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Fermat Jacobians of Prime Degree
over Finite Fields
Josep González

Abstract. We study the splitting of Fermat Jacobians of prime degree ` over an algebraic closure of a finite field
of characteristic p not equal to `. We prove that their decomposition is determined by the residue degree of p
in the cyclotomic field of the `-th roots of unity. We provide a numerical criterion that allows to compute the
absolutely simple subvarieties and their multiplicity in the Fermat Jacobian.

Introduction

Let ` > 2 be an integer. We denote by C` the Fermat curve of degree ` and by J(C`) its
jacobian. Let p be a prime not dividing ` and let q = p f , where f is the residue degree of p
in Q(µ`). The splitting of J(C`) over Q̄ was studied by Koblitz and Rohrlich in [Ko-Ro 78]
and over a finite field Fq it was treated by Yui in [Yu 80]. The purpose of this paper is to
determine the splitting of J(C`) over F̄p when ` is prime.

It is known that J(C`) is Q̄-isogenous to the product of the ` − 2 jacobians of curves,
which we denote by C`,k, for 2 ≤ k ≤ ` − 1 (cf. [Sch 84]). We determine the splitting of
J(C`,k) over F̄p and we give a criterion to determine when two absolutely simple factors of
J(C`,k), J(C`,k ′) are F̄p-isogenous.

In Section 1, we describe some facts about abelian varieties over finite fields. In Sec-
tion 2, we begin summarizing known facts concerning to the zeta function of the curves
C`/Fq and we give some results about the Hasse-Witt invariants of the curves C`,k/F̄q, which
will be used in the last section to obtain the main result of the paper.

I would like to end this introduction by expressing my gratitude to Pilar Bayer for her
help.

1 On the Abelian Varieties over Finite Fields

Let p be a prime integer. We fix a positive integer n and consider the power q = pn.
Throughout this paper, A denotes an abelian variety defined over the finite field Fq. Let
ϕ ∈ EndFq (A) be the relative Frobenius endomorphism, whose action on the variety raises
to the q-th power the coordinates of the points of A. We denote by EndFq (A) the ring

of endomorphisms of A which are defined over Fq. The Q-algebra End0
Fq

(A) := Q ⊗Z

EndFq (A) has Q(ϕ) as its center. For a given prime number ` 6= p, we denote by T`(A) the
Tate module of A and by V`(A) := Q` ⊗Z` T`(A).

If A is Fq-simple, then Q(ϕ) is a number field. In this case, the class in the Brauer
group of Q(ϕ) of the simple algebra End0

Fq
(A) is characterized by the local invariants
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Fermat Jacobians of Prime Degree 79

ip = fp ordp(ϕ)/n at each prime p over p in Q(ϕ) (here, fp stands for the residue de-
gree at p); on each real prime, the local invariant is equal to 1/2; on the remaining primes,
the algebra splits. The lowest common denominator e of all the invariants ip is the pe-
riod of the endomorphism algebra End0

Fq
(A); the characteristic polynomial of ϕ on V`(A)

equals the e-th power of the Q-irreducible polynomial of ϕ and dim A = [Q(ϕ) : Q]e/2
(cf. [Ta 66], [Wa 69]).

Fix an algebraic closure Q̄ of Q ; each Weil q-numberα ∈ Q̄ determines, up to isogenies,
an Fq-simple abelian variety A/Fq such that the Q-irreducible polynomial of ϕ equals the
Q-irreducible polynomial of α. This assignment establishes a one to one correspondence
between the conjugacy classes of Weil q-numbers and the Fq-isogeny classes of Fq-simple
abelian varieties defined over Fq (cf. [Ta 68]).

Let α be a Weil q-number. For each positive integer m, we denote by Am an abelian
variety associated to the Weil qm-number αm. There exists an integer t > 0 such that
Q(αt ) = Q(αtm) for all integers m > 0. For this t , we have that At is absolutely simple,

End0
F̄q

(At ) = End0
Fqt

(At ) and A1 is Fqt -isogenous to Adim A1/ dim At
t .

Let α1, α2 be two Weil q-numbers such that Q(α1) = Q(α2) =: K, and let A1, A2 be
abelian varieties associated to α1 and α2, respectively. Then the following properties hold:

i) If the ideals (α1), (α2) in the ring of integers of K coincide, then A1 and A2 are F̄q-
isogenous (cf. [Go 98]).

ii) If K/Q is a galois extension, then A1 and A2 are F̄q-isogenous if and only if there exists
σ ∈ Gal(K/Q) such that (α2) =

(
σ(α1)

)
.

We note that the abelian variety associated to a Weil q-numberα is F̄q-isogenous to a power
of a supersingular elliptic curve if and only if the ideals (α2) and (q) do coincide or, equiv-
alently, the ideal (α) is invariant under complex conjugation.

2 The Fermat Curves of Prime Degree

In what follows, K denotes the prime field Q or Fp, and K̄ is a fixed algebraic closure of K.
We denote by C`/K the Fermat curve, defined as the projective plane curve

Y ` = X` + Z`,

where ` 6= p is an odd prime number. The curve C` is non-singular and has genus g =
(`− 2)(`− 1)/2. For 2 ≤ k ≤ `− 1, let C`,k/K̄ be the projective plane curve

V ` = UW k−1(U + W )`−k,

which has singularities at the points

(u, v,w) =

{
(1, 0, 0) if k > 2

(−1, 0, 1) if k < `− 1.

Let φk : C` → C`,k be the morphism defined by u = x`, v = xy`−kzk−1, w = z` and
ψk : C`,k → C`,k be the normalization of the curve C`,k.
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Let ζ ∈ K̄ be a primitive `-th root of unity and γk : C` → C` be the automorphism
defined by (x, y, z) 7→ (xζk, yζ, z), which does not have fixed points and is of order `. We
have that φk = φk ◦ γk and the curve C`,k is isomorphic to the quotient curve of C` by the
group of order ` generated by γk. Let πk : C` → C`,k be the corresponding projection. We
have that πk is unramified and ψk is a morphism such that ψk ◦ πk = φk. By the Hurwitz
formula, the genus of C`,k is (` − 1)/2. Note that πk is defined on any extension of K
containing the `-th roots of unity. Thus, if K = Fp and pm ≡ 1 (mod `), then πk and
ψk are both defined over Fpm ; in this case, it is easy to see that the number of Fpm -rational
points of C`,k/K̄ and that of C`,k/K̄ coincide.

Let Q(µ`) be the field of `-th roots of unity, f the residue degree of p in Q(µ`), and
q = p f . We denote G := (Z/`Z)∗ and let H be the subgroup of G of order f . Given a
generator g ∈ G, we identify G with Gal

(
Q(µ`)/Q

)
. Then H can be identified with the

decomposition group of p in Q(µ`).
The roots αi , 1 ≤ i ≤ 2g, of characteristic polynomial of the relative Frobenius of the

curve C`/Fq acting on the Tate module of its Jacobian can be determined in the following
way (cf. [Da-Ha 35]). Let

D := {ā = (a1, a2) ∈ (Z/`Z)∗ × (Z/`Z)∗ | a1 + a2 6≡ 0 (mod `)}.

Then #D = (`−1)(`−2) = 2g. Let us choose a character χ of order ` of the multiplicative
group F∗q , extended to Fq with χ(0) = 0. For each ā = (a1, a2) ∈ D, let us consider the
Jacobi sum

j(ā) := −
∑

(v1,v2)

χ(v1)a1χ(v2)a2 ,

where (v1, v2) ∈ Fq × Fq with v2 = v1 + 1. Then,

2g∏
i=1

(x − αi) =
∏
ā∈D

(
x − j(ā)

)
.

The group G acts on D as follows: G × D → D, (m, ā) 7→ mā = (ma1,ma2). Given
c ∈ G, we denote by 〈c〉 the least natural number such that 〈c〉 ≡ c (mod `). The decom-
position of the ideal

(
j(ā)
)

into prime ideals in Q(µ`) is as follows (cf. [Shi-Ka 79]). Given
a prime ideal p|(p), we write pi := pσ−i . For each ā = (a1, a2) ∈ D, let us define

E(ā) :=
∑
h∈H

[
〈ha1〉 + 〈ha2〉

`

]
=

f∑
k=1

[
〈gk(`−1)/ f a1〉 + 〈gk(`−1)/ f a2〉

`

]
,

where [ ] denotes the integer part. Then, there exists a prime ideal p|(p) in Q(µ`) such that

(
j(ā)
)
=

(`−1)/ f∏
i=1

p
E(gi ā)
i , for all ā ∈ D.

Note that p
σ− j

i = pi+ j , p `−1
2
= pc and pi = p j if and only if i ≡ j (mod `−1

f ). On the

other hand, if the pi-adic order of j(ā) is E(mā), then the pc
i -adic order of j(ā) is E(−mā).

One has always E(b̄) + E(−b̄) = f .
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Fermat Jacobians of Prime Degree 81

For 2 ≤ k ≤ `−1 we write Dk := {(a1, a2) ∈ D | 〈a1/a2〉 = k−1} = {m(k−1, 1) | m ∈
G}. Then the set D is the disjoint union of the sets Dk, since these sets are the equivalence
classes defined in D by the relation ā ∼ b̄ if and only if there exists m ∈ G such that ā = mb̄.

Let T, S : D→ D be the bijective maps defined by

T(a1, a2) := (a1, `− a1 − a2), S(a1, a2) := (a2, a1).

T, S are compatible with the equivalence relation above. Thus, T(Dk) = D〈1/k〉 and
S(Dk) = D〈 k

k−1 〉
. Since S, T are involutions and (S ◦ T)3(k) = k, S and T generate the

dihedral group D3. If we write T(k) := 〈1/k〉 and S(k) := 〈k/(k − 1)〉, then the group D3

acts also on the set of indices 2 ≤ k ≤ `− 1. We have M(Dk) = DM(k) for all M ∈ D3. The
curves C`,M(k)/K̄, with M running over D3, are isomorphic (cf. [Go 97]).

Proposition 2.1

i) Given ā ∈ D and M ∈ D3, we have that j(ā) = j
(
M(ā)

)
. In particular,

∏
ā∈Dk

(
x − j(ā)

)
=
∏

ā∈DM(k)

(
x − j(ā)

)
.

ii) The values j(ā), with ā ∈ Dk, are the roots of the characteristic polynomial of the Frobenius
of the curve C`,k/Fq acting on the Tate module of its jacobian.

Proof Given two characters χ1, χ2 of F∗q , the generalized Jacobi sum is defined by
J(χ1, χ2) := −

∑
x χ1(x)χ2(1 − x). It satisfies J(χ1, χ2) = J(χ2, χ1). In our case, if χ

denotes a character of order `, then χ(−1) = 1 and j(a1, a2) = J(χa1 , χa2 ). It is easy to
prove that j

(
S(a1, a2)

)
= j(a1, a2) and j

(
T(a1, a2)

)
= j(a1, a2).

Let now prove the assertion ii). The number Nm of Fqm -rational points of C`,k/Fqm is the
same as the number of Fqm -rational points of the projective singular curve associated to the
affine curve

V ` = U (U + 1)`−k,

which has only one point at infinity that is Fp-rational. Let be a positive integer m and let
be a character χm of order ` of the multiplicative group F∗qm . Using the Davenport-Hasse
theorem, we obtain

Nm = 1 + qm −
∑

(a1,a2)∈D〈(k−1)/k〉

J(χa1
m , χ

a2
m ) = 1 + qm −

∑
ā∈D〈(k−1)/k〉

j(ā)m,

and the proposition follows.

The curve C`/Q has good reduction at p. Let us denote by rp(C`), resp. rp(C`,k), the
Hasse-Witt invariant of C`/F̄p, resp. C`,k/F̄p. These invariants satisfy rp(C`) =

∑
k rp(C`,k).

We have that (cf. [St 79]):

rp(C`) = #{ā ∈ D | j(ā) /∈ p}, rp(C`,k) = #{ā ∈ Dk | j(ā) /∈ p}.
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Therefore,

rp(C`) = #{ā ∈ D | E(ā) = 0} = #{ā ∈ D | 〈ha1〉 + 〈ha2〉 < ` for all h ∈ H},

rp(C`,k) = #{ā ∈ Dk | E(ā) = 0} = #{ā ∈ Dk | 〈ha1〉 + 〈ha2〉 < ` for all h ∈ H}.

This result coincides with the one obtained in [Go 97] by using Hasse-Witt matrices. It is
easy to check that f divides rp(C`,k) and rp(C`), and that J(C`/F̄p) is ordinary if and only if
f = 1.

It is known that the Fermat curves such that their jacobian J(C`/F̄p) is isogenous to
the power of a supersingular elliptic curve are those for which f is even (cf. [Shi-Ka 79,
Proposition 3.10]). This result can be generalized as follows.

Proposition 2.2 J(C`,k/F̄p) has a factor equal to a supersingular elliptic curve if and only if
J(C`/F̄p) is isogenous to the power of a supersingular elliptic curve.

Proof If J(C`,k/F̄p) has a supersingular elliptic curve factor, then a power of j(ā) is a
power of q, for some ā ∈ Dk. Thus, the order of j(ā) at an ideal p is equal to the order at
pc, where c denotes complex conjugation. It follows that f is even.

Proposition 2.3 If J(C`,k/F̄p) is ordinary and f > 1, then k − 1 is a primitive cubic root
of unity in (Z/`Z)∗. If k − 1 is a primitive cubic root of unity in (Z/`Z)∗ and f = 3, then
J(C`,k/F̄p) is ordinary.

Proof We write c = k − 1 and Mc = {m ∈ G | 〈mc〉 + 〈m〉 < `}. The cardinality of
Mc equals the genus of C`,k/F̄p, since for all m ∈ G we have that m ∈ Mc if and only if
−m /∈ Mc. Thus, J(C`,k/F̄p) is ordinary if and only if HMc = Mc, since

rp(C`,k) = #{m ∈ G | 〈mhc〉 + 〈mh〉 < ` for all h ∈ H}.

Given m ∈ G and an integer i such that 0 ≤ i ≤ c − 1, we have

m ∈ Mc, 〈m〉 ∈

(
i`

c
,

(i + 1)`

c

)
if and only if 〈m〉 ∈

(
i`

c
,

(i + 1)`

c + 1

)
.

It follows that Mc coincides with the set of classes of integers mod ` in the following set

c−1⋃
i=0

(
i`

c
,

(i + 1)`

c + 1

)
=

c−1⋃
i=0

[[
i`

c

]
+ 1,

[
(i + 1)`

c + 1

]]
.

Therefore, ∑
m∈Mc

〈m〉 =

∑c
j=1

([ j`
c+1

]2
+
[ j`

c+1

])
−
∑c−1

i=1

([
i`
c

]2
+ [ i`

c

])
2

.
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Let n be a positive integer prime to `. We have that
∑n−1

j=1 [ j`/n] = (` − 1)(n − 1)/2 ≡
−(n−1)/2 (mod `). On the other hand, { j`−[ j`/n]n | 1 ≤ j ≤ n−1} = {1, . . . , n−1},
since ` ∈ (Z/nZ)∗. Thus,

n−1∑
j=1

[
j`

n

]2

≡

∑n−1
j=1 j2

n2
≡

(2n− 1)(n− 1)

6n
(mod `).

Applying these results to n = c and n = c + 1, we have∑
m∈Mc

m ≡ −
c2 + c + 1

12c(c + 1)
(mod `).

If J(C`,k/F̄p) is ordinary, then Mc is the disjoint union of cosets of H and, therefore,∑
m∈Mc

m ≡ 0 (mod `) since f > 1. Hence, c2 + c + 1 ≡ 0 (mod `).
For the second claim, let us assume that c2 + c + 1 ≡ 0 (mod `). Given m ∈ Mc, we have

that
〈c2m〉 + 〈cm〉 = `− 〈(c + 1)m〉 + 〈cm〉 = `− 〈m〉 < `,

since 〈(c + 1)m〉 = 〈cm〉 + 〈m〉. Thus, mc ∈ Mc and cMc = Mc.
Furthermore, if f = 3, then the subgroup H is generated by c and the condition HMc =

Mc is equivalent to the condition cMc = Mc. It follows that J(C`,k/F̄p) is ordinary.

3 Splitting of Fermat Jacobians

In this section, we show that J(C`,k/Fq) is Fq-isogenous to a power of an absolutely simple
subvariety Ak/Fq and we determine its dimension. We characterize under which conditions
Ak and Ak ′ are F̄q-isogenous.

Lemma 3.1

i) If ā ∈ Dk, then the characteristic polynomial of relative Frobenius of C`,k acting on the

Tate module of its jacobian is
∏

σ∈G

(
X − σ

(
j(ā)
))

.

ii) For all ā ∈ D, we have j(ā) ∈ Q(µ`)H.

Proof The statement of i) follows from the Proposition 2.1 and the fact that σi

(
j(ā)
)
=

j(gi ā) for all 1 ≤ i ≤ `−1. In order to establish ii), it suffices to prove that j(ā) is invariant
under σ(`−1)/ f . We take g in such a way that p ≡ g(`−1)/ f (mod `) and

σ(`−1)/ f j(ā) = j(pā) = −
∑

vp
2=vp

1 +1

χ(vp
1 )a1χ(vp

2 )a2 = j(a1, a2).

Given ā ∈ D, we write

Hā := {σ ∈ G |
(

j(ā)
)σ
=
(

j(ā)
)
}, H j(ā) := {σ ∈ G | σ j(ā) = j(ā)}.

We have that H ⊆ H j(ā) ⊆ Hā ⊆ G and Q
(

j(ā)
)
= Q(µ`)H j(ā) . Let us remark that

Hā = {s ∈ G | E(gi ā) = E(sgi ā), 1 ≤ i ≤ (` − 1)/ f } and, therefore, Hā can be easily
computed.

Lemma 3.2 Let ā ∈ Dk. Then the groups H j(ā) and Hā coincide. Furthermore H j(ā) = Hā =
G if and only if the order of the group Hā is even.
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Proof If the order of the group Hā is even, then the complex conjugation σ(`−1)/2 ∈ Hā.

By the Proposition 2.2, we have that f is even and
(

j(ā)
)
= (p f /2). Since H 6= {1}, the

roots of unity of Q(µ`)H j(ā) are±1 and j(ā) is integer. Thus, the groups H j(ā) , Hā coincide
with G.

In order to show the equality H j(ā) = Hā, we consider the following two cases: H j(ā) 6=
{1}, and H j(ā) = {1}.

First we assume that H j(ā) 6= {1}. If σ ∈ Hā then σ j(ā) = ± j(ā), because the only roots
of unity in Q(µ`)H j(ā) are ±1. Hence, the group Hā/H j(ā) is a cyclic group of order 1 or 2.
The order cannot be 2 so both groups coincide.

We assume, now, that H = H j(ā) = {1} and Hā 6= {1}. Let c = k − 1 and Mc be as in
the Proposition 2.3. The group Hā is the group {h ∈ G | hMc = Mc}, since H = {1}. If p ′

is a prime for which the decomposition group is Hā, then J(C`,k/F̄p ′) is ordinary. By the
Proposition 2.3, c is a cubic primitive root of unity in (Z/`Z)∗ and c ∈ Hā. We have(

j(c, 1)
)
=
(

j(c2, c)
)
, j(c, 1) 6= j(c2, c).

Thus there exists ζ ∈ µ2` such that j(c, 1) = ζ j(c2, c) and, hence, there exists a character
χ of order ` of the group F∗q such that

g(χ)g(χc)

g(χ−c2 )
= ζ

g(χc)g(χc2
)

g(χ−1)
,

where g(χ) denotes the Gauss sum of the character χ. Due to the fact that g(χ)g(χ−1) =
g(χc2

)g(χ−c2
) = p, we obtain that ζ = 1, which contradicts j(c, 1) 6= j(c2, c).

Theorem 3.3 The variety J(C`,k/Fq) is Fq-isogenous to an m-th power of an Ak/Fq absolutely
simple abelian variety. The Q-algebra End0(Ak) has Q(µ`)Hā as its center. Its local invariants
at primes which divide p are {E(sā)/ f | s ∈ G/H}, for any ā ∈ Dk, and the Brauer period e
is the least common denominator of E(sā)/ f , with s running over G/H. We have that

m =
#Hā

e
and e| f |em|rp(C`,k).

Proof Let ā ∈ Dk. By the Lemma 3.1, the characteristic polynomial of the relative Frobe-
nius of C`,k/Fq acting on the Tate module of its jacobian is given by the (#H j(ā))-th power
of the Q-irreducible polynomial

∏
σ∈G/H j(ā)

(X − σ
(

j(ā)
)

. Therefore, J(C`,k/Fq) is Fq-

isogenous to a power of a Fq-simple variety, Ak. Given a positive integer t we denote by
Ht the subgroup of G that leaves j(ā)t invariant. We have that H j(ā) ⊆ Ht ⊆ Hā. By the
Lemma 3.2, it follows that Q

(
j(ā)t
)
= Q
(

j(ā)
)

and, thus, Ak is absolutely simple.
The computation of the local invariants and e can be done from the equality

{ fp ordp j(ā)/ f | p|p} = {E(gi ā)/ f | 1 ≤ i ≤ (`− 1)/ f }

and the fact that if f is even we get E(gi ā)/ f = 1/2.
Finally, we have that

m =
dim J(C`,k)

dim Ak
=

(`− 1)/2

[Q( j(ā) : Q]e/2
=

(`− 1)/2

(`− 1)e/(2#Hā)
=

#Hā

e
.
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It is obvious that e| f . From the inclusion H ⊆ Hā, it follows that f |em. We have that
em|rp(C`,k) since the characteristic polynomial of the relative Frobenius of C`,k/Fq acting
on the Tate module of its jacobian is the (em)-th power of a Q-irreducible polynomial.

Note that if f is odd then Q
(

j(ā)
)

need not be equal to Q(µ`)H . For instance, if f = 1
and ā ∈ Dk, where c = k − 1 is a primitive cubic root of unity, then Q

(
j(ā)
)
6= Q(µ`),

since j(ā) ∈ Q(µ`)H ′ where H ′ = {c, c2, 1}.

Theorem 3.4 The abelian varieties Ak and Ak ′ are F̄q-isogenous if and only if there exists
t ∈ G such that

E
(

gi(k ′ − 1, 1)
)
= E
(
tgi(k− 1, 1)

)
for all 1 ≤ i ≤

`− 1

f
.

In this case, J(C`,k) and J(C`,k ′) are F̄q-isogenous.

Proof If Ak and Ak ′ are F̄q-isogenous then J(C`,k) and J(C`,k ′) are F̄q-isogenous, since both
jacobians have the same dimension. This fact happens if and only if there exist ā ∈ Dk, b̄ ∈
Dk ′ such that

(
j(ā)
)
=
(

j(b̄)
)
, since due to the Lemma 3.2 the condition

(
j(ā)
)
=
(

j(b̄)
)

implies that Q
(

j(ā)
)
= Q
(

j(b̄)
)
. Without loss of generality, we can take b̄ = (k ′ − 1, 1)

and there exists t ∈ G such that ā = t(k− 1, 1).

3.5 Absolutely Simple Subvarieties of J(C13)/F̄p, f = 3

We are going to compute the decomposition of the jacobian of C13/Fp, where p is a prime
of residue degree f = 3, into a product of absolutely simple subvarieties. We can take 2 as
generator of G. The decomposition group is H = {24 ≡ 3, 28 ≡ 9, 212 ≡ 1} and G/H =
{2̄, 4̄, 8̄, 1̄}. We have that (p) = p1p2p3p4 = p1p2p

c
1p

c
2, where the upperindex c denotes

the complex conjugation σ6. The computation of the exponents E(a1, a2) corresponding to
C13,2 gives the following table:

ā 3ā 9ā E(ā) E(−ā)
(1, 1) (3, 3) (9, 9) ∗ 1 2
(2, 2) (6, 6) (5, 5) ∗ 0 3
(3, 3) (9, 9) ∗ (1, 1) 1 2
(4, 4) (12, 12) ∗ (10, 10) ∗ 2 1
(5, 5) (2, 2) (6, 6) 0 3
(6, 6) (5, 5) (2, 2) 0 3

The number of asterisks yields E(ā). The Hasse-Witt invariant of C13,2/F̄p is the number of
zeroes that appear in the E(ā), E(−ā) columns, thus rp(C13,2) = 3.

On the other hand,
(

j(1, 1)
)
= p

E(2,2)
1 p

E(4,4)
2 p

E(8,8)
3 p

E(3,3)
4 = p2

2(pc
1)3pc

2. The subgroup
of homomorphisms of G that leaves the ideal

(
j(1, 1)

)
invariant is H. The Brauer period

of the endomorphism algebra of the simple subvariety is e = 3. Therefore, m = 1 and
J(C13,2/Fq) is absolutely simple. For k = 2, 7, 12 the corresponding jacobians are isoge-
nous, since (

j(1, 1)
)
=
(

j(1, 11)
)
=
(

j(11, 1)
)
= p2

2(pc
1)3pc

2.
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For k = 3, 5, 6, 8, 9, 11 the jacobians are isogenous, since(
j(2, 1)

)
=
(

j(4, 1)c
)
=
(

j(10, 2)
)
=
(

j(1, 2)
)

=
(

j(2, 10)
)
=
(

j(1, 4)c
)
= p2

1p2
2p

c
1p

c
2

and C13,k/F̄p have zero Hasse-Witt invariant with e = 3 and m = 1.
For k = 4, 10 the corresponding jacobians are again isogenous, since(

j(3, 1)
)
=
(

j(1, 3)
)
= p3

2(pc
1)3

and C13,k/F̄p have Hasse-Witt invariant equal to 6; therefore, they are ordinary with e = 1
and m = 3.

In this example the isogeny classes coincide with the isomorphy classes generated by the
action of the dihedral group. Thus, we have the following isogeny relation

J(C13) ∼ J(C13,2)3 × J(C13,3)6 × J(C13,4)2,

where the non-ordinary jacobians J(C13,3), J(C13,2) are absolutely simple and J(C13,4) is
isogenous to a third power of an absolutely simple variety.
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