j =δjv + Ewv|C0

j =δjw = (exp (tA))vv + (exp (tA))ww − 2 (exp (tA))vw , (34)
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which obviously is the squared communicability distance between v and w when t = β. Therefore, the
Forman–Ricci communicability curvature of the edge (v, w) ∈ E can be expressed as

Cv,w (G, β)= 2 −
∑
k∼v

√√√√Evw|C0
j =δjv + Ewv|C0

j =δjw
Evk|C0

j =δjv + Ekv|C0
j =δjk

−
∑
k∼w

√√√√Evw|C0
j =δjv + Ewv|C0

j =δjw
Ewk|C0

j =δjw + Ekw|C0
j =δjk

. (35)

Notice that by taking the square roots of ξi,j (G, β), we are directly considering the communicability
distances, not their squares. The first summation represents the ratio of the DFE between the vertices v
and w relative to the DFE between the vertex v and its nearest neighbours. That is, if the pair of vertices v
and w reaches an equilibrium of concentrations faster than v and its nearest neighbours, then this term is
smaller than one because the DFE for v and w is smaller than that between v and its nearest neighbours.
The second summation is the same for the DFE between v and w and the one between w and its nearest
neighbours. Therefore, if the edge formed by v and w reaches an equilibrium in a faster way that the
edges conforming the nearest neighbours of v and of w, i.e., if DFE of v, w is smaller than that of the
nearest neighbours of both vertices, then Cv,w (G, β) > 0. However, if the pair v, w displays larger DFE
that their nearest neighbours, then Cv,w (G, β) < 0. Let us illustrate this by an example.

Example 16. Let us consider the three graphs illustrated in Figure 2 in which we will focus on the
curvature of the edge (i, j). The three graphs are cycle graphs of 4 vertices in which one edge has weights
equal to 1 (a), 2 (b) and 1/2 (c). We computed the curvature of the three edges in question which are
given in Table 2. As can be seen the curvature of the edge (i, j) in a) is zero, in b) is positive and in
c) is negative. From our previous interpretation, we have that in a) the edge (i, j) has DFE identical to
those of the nearest neighbours of i and j, respectively, which is obvious by the symmetry of this graph.
In b) the edge (i, j) has significantly smaller DFE than (i, l) and (j, k). This means that a concentration
of items placed at i (resp. at j) will reach an equilibrium with j (resp. with i) in a much faster way than
with l (resp. with k). The reason is obvious from the fact that there is a double number of ‘‘lanes‘‘ of
communication between i and j, than between them and their respective nearest neighbours. Finally, the
case c) shows that (i, j) has more ‘‘difficulties‘‘ to reach the equilibrium than their nearest neighbours
also by obvious reasons.

To check about the meaning of these results, we use the NC diffusion dynamics (5) by using χ =
λ1 (G) where λ1 (G) is the spectral radius of the adjacency matrix of the corresponding graph. We use
this value of χ because, although the process is NC, it has a steady state and we can measure tc (i)
and tc (j), which are the times at which |Ci (tc)− Ci (tc − 1)| ≤ 10−3 and

∣∣Cj (tc)− Cj (tc − 1)
∣∣≤ 10−3,

respectively, both with initial condition C0
r = δri. Then, in Table 2, we report tc (i, j)= (tc (i)+ tc (j)) /2,

which is the average time at which the edge under analysis reaches the steady state when the particles
are placed at one of its endpoints. We can see that the edge i, j of positive curvature (graph b) reaches
the steady state in a shorter time than the one of zero curvature (graph a), and that the edge with negative
curvature (graph c) reaches the steady state in a longer time. The fact that the edge with positive curvature
reaches the steady state faster than the one of zero curvature is a signature of the high communicability
between i and j in the graph b), i.e., every time that information reaches j, it is immediately transferred
back to i. In graph c), both vertices i and j reach their steady states at much longer times that in graph a)
due to the fact that the low communicability between i and j compromises the interchange of information
between them, delaying the consensus.

We can build an analogy between the edges with negative and positive curvature with the set of
arteries and capillaries in the human body. Arteries interconnects different organs in the body. Therefore,
as organs are highly interconnected among them, they have large degrees, and the curvature of these
arteries is expected to be negative. Continuing with the analogy, capillaries resemble those edges with
positive curvature, which interconnects different regions inside the same organ. We can then use the
metaphor of considering edges of negative curvature as arteries in the graphs and those of positive
curvature as capillaries.
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Table 2. Values of the communicability curvature
of the edge i, j using β = 1 in the three graphs illus-
trated in Figure 2 as well as the average time at
which the edge under analysis reaches the steady
state when the particle is placed at one of its
vertices relative to the graph a)

Ci,j (G) tc (i, j)
a 0 1.000
b 1.0665 0.978
c −0.6390 1.652

Figure 2. Illustration of three graphs formed by a four-vertices cycle in which the edge i, j is weighted
by 2 in graph (b) and by 1/2 in graph (c). In the bottom line, we draw a pictorial representation of what
the curvature of the i, j edge means. All the calculations are performed using β = 1.

3.1.1 A model of arteries and capillaries
Let us consider two classes of graphs, namely the wheel graph on n vertices Wn (n ≥ 4) and the friendship
graph Fn (n ≥ 5). A wheel graph Wn is the graph consisting of a cycle Cn−1 in which every vertex is
connected to a central vertex i as illustrated in the Figure 3(a). The friendship graph consists of (n − 1) /2
triangles which are glued to a common vertex as illustrated in Figure 3(b). Both graphs can be seen as
a core formed by the vertex i and a periphery formed by the rest of vertices. We can consider that the
friendship graph is constructed from the wheel one by removing alternant edges of the cycle when the
number of vertices is odd. Therefore, while in the wheel, there is a cycle which connects all the vertices
in the periphery. This cycle is interrupted in the friendship graph and the circulation across the periphery
is impeded, such that most circulation, except that between pairs forming the same triangle, needs to be
taken across the central vertex i (see Figure 3).

It is easy to realise that the curvature for β = 1 of the edge (i, j) ∈ E in both graphs is negative

Cij (Wn)= (1 − n)− 2

√
ξij (Wn)

ξjj′ (Wn)
< 0, (36)

Cij (Fn)= (1 − n)−
√
ξij (Fn)

ξjj′ (Fn)
< 0. (37)
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Figure 3. Illustration of a wheel (a) and friendship (b) graphs with nine vertices and the distinct vertices
labelled by i for the central vertex and j, j′ for a peripheric edge.

Therefore, let us then focus on the curvature of the edge (j, j′) ∈ E in both graphs.

Theorem 17. Let (j, j′) ∈ E be an edge between two peripheric vertices in Wn. Then, for β = 1

Cjj′ (Wn)= −2

√
ξjj′ (Wn)

ξij (Wn)
< 0, (38)

and let (j, j′) ∈ E be an edge between two peripheric vertices in Fn and let t = √
4n − 3. Then,

Cjj′ (Fn)= 2

(
1 −

√
ξjj′ (Fn)

ξij (Fn)

)
, (39)

where

ξjj′ (Fn)= 2

e
, (40)

and

ξij (Fn)= n (t − 1)+ 2

2t (n − 1)
e

1 + t

2 + n (t + 1)− 2

2t (n − 1)
e

1 − t

2 + e2n + n − 3e2 − 1

2e (n − 1)
− 4

√
e

t
sinh

t

2
, (41)

which means that Cjj′ (Fn) > 0.

Proof. It is easy to see that

Cjj′ (Wn)= 2 − 2

√
ξjj′ (Wn)

ξij′ (Wn)
− 2

√
ξjj′ (Wn)

ξij (Wn)
= −2

√
ξjj′ (Wn)

ξij (Wn)
. (42)

Let us then focus on obtaining ξij (Fn) and ξjj′ (Fn). First, we obtain the eigenvalues and eigenvectors
of Fn:

λj =

⎧⎪⎪⎨
⎪⎪⎩

1 + t

2
, 1

⎛
⎜⎝n − 3

2

⎞
⎟⎠

, −1

⎛
⎜⎝n − 1

2

⎞
⎟⎠

,
1 − t

2

⎫⎪⎪⎬
⎪⎪⎭ , (43)

where the superindices represent the multiplicity of the eigenvectors, and ψ1 (i)=
√

t − 1

2t
, ψ1 (j)=√

2

t2 − t
, ψn (i)=

√
t + 1

2t
, ψ1 (j)=

√
2

t2 + t
, such that we can get

(
eA(Fn)

)
ii
=
(

t − 1

2t

)
e

t + 1

2 +
(

t + 1

2t

)
e

1 − t

2 , (44)
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and

(
eA(Fn)

)
jj
= tr

(
eA(Fn)

)− (eA(Fn)
)

ii

n − 1
, (45)

where tr
(
eA(Fn)

)=∑n
j=1 eλj(Fn),

tr
(
eA(Fn)

)= e

t + 1

2 + e

1 − t

2 + e2n + n − 3e2 − 1

2e
, (46)

such that

(
eA(Fn)

)
jj
= (t + 1) e

t + 1

2

2t (n − 1)
+ (t − 1) e

1 − t

2

2t (n − 1)
+ e2n + n − 3e2 − 1

2e (n − 1)
. (47)

Similarly, we get

(
eA(Fn)

)
ij
= (et − 1)

t
e

1 − t

2 . (48)

Therefore, by substitution into ξij (Fn)=
(
eA(Fn)

)
ii
+ (eA(Fn)

)
jj
− 2

(
eA(Fn)

)
ij
, we obtain the first part of

the result.
For ξjj′ (Fn), we need expressions for the eigenvectors corresponding to the eigenvalues λk = ±1. It is

easy to check thatψki = 0 for k �= {1, n} . Then, we obtain the expression for
∑(n−1)/2

s=1 ψsjψsj′ whereψsj are
the eigenvectors corresponding to λs = −1. Let ψs =

[
0,ψs,j1 , −ψs,j′1 ,ψs,j2 , −ψs,j′2 , . . . ,ψs,jn−1 , −ψs,j′n−1

]
be one of such eigenvectors, which by normalisation provides that 2ψ2

s,j1
+ 2ψ2

s,j2
+ . . .+ 2ψ2

s,jn−1
= 1.

Therefore, ψ2
s,j1

= 1/2 −
(
ψ 2

s,j2
+ . . .+ψ2

s,jn−1

)
, such that we can write

(n−1)/2∑
s=1

ψsjψsj′ = −
(
ψ 2

s1,j +ψ 2
s2,j + . . .+ψ2

s(n−1)/2,j

)

= −
(

1/2 −
(
ψ 2

s1,j2
+ . . .+ψ2

s1,jn−1

)
+ . . .+ 1/2 −

(
ψ2

s(n−1)/2,j2
+ . . .+ψ2

s(n−1)/2,jn−1

))
=
(
ψ 2

s1,j2
+ . . .+ψ2

s1,jn−1

)
+ . . .+

(
ψ 2

s(n−1)/2,j2
+ . . .+ψ2

s(n−1)/2,jn−1

)
− n − 1

2

(
1

2

)

=
(
ψ 2

s1,j2
+ . . .+ψ2

s(n−1)/2,j2

)
+ . . .+

(
ψ 2

s1,jn−1
+ . . .+ψ2

s(n−1)/2,jn−1

)
− n − 1

2

(
1

2

)
. (49)

Obviously,
∑(n−1)/2

s=1 ψsjψsj′ = −
(
ψ 2

s1,j + . . .+ψ 2
s(n−1)/2,j

)
, such that

(n−1)/2∑
s=1

ψsjψsj′ = −
(

n − 1

2
− 1

) (n−1)/2∑
s=1

ψsjψsj′ − n − 1

2

(
1

2

)
, (50)

from which
∑(n−1)/2

s=1 ψsjψsj′ = −1

2
.

Now, because
∑(n−1)/3

r=1 ψrjψrj′ = −ψ1,jψ1,j′ −ψn,jψn,j′ −∑(n−1)/2
s=1 ψsjψsj′ , where ψrj is the eigenvector

associated with λr = 1, we have
(n−1)/3∑

r=1

ψrjψrj′ = 1

2

(
n − 3

n − 1

)
. (51)
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Then, we can obtain

(
eA(Fn)

)
j,j′ =

2e

1 + t

2

t2 − t
+ 2e

1 − t

2

t2 + t
+ e (n − 3)

2 (n − 1)
− 1

2e
, (52)

from which, by replacing in ξj,j′ = 2
(
eA(Fn)

)
j,j

− 2
(
eA(Fn)

)
j,j′ we obtain, after cancellations, that ξj,j′ = 2

e
.

The only remaining thing to proof the result is to show that ξj,j′ < ξi,j for which we can easily check
that

ξi,j − ξj,j′ = n (t − 5)+ 6

2t (n − 1)
e

1 + t

2 + n (t + 5)− 6

2t (n − 1)
e

1 − t

2 +
(

e (n − 3)

2 (n − 1)
− 3

2e

)
> 0 (53)

for any n ≥ 5, which proves the result.

The previous analytical results confirm our intuition about the identification of edges with negative
curvature as arteries which communicate globally the vertices of a graph, while the edges with positive
curvature are mainly those acting as capillaries connecting more local regions. For instance, while in
the wheel both types of edges communicate wide regions of the graph acting as arteries and having
negative curvatures, the peripheral edges in the friendship graph serve mainly as connection among the
pairs of vertices forming the individual triangles and thus have positive curvature. We will return to this
metaphoric interpretation later when we analyse real-world networks.

4. Total Forman–Ricci communicability curvature

Let us come back to the example of the three four cycles illustrated in Figure 2, but in this case let us
consider the time at which the global consensus is reached in each of the three graphs, i.e., the time
|Cv (tc)− Cv (tc − 1)| ≤ 10−3 for all v ∈ V . We consider the initial conditions in which the concentration
is allocated at every distinct vertex of the graph and then average the times at which the global steady
state is reached. These times relative to the one reached for graph a) are 1.00 for a), 0.836 for b) and
1.201 for c).

We cannot focus now on the curvature of edges as we are dealing with the global steady state of the
system. Let us then introduce the following.

Definition 18. The total communicability Forman–Ricci curvature of G is defined as

C (G, β) :=
∑
(v,w)∈E

Cv,w (G, β). (54)

If we now calculate the total curvature of the edges in the three graphs under consideration, we
get 0, −1.5174 and −0.1700. That is, the graph with the largest negative total curvature is the one
having the fastest global diffusion. The reason is that while in b) the edge i, j has positive curvature,
(j, k) and (l, i) have large negative curvatures Cj,k (b)= Cl,i (b)≈ −1.611. If we increase the weight of
the edge (i, j) to three in b), then its curvature increases to 1.621, but the one of the edge (j, k) drops
to −5.792, making the total curvature drops to −8.757. This is a direct consequence of the fact that
the curvature is upper bounded by 2, but it can reach any negative value. Therefore, we now proceed to
investigate some properties of the global Forman–Ricci communicability curvature of graphs.

We then have a corollary of Lemma 14.

Corollary 19. Let G be a graph in which every pair of vertices is automorphically equivalent. Then,

C (G, β)= F (G), (55)

https://doi.org/10.1017/S0956792525000014 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000014


14 E. Estrada

where F (G)=∑
(v,w)∈E Fe=v,w (G), such that

C (G, β)= F (G)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 G = Cn

2r−1r (4 − 2r) G = Qd

n1n2 (4 − n1 − n2) G = Kn1,n2

n (n − 1) (3 − n) G = Kn.

(56)

Let us now consider the path graph with n vertices Pn. Let β = 1 and let us designate C (G, β = 1)=
C (G) . In this case, we have that ξi,i+1 (Pn) for i ≤ n/2 (n even) or i ≤ (n + 1) /2 (n odd) [20] is given by

ξi,i+1 (Pn)= 2I0 (2)− 2I1 (2)− I2i (2)− I2(i+1) (2)+ 2I2i+1 (2). (57)

Then, if we label the vertices from one end of the path from 1 to n, we can obtain the curvatures of
each edge analytically. For instance,

C1,2 (Pn)= 2 −
√

2I0 (2)− 2I1 (2)− I2 (2)− I4 (2)+ 2I3 (2)

2I0 (2)− 2I1 (2)− I4 (2)− I6 (2)+ 2I5 (2)
≈ 1.1108. (58)

Similarly, we have

C2,3 (Pn)≈ −0.1131, (59)

C3,4 (Pn)≈ −0.0112, (60)

C4,5 (Pn)≈ −4.3573 · 10−4, (61)

C5,6 (Pn)≈ −7.7712 · 10−6, (62)

C6,7 (Pn)≈ −8.9148 · 10−8, (63)
and so forth.

It can be seen that

lim
i→∞

ξi,i+1 (Pn)= 2I0 (2)− 2I1 (2), (64)

and

lim
i→∞

Ci,i+1 (Pn)= 2 − lim
i→∞

(√
ξi,i+1 (Pn)

ξi,i−1 (Pn)
+
√
ξi,i+1 (Pn)

ξi+1,i+2 (Pn)

)
= 0, (65)

which is obviously reached when n → ∞. Indeed, it can be easily checked that for i ≥ 7:(√
ξi,i+1 (Pn)

ξi,i−1 (Pn)
+
√
ξi,i+1 (Pn)

ξi+1,i+2 (Pn)

)
< 10−9. (66)

Therefore, we can obtain an approximation for C (Pn) by considering only the contributions from
1 ≤ i ≤ 6. That is, for any Pn with n ≥ 12 we have (see Table 3)

C (Pn)= 2
k�n/2∑

i=1

Ci,i+1 (Pn)≈ 1.97213365 . . . . (67)
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Table 3. Values of the Forman–Ricci
communicability curvature for path
graphs with n vertices as computed by
using Matlab

n C (Pn)

2 2.0000
3 2.0000
4 1.9777
5 1.9726
6 1.9722
7 1.972134412331060
8 1.972133670041003
9 1.972133652650161
10 1.972133652345863
20 1.972133652341688
50 1.972133652341688

For n< 12, we are adding less negative terms from C1,2 (Pn) in the formula for C (Pn), such that we
can conclude that C (Pn) > 0 for any n ≥ 2.

To investigate the importance of the characterisation of global curvature in graphs, we consider again
the toy models introduced in the previous section where we have studied the communicability curvatures
of edges in wheel Wn and friendship Fn graphs on n vertices. Let us then consider here the mean edge
curvature in these graphs, which can be written as

C̄ (Wn)= 1 − n

2
−
√
ξi,j (Wn)

ξj,j′ (Wn)
−
√
ξj,j′ (Wn)

ξi,j (Wn)
, (68)

and

C̄ (Fn)= 2

3

(
2 − n −

√
ξi,j (Fn)

ξj,j′ (Fn)
−
√
ξj,j′ (Fn)

ξi,j (Fn)

)
. (69)

Then, let a :=
√
ξi,j (Wn)

ξj,j′ (Wn)
+
√
ξj,j′ (Wn)

ξi,j (Wn)
and b :=

√
ξi,j (Fn)

ξj,j′ (Fn)
+
√
ξj,j′ (Fn)

ξi,j (Fn)
, so that we can write

C̄ (Wn)− C̄ (Fn)= n − 5

6
+ 2b − 3a

3
, (70)

which can be either negative or positive depending on how large a and b are for the different sizes of
these graphs. It can be seen that ξij (Wn) and ξij (Fn) grow with n while ξjj′ (Wn) and ξjj′ (Fn) remain
constant. Therefore, the curvatures of the j, j′ edges remain constant for very large n

lim
n→∞

√
ξjj′ (Wn)

ξij (Wn)
= 0, (71)

and

lim
n→∞

√
ξjj′ (Fn)

ξij (Fn)
= 0. (72)

Both distances, ξi,j (Wn) and ξi,j (Fn) grow with n. It is expected that ξi,j (Wn) < ξi,j (Fn) for very small
graphs because the surrounding periphery (edges (j, j′)) facilitates the communication around the graph,
without increasing too much the mean shortest path distance of the graph. For instance, every pair of

https://doi.org/10.1017/S0956792525000014 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000014


16 E. Estrada

5 10 15 20
n

-15

-10

-5

0

M
ea

n 
ed

ge
 c

ur
va

tu
re

Wn
Fn
Kn-1,1

Figure 4. Scatterplot of the mean communicability curvature of wheel Wn, friendship Fn and star Kn−1,1

graphs with different number of vertices n. The lines are drawn to guide the eye. All the calculations
were performed by using β = 1.

vertices in W5 can be communicated by peripheric edges in no more than two steps, and in W3 by no
more than 3. However, this advantage disappears when the size of the graphs increase because in these
cases, going around the graph by peripheric edges can be a handicap to communicate pairs of vertices.
Consequently, it is expected that when n grows ξi,j (Wn) > ξi,j (Fn), and there should be a crossing in
the curves indicating the changes of C̄ (Wn) and C̄ (Fn) vs. n. The same reasoning can be applied to the
star graphs Kn−1,1, in which there are no peripheric edges at all. Then, it is expected that the star graph
become the one with the edges with the most negative curvature as n grows. This is exactly what is
observed when we plot the average edge curvatures for the three types of graphs in Figure 4, where it
can be seen that a wheel graph has, as average, the most negative edge curvature for small sizes but
less negative ones for larger size relative to the friendship graphs of the same sizes. For large n, the star
graphs have the most negative average curvature of all the three graphs. This results indicates that only
relative short peripheric paths can be considered as ‘bypasses‘ that really make the average curvature of
a graph more negative. Such bypasses have been investigated previously as facilitators of the navigability
of a network [26].

5. Applications

When a new concept, like the communicability curvature of edges, is introduced in network theory, it is
important to provide some insights about the kind of information that it provides and some indications
about the areas in which it can be used. In a conceptual work as the current one, it is impossible to
make an exhaustive exploration of these two important tasks, which are left for further works in specific
application areas. Therefore, the main goal of this section is to provide such insights about the struc-
tural meaning of the communicability curvature of edges and what kind of information it can provide
to researchers in complex network theory. For that purpose, we select here three examples to illustrate
some potential areas in which the Forman–Ricci communicability curvature can be applied to the study
of real-world networks. The first of these networks is that representing the US airport transportation
network as in 1997 [5]. This network consists of 332 airports in continental US, Alaska and overseas
territories. The network contains 2126 undirected edges representing the existence of flight connections
between the corresponding pair of airports. The second network represents a version of the neuronal net-
work of the worm C. elegans, which is formed by 277 vertices representing the neurons in this organism
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Figure 5. Cumulative probability distributions (CDF) of the curvatures (RC as red squares and FRCC
as blue circles) for the three real-world networks studied here: a) USA airport transport network, b)
neuronal network of C. elegans, c) collaboration network in computational geometry. In the plots, we
represent only the negative curvatures which are given as −x, the right scale is for FRCC and the left is
for RC. The vertical bars represent the curvatures marking the top 10% of the most negative ones (those
to the right of the respective lines).

and 1918 edges which represent the existence of synaptic connection (chemical or electrical) between
the corresponding pair of neurons [14]. The original dataset consisting of the electron micrograph recon-
struction of the worm nervous system consisted of 302 neurons [59]. However, we use here the version
published in 2004 [14] due to the following reasons. As remarked recently by Skuherski et al. [54], the
original 302 neurons atlas can lead to unlabelled and even mislabelled neurons due to the density of
neurons in various ganglia and ambiguities in atlas matching that are present as a result. The 2004 atlas,
used here, is the one commonly used in papers that make use of C. elegans neuron positions, which is
also the case of the current work. Although the original network is directed, we consider here its undi-
rected version. Finally, we consider a collaboration network in the area of computational geometry. The
version of the network studied here is taken from [5] and it is based on the file geombib.bib that con-
tains Computational Geometry Database, version February 2002, where the vertices represent authors
in the area of computational geometry and two vertices are connected if the corresponding authors have
published a paper together according to the BibTeX bibliography obtained from the Computational
Geometry Database geombib, version February 2002. The dataset was cleaned by Pajek project [5] such
that different versions of the same name are merged together under one single name. The clean net-
work contains 7343 vertices and 11,898 edges. Here, we consider the giant connected component of
this network, which consists of 3621 authors and 9461 coauthorship relations.

In this section, all calculations are performed by considering the use of β = 1. We start by calculating
the Forman–Ricci communicability curvature (FRCC) as well as the unweighted Forman–Ricci curva-
ture (RC) for every edge in the three networks. In Figure 5, we plot the distributions of both curvatures
for the three networks under study. The most important feature of these distributions is the fact that
FRCC covers an extremely wider range of values than RC. For instance, in the airport network, FRCC
have values in the range between −108 and 2 (mean −1.94 · 106), while RC ranges between −253 and
−1 (mean −3.26). In the neuronal network, FRCC ranges between −103 and 2 (mean −178.37), while
RC has values between −81 and 3 (mean −2.03). Finally, the network of collaboration in computational
geometry shows values of FRCC between −106 and 2 (mean −1.94 · 104), while RC goes between −196
and 1 (mean −0.0474). Hereafter, we will consider the most negative values of the curvatures as a way
to analyse which kind of information is contained in such extreme tails of the distributions.

Notice that because we are considering the curvatures as a kind of edge centrality, we are then mainly
interested in the most central edges only, which here means those with the most negative curvatures.
Therefore, we selected the edges in the top 10% of the most negative curvatures for each of the two
measures. Then, for each of the three examples, we constructed the networks formed by all the ver-
tices and the edges selected in this top 10% of most negative curvatures. That is, we are interested in

https://doi.org/10.1017/S0956792525000014 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000014


18 E. Estrada

Table 4. Comparison between the number of connected components (NCC) and the size (number
of vertices) in the largest connected component (SLCC) formed by the edges with the top 10% of
highest Forman–Ricci communicability curvature (FRCC) and of the Ricci curvature (RC) for the
three real-world networks studied in this work

FRCC RC Real

Network NCC SLCC k̄ kmax NCC SLCC k̄ kmax n k̄ kmax

US airports 158 155 2.49 58 226 107 4.19 106 332 12.81 139
Neurons 147 131 2.93 44 177 101 3.82 76 277 13.84 76
Collaboration 2878 162 3.38 22 3265 357 5.34 102 3621 5.22 102

investigating the global connectivity of the subgraph which contains the edges in the top 10% of cur-
vatures. In particular, we investigate the number of connected components (NCCs) and the size of the
largest connected component (SLCC) in these subgraphs. The results are given in Table 4, where we also
give the mean degree (k̄) and maximum degree (kmax) of the vertices in the largest connected component
(LCC). For the three networks, the subgraph formed by the edges in top 10% of FRCC are more con-
nected than those in the corresponding subgraph obtained for RC. For instance, in the airport network of
USA, the top 10% of FRCC edges form 156 components, while those in the top 10% RC are distributed
in 226 components. In the case of the neuronal network, the top 10% of RC edges are distributed in 30
components more than those based on FRCC. Finally, in the collaboration network, there are 387 more
components in the RC subgraph than in the FRCC one. The SLCC in the airport and neuronal networks
are bigger for the FRCC than for RC, which in the collaboration network this is significantly bigger for
RC than for FRCC. In the three cases, the average degree and the maximum degree of the vertices in the
LCC are smaller for FRCC than for RC. It is important to remark that the LCC formed by RC resembles
more the subgraph formed by the most connected vertices in the graph than the one formed by FRCC.
This can be seen in the fact that the LCC formed by the edges in the top 10% by RC have very similar
maximum degree than those in the real graph (see Table 4), which coincide in the cases of neurons and
collaboration networks.

In closing, the top 10% of edges in the FRCC form a significant different subgraph than the one
formed by those in the RC ranking. In general, edges in the top ranking by FRCC form a more connected
subgraph expressed by a smaller number of connected components. Also, the LCCs formed by the top
10% edges ranked by the two curvatures are significantly different, with those formed by RC resembling
more a ‘rich club‘ containing the pairs of vertices with the largest degree in the respective graphs.

An important consequence of the differences remarked before between the top edges in the FRCC
and RC rankings is related to the robustness of these networks to the failure of these edges. For instance,
if we remove the edges in these top 10% of FRCC and RC rankings, we obtain in general very different
networks. For instance, let us remove these edges in the top 10% of RC in the network of the US airports.
The remaining network is still a connected graph, i.e., it has only one connected component formed by
the 332 vertices of the original network. On the contrary, if we remove the same number of edges, but
now those in the top 10% of FRCC ranking, the network is chopped into 23 connected components,
the largest one containing 282 vertices. The difference between removing the top 10% of edges by their
FRCC and RC rankings in the neuronal network is not significant. While the removal by RC does not
increases the NCC, the one by FRCC splits the network into two connected components, but the largest
one contains 99.3% of the vertices of the network. This is possibly due to the fact that this network is
relatively highly dense in comparison with the other two. In the case of the collaboration network, the
removal by RC splits the network into 101 CC, the largest of which retains 96.8% of the vertices in the
original graph. However, the removal of the same number of edges based on FRCC splits the network
into 170 CC, which represents 40% of increment relative to RC. Also importantly, the damage made
by the removal based on FRCC to the LCC is more significant than the one made by RC because the
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Figure 6. Illustration of the edges with the most negative FRCC (a) and RC (b) in the network of airline
connections among the US airports.

first retains only 86% of the vertices of the original graph, which is 10% less than that left by the RC
removal. All in all, it seems that edges with large negative FRCC represent more important connections
than those based on RC for the robustness of the networks relative to edges failures. Although more
systematic studies are needed for a large pool of networks, it seems that ‘protecting‘ edges with large
FRCC is a good strategy to protect the failures of networks to edge removals.

We now study in more detail the characteristics of those edges in the top rankings by FRCC and RC
in the three networks studied here.

5.1 Airport network of USA

The plots in Figure 6 illustrate the airport connections in the top 10% most negative curvatures according
to FRCC (a) and RC (b). There is an obvious difference between the two subgraphs containing those
edges in the top 10% by FRCC and RC. The LCC formed by the edges in the top 10% of RC is strongly
dominated by the major hub(s) of the airport network. For instance, 47% of all the edges in the LCC
of this graph are formed by connections involving Chicago O’Hare International airport. Some of these
connections are with other of the major hubs like Dallas/Fort Worth Intl., The William B Hartsfield
Atlanta, Pittsburgh Intll., Lambert-St Louis Intl., Charlotte/Douglas Intl. and Stapleton Intl. But this is
not only the case, as the connections between Chicago’s airport and some others poorly connected ones
like Lehigh Valley Intll., Eagle County Regional, Columbia Metropolitan and others also appear among
the top RC edges. This is due to the fact that RC between two vertices i and j is 4 − ki − kj, such that if
at least one of the vertices is of large degree, the curvature will be highly negative.

In contrast, the top FRCC edges are not dominated by any of the airports in the top six of connectivity,
but by the Stapleton International airport which is the seventh according to its number of connections
in this version of the USA airport network. The Stapleton International airport appears in the LCC of
the FRCC ranking together with 35 edges incident to it. Then, it is followed by Anchorage International
and Newark International, both with 14, and then, we find the airports of Missoula International and
Billing Logan International, both with 9 connections in the top of most negative curvatures. As we have
seen before these airports generate a more connected network than the one formed by the top RC edges,
indicating that they may play a fundamental role in the large scale connectivity of this network.

A close inspection of the edges having the most negative FRCC reveals that in general they are
formed by an important hub of the air transportation network of USA and a local/regional airport.
For instance, some of the most negative edges appears between Stapleton Intl., which is a hub and
the airports of Walker Field, Santa Barbara Muni, Long Beach /Daugherty Field/, Springfield Regional,
Gunnison County, Aspen-Pitkin Co/Sardy Field and Fresno Air Terminal. Similarly, highly negative
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edges are formed between Newark Intl. and the airports of Rafael Hernandez, Mercedita, Alexander
Hamilton, Daytona Beach Intl, Melbourne Intll, Cyril E King, Columbia Metropolitan, as well as
between Anchorage and Dillingham, King Salmon, Port Heiden, Sand Point, Unalaska and Adak Naf.
Let us remind here that the curvature of the edge (i, j) is obtained by subtracting from 2, the sum of the
ratios ξ̃ij/ξ̃ir + ξ̃ij/ξ̃jk, where ξ̃ij =

√
ξij, r is a vertex adjacent to i and k is a vertex adjacent to j. Let us con-

sider, for instance, the edge Walker Field to Stapleton Intl. The airport of Walker Field is the third largest
one in Colorado, while Stapleton Intl. in Denver is the largest one. Between April 2022 and March 2023,
the Walker Field moved about 230,000 passenger, from which 100,000 were moved to Stapleton. The
main difference is that Stapleton is one of the major hubs of the US airport transportation system, which
is also directly connected to other major hubs, like Chicago O’Hare, Dallas Forth Worth, La Guardia,
San Francisco Intl., JFK, La Guardia, etc. Let us consider that i = Stapleton Intl, j = Walker Field and
r = Newark Intl., which is one of the hubs connected to Stapleton. We can see that ξ̃ij/ξ̃ir = 1837.9, which
already makes Cij ≤ −1835.9, which is a very negative curvature for this edge. Obviously, if we consider
now the triple i = Newark Intl, j = Rafael Hernandez, which is the second largest airport in Puerto Rico,
and r = Stapleton, a hub connected to Newark, we obtain ξ̃ij/ξ̃ir = 1758.0, which give a highly negative
curvature for the edge Newark-Rafael Hernandez, i.e., Cij ≤ −1756. The explanation of the large nega-
tive curvature of edges involving the airport of Anchorage is relatively different. It comes from the fact
that ξ̃ij, where i = Anchorage, j = local airport 1, is significantly bigger than ξ̃jk where k = local airport
2. For instance, if i = Anchorage, j = Dillingham and k = King Salmon, then ξ̃ij/ξ̃jk ≈ 2.91 · 107, which
makes the curvature of the edge Anchorage Dillingham an extremely negative one. The reason for this
effects is that Alaska works as a more isolated ‘ecosystem‘ than the one formed by continental airports.
Then, many local airports have a direct connection with Anchorage, but they also share some connec-
tions among them. Then, what happens is that Anchorage acts like the major hub to which some local
small ‘hubs‘ connect other airports, such as the case of the airport of Dillingham, which is connected
to the one of King Salmon. All in all, the negative edges in the airport transportation system of USA
are the arteries of the system formed by connections between local airports and some hubs which allow
the global connection of these local/regional airports with other major hubs of the network. No surprise
then that their removal makes a bigger damage to the network structure than removing the edges in the
top 10% of most negative RC as we have seen before.

Let us now turn our attention towards those edges which have positive curvature in the US airport
network. There are 57 edges with Cij > 0.2, from which 52 correspond to interregional connections.
That is, more than 91% of the edges with positive curvature involve pairs of regional airports, either in
the same or in different regions of the USA, similar to what capillaries do inside the same organ in the
body. For instance, the edge corresponding to airports Williamson County Regional and Cape Girardeau
Regional has curvature of approximately 2, which is the maximum that an edge can have. They connect
the regions of Southern Illinois and that of in Scott County, in Missouri. However, the edge connecting
Port Heiden and Sand Point, which has curvature also of approximately 2, connects two regions in
Alaska. Therefore, the edges with positive curvature clearly points to to connections between pairs of
local/regional airports among them. The exceptions to this rule are the pairs: Palm Spring-Tucson Intl.,
Newark-Stapleton, Portland Intll.-San Jose Intll., JFK-McCarran Intl. and San Francisco Intl.-Miami
Intll. These five pairs of airports mainly correspond to major or mid-size hubs of the network. Their
main characteristic is that they form pairs of relatively similar airports in terms of their connectivity
as well as in their capacity for moving passengers. For instance, Palm Spring has degree equal to 13,
very similar to Tucson which has degree equal to 14. Newark and Stapleton have degrees of 67 and
85, respectively, and they moved in 1997 (the year of the version of this network) 30 and 34 millions
of passengers, respectively. JFK and McCarran Intl. have degrees equal to 46 and 49, respectively, and
move 45–62 millions and 48–57 millions of passengers, respectively. San Francisco Intl. and Miami Intl.
have degrees of 68 and 47, respectively, and move about 41 and 33 millions of passengers in 2000. In
closing, the positive curvature of edges in the US airport network indicate those pairs of airports with
very similar connectivity and passenger capacities, which are typical of regional–regional pairs as well
as of some mid-size and major hubs in the network.

https://doi.org/10.1017/S0956792525000014 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000014


European Journal of Applied Mathematics 21

Figure 7. Illustration of the edges with the most negative FRCC (a) and RC (b) in the network of synaptic
connections among neurons in the worm C. elegans.

5.2 Neuronal network of C. elegans

In Figure 7, we illustrate the neuronal connections in the top 10% most negative curvatures according
to FRCC (a) and RC (b). While for FRCC, there are 1885 edges with negative curvature, with average
of −181.50, and 33 edges with positive curvature, averaging 0.814, for RC all the edges have negative
curvature, which averages −40.62. As in the previous example here again, the edges with the most
negative RC are formed by pairs of vertices of the largest degree. For instance, more than 76% of these
edges are formed by interconnections of the neurons AVAL (76 connections) and AVAR (72 connections)
with neurons of large degree like AVBR, AVEL, PVCR, AVBL, PCVL, AVER, AVDR, AVBR, etc. AVA
neurons are command interneurons, which are located at the lateral ganglia of head (L for left and R for
right location). Notice that the edge with the most negative RC is the one connecting these two neurons:
AVAL-AVAR. Many of the neurons with the largest negative RC which have connections with AVA ones
are also located at the lateral ganglia of the head (AVBR, AVEL, AVBL, AVER, AVDR, AVBR), but
there are also others located in the tail, like PVCR and PVCL. 98% of the edges in the top 10% of most
negative ones according to RC involve a neuron located in the head of the worm. In Figure 8(a), we can
observe that there are neither connections involving two neurons located at the body nor two neurons
both located in the tail, and that only 2.1% of connections involve body–tail regions.

There is a significant difference in these percentages for most negative edges according to the FRCC.
As can be seen in Figure 8(b), there is significant percentage of negative edges which involve pairs of
neurons both located at the body or at the tail of the worm. More important are the differences provided
by the edges with negative and positive curvature. It is known that the nerve ring in the head of C.
elegans groups the majority of the neurons and synapses of the worm. Therefore, it is not surprising that
most of the edges with high negative curvature (49%) as well as of those with positive one (57.6%) are
wiring neurons located in the head of C. elegans. However, as can be seen in Figure 8, almost 27% of
the connections with very negative curvature occurs between neurons located in the head with others
in the mid body of the worm. This percentage grows up to 37.6% if we consider together neurons with
locations of types h–b and h–t. It is also significant that the b–t connections represent 7.4% of the total
number of edges at the top ranking of negative curvature. Contrastingly, one-third of the edges with
positive curvature connect neurons located in the mid body of the worm, i.e., b–b connections, with
only one edge connecting head to body and another connecting head to tail and no edge connecting
body and tail.

5.3 Collaboration network in computational geometry

We now focus on the collaboration network in computational geometry. In this case, the percentages of
negative edges according to both curvatures are similar: 94.4% for RC and 92% for FRCC. The non-
negative RC edges are formed by 442 edges with zero RC and 103 edges with RC equal to one. We now
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Figure 8. Percentage of edges with communicability curvature among the most negative (blue) and
positive ones (red) that connect pairs of neurons both in the head (h–h), head–body (h–b), head–tail
(h–t), two in the body (b–b), the two in the tail (t–t) and body–tail (b–t) using RC (a) and FRCC (b). The
network does not have positive edges according to RC.

Figure 9. Illustration of the edges with the most negative RC (a) and FRCC (b) of the collaboration
network in computational geometry.

compare the collaborations existing in the top 10% of edges ranked by their RC and FRCC (see Figure 9).
We have seen before that in this network, the LCC formed by the most negative edges according to RC
is bigger than that formed by FRCC (see Table 4). As can be seen in Figure 9, the most negative edges
according to RC form a significantly more compact core than the ones according to FRCC. For instance,
the edges in the top 10% of FRCC are grouped into 169 cliques of sizes between 5 and 11. There are
two cliques of size 11, which are formed by some of the most connected authors in this network (degree
is given in parenthesis): Agarwal (98), O’Rourke (85), Tamasia (79), Dobkin (73), Goodrich (70), Suri
(63), Sack (61), Whitesides (59), Preparate (53), Vitter (53) and Chen (41). Among the 18 cliques with
8 authors, we find Guibas (102), Agarwal (98), Snoeyink (91), Edelsbrunner (90), Overmars (98), Yap
(76), Dobkin (73) and Eppstein (61). The LCC of this network resembles a core-satellite graph [25], in
which some authors coparticipate in several cliques of smaller size.
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In contrast, the top 10% of edges ranked by FRCC does not form any clique of length three or higher.
These edges do not include, in general, connections between the major hubs of the network as in the case
of RC. Instead, it includes in the very top ranking the connections of some of the major hubs and a few of
their collaborators, who also collaborate among them. For instance, Guibas (102) has collaborated with
Harer, Grimm, Zorin, Weeks, Johnson, Sedwick and Hicks, who also have collaborated among them
forming a clique. Then, the connections between Guibas and each of these authors are among the top
most negative edges by FRCC. The same happens for these collaborators, all of which have degree 21,
with other main authors like Agarwal (98), Edelsbrunner (90), Yap (76) and Dobkin (73). The positive
edges are then, in general, those connecting some of these coauthors. It should be remarked that the
collaborator–collaborator edges not always have positive RCC, but in many occasions they also display
negative FRCC with relatively small magnitude. In this scenario, the main hubs and their collaborators
form the arteries of the system while the collaborator–collaborator edges form the capillaries.

At the end of this section of applications, we would like to remark that the communicability curvature
is not trivially related to the unweighted Forman–Ricci curvature which only contains local information
about a given edge. In fact, for the three real-world networks analysed, both measures are very poorly
correlated to each other, i.e., the Pearson correlation coefficients between them are 0.013 (USA airports),
0.497 (C. elegans neurons), and 0.193 (collaboration network).

6. Conclusions

The Forman–Ricci communicability curvature displays several important characteristics to be used for
the analysis of graphs and networks. First, it is a local invariant which contains information about the
global influence of the network on a particular edge. Therefore, it is not trivially related to the unweighted
Forman–Ricci curvature which only contains local information about a given edge. In fact, for the
three real-world networks analysed both measures are very poorly correlated to each other. Second,
it is directly related to diffusive dynamical models on graphs, which allows to investigate structure–
function relations in networks. Last, but not least, it is directly related to the spectrum of the adjacency
matrix via the communicability distance function, which allow many further explorations connecting
geometric parameters with algebraic graph theory.

As we have seen from the analysis of the real-world examples considered here, the communica-
bility curvature based on Forman–Ricci discrete curvature accounts for significant differences in the
functional role of edges in networks. While edges with very large negative curvature allow the commu-
nication between important hubs with ‘peripheral‘ vertices, the edges with positive curvature represent
a vasculatory framework of connections between these second class of vertices (and sometimes between
hubs) in the network.

Two main handicaps of the Forman–Ricci communicability curvature are the following. While this
curvature can take any negative value for an edge, it is upper bounded by a positive curvature of 2.
This makes that the values of the edge curvature are extremely asymmetric favouring the dominance
of negative ones. This is inherent to the definition of the Forman–Ricci curvature. Thus, we suggest to
explore other definitions, like the one given in refs. [15, 16] using the communicability distance instead
of the resistance one. The second problem is the extension of the Forman–Ricci communicability cur-
vature to directed graphs. Although the original definition allows such extension, the communicability
distance is, like any distance, a symmetric function. Therefore, other approaches based more on the
communicability ‘flow‘ instead of the distance should be explored here.
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