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The Brocard and Tucker Circles of a Cyclic
Quadrilateral.

By FreEberick G. W. Browx.

(Received jth September 1917. Read 9th November 1917.)

1. The application of the geometrical properties of the Brocard
and Tucker circles of a triangle to a quadrilateral appears never
to have been adequately worked out, as far as the author can
discover. Hence, the object of this paper.

Some of the problems involved have been published, under the
author’s name, as independent questions for solution, and where,
in the author’s opinion, solutions other than his own have seemed
more satisfuctory for the logical treatment of the subject, these
solutions have been employed, with due acknowledgments to their
authors.

2. Condition for Brocard points.
We shall first establish the condition necessary for the
existence of Brocard points within a quadrilateral,

Let ABCD (Fig. 1) be a quadrilateral in which a point X can
be found such that the .*® XAD, XBA, XCB, XDC are all equal;
denote each of these angles by w; the sides BC, CD, DA, AB by
@, b, ¢, d; the diagonals BD, AC by ¢, £, and the area by @ ; then

LtAXB=71-w-(4d-w)=7-4.
Similarly LB8XC=#x-B, LCXD=n-C, o DXA==n-D.
Now AX:sinw=AB:sinAXB=d:sin(r-4)=d:sind
and AX:sin(D-w)=c:sin(r -~ D)=c:sin D,
hence, eliminating 4X by division

sin (D - ) : sinw=dsin D:csin 4,
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from which cot w= % cosec 4 + cot D.
Similarly cot w = % cosec D + cot C,
b P eeevesecerecrienss
= cosec C + cot B,
@
=7 cosec B +cot 4,
¥,
b

d
Y cosecd + cotD+; cosec C' +cot B

=—Z— cosecD+cotC+73— cosec B +cot 4 = 2 cot .

Fig, 1.
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Hence,

i cosec 4 — — cosec B + i cosec C — 2 cosec D=cot 4 —cot B
c d a b
+cot C—cotD............ (2)

This is the general condition for all quadrilaterals in its most
general form.*

3. Reduction of Condition for any quadrilateral.

Condition (2) involves the eight parts of the quadrilateral,
but for given data, it will need reduction in order to express it
in terms of the data. To effect this it is simpler to start with
equations (1). Let us suppose, for example, that the four sides
and the angle C are given, and the figure is subject to the
limitation that it must be convex, then, since

2¢dcosd =ct+d*—¢*
and e’ =a®+ b? - 2ab cos C,
cosd and therefore . 4 become known, there being only one
value of cos 4 in the eliminant of ¢* since A <.

Put cosecA = «, cosecC = B, cosecB = x, cosecD =y and
cotw=~k, then o, B are known and z, y, £ unknown constants.
Equations (1) now become:—

k=%.l}.+ N/y"!"l,

k:%.“ B,
k=l B4 JFTI
=" + Vxt -1,
=S e J@TT,

The condition for Brocard points in terms of a, b, ¢, d and
< C is therefore the eliminant of , y, & in the above equations.

* Vide the author’s note in Mathematical Gazette, Vol. IX., pp. 83-85.
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The following method of elimination is due to Lt.-Col. Allan
Cunningham, R.E.*

For shortness write £= JB*— 1, F= A o*~1, then the
equations may be written

(i) _/c—%.u.= V-1
i) (k- B). 2=y,

(i) &-- . = JFTL

(iv) (k—-F)(—j— = .

Squaring and taking the differences of (i) and (ii), and of (iii)
and (iv), we get the two following equations independent of
zand y:—

2 2 2 2
(k-E)z.% —(Ic——(—?o.) —1; (k—F)“.%E— (k——z . ﬂ) -1,

which may be written as quadratics in %, thus

Bl -t +2%k(cda-bE)+ (P E*—d?*a?—¢?) =0,

B(d®-a®)+2k(abB-d*F )+ (d*F* - *(*-a%) =0,
or o+ 2k +r =0,

v PRE+2¢k+7 =0,
the eliminant of which is
(pr' —prY¥+4 (pg-pg)(gr —g7)=0, ...l 3)

which is therefore the required condition.

When the substitutions are made, however, the relation is so
cumbersome that it is practically of very little value.

4. Reduction of Condition for a cyclic quadrilateral.

When the quadrilateral is inscribed in a circle, the condition
for Brocard points becomes very simple, and many interesting
analogies to the triangle are revealed.

Going back to (2), we have for a cyclic figure,

cosec 4 = cosecC, cosecB =cosecD, cotd = —cotC, cotB = - cotD,
since A+ . C=2B+ . D=m,

* Mathematical Questions and Solutione (F. Hodgson, London), Vol. 2,
p. 47.
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hence, (2) becomes

<i + i) cosecd - (—a— + —c-> cosec B=0
¢ @ d b
or bd (ad + bc) sin I3 = ac (ab + cd) sind.
But 2 =(ab+cd ) sin A = (ad + be) sin B.
Hence, ac = bd,
and from Ptolemy’s theorem, ef =ac+ bd.
ac=bd=7}ef, ....c....cooiiiiiiiinn. 4)

the required condition.
We shall therefore confine the following investigation to a
cyclic quadrilateral.

5. Geometrical Proof of (4).

This simple relation for Brocard points may also be established
geometrically, and the following proof is based on one given by
Mr W, F, Beard, M.A.*

Produce 4X, DX (Fig. 1) to meet DC, BC in K, F respectively,
join EB, FA, then
tBXAd=n-4=°.C
L XBA= L FDC.
As BAX, FDC are similar,
CD:DF=BX: AB
ocr AB.CD=DF.BX.
Again, 2 AXF =supplement of . AXD
=supplement of # — D=, D
=supplement of . B,
4, B, F, X lie on a circle,

hence, LBFA= BXA=7-A4=,C.

.. AF is parallel to DC.
Similarly BE is parallel to 4D.
Now tDAX = BCX

tBXC=nr-B= . D,
Ns ADE, BXC are similar.

* Mathemutical Questjons and Solutions (F, Hodgson, London), Vol. 3,
PP. 2-3.
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and AD:AE=XC: BC.
AD.BC=4E.XC.
Finally, .BXC= .D and L AXF= D, already proved.
tBXC=rAXF= L EXD

and tBCX=(EDX=_,.DFA, '+ AF|DE.
As BXC, AFX, DXE are similar;

hence, BX:XC=EX.XD=AX:XF=AE: DF.,
.. BX.DF=AF.XC;

hence, AB .CD=AD. BC.

6. Second Brocard Point.

The point X has a corresponding one X’ such that the angles
X'AB, X'BC, X'CD, X'DA are all equal, and it may be shown
in & precisely similar manner as for X that the necessary condition
for its existence is ac=bd =1ef.

Hence, when this condition is fulfilled, there are two Brocard
points, just as in the case of a triangle.

Let o' = each of the equal angles X’'A4B, etc., then, as in
Art. 2, it may be shown that

c
cot ' = 5 cosee A +cot B.

But cosec 4 =cosec C, and from (4)
c:d=b:a.

cot o' = % cosec C + cot B=cot w, from (1).
o o=o,
X and X’ are therefore isogonal conjugates.

7. Geometrical Construction for a Cyclic Quadrilateral having
Brocard Points.

A cyclic quadrilateral ABCD, such that AB.CD=A4D. BC,
may be constructed by the following general method.

Draw any straight line LL, (Fig. 2); take any point 4 in it
and mark off 4L,=AL. Through 4 draw any straight line @@, ;
join QLQL,, and draw @,L, antiparallel to L@ with respect to
@, AL, ; hence, draw BD parallel to @, L, and equal to QL,.

Describe the circumeircle to the AABD and in it place a chord
BC such that o DBC= L AL,Q; join CD, then ABCD is the
required quadrilateral.
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Since 4, B, C, D are concyelic points,
£ BCD =supplement of L BAD= . L, AQ

and - DBC= . AL, Q} By construction.

BD=QL,
As BCD, Q4 L, are congruous.
Hence, BC=AL, and CD=A4Q.
N X3
Ly

Fig. 2.

Again, since BD, LQ are antiparallels with respect to . BAD,
. L, @, D, B are concyclic points
LA.AD=QA.AB.
But LA=AL,=BC and Q4 =CD, already proved.
BC.AD=CD. AB.
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This general construction may, with a little modification, be
adapted to most cases of particular given conditions.

8. Location of Brocard Points.

As in the case of the triangle, X, X’ may be located by Milne’s
construction, ¢.e., by describing circles on 4B, BC, C.D, DA touching
the sides 4D, AB, BC, CD respectively; X is then their common
point of intersection. Similarly if the circles described on 435,
BC, CD, DA touch BC, CD, DA, AB respectively, then X' is their
common point of intersection.

The geometrical proof given in Art. 5 affords, however, a
much simpler construction, for when 4X, DX are produced to
cut CD, BC in E, F respectively (Fig. 1), then BE, AF are
parallel respectively to 4D, CD, hence, the following construction :

Draw from two consecutive angular points, 4, B, AF, BE
parallel to CD, AD respectively to cut BC in F and CD in E;
join EA, FD and their point of intersection will be X.

Similarly by drawing from C, D lines parallel to 4D, 4B
respectively to cut 48 in £’ and BC in F”, then X’ is the point
of intersection of E'D, F'A.

9. Important Formulae.

The expressions ad +bc, ab+cd, ac+ bd are of such frequent
occurrence in connection with the cyclic quadrilateral that it will
facilitate the discussion if we give the forms they may assume
when condition (4) is fulfilled.

acd+bc® b +be* b,
ad3bo= T2 — 2T 2 (¢4 d),
also
_abd+bc actbe ¢, .,
ad +be = 5 =3 —T(u + b%).
ad+bc=%(c2+d2)=%(a2+b2)
Similarly ab+cd = % (@ +d?) = % (B [ e (8)
and from (4) ac+ bd=2ac=2bd=¢f

The following formulae are now given for reference in their
usual forms. Modification by (5) will be made as necessary.

https://doi.org/10.1017/50013091500035239 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500035239

69
Let R =radius of circumcircle of quadrilateral, then

. . e
smA=s1nC=ﬁ-]

e (6)
sinB=sinD=2R )l
and since 2Q = (ab + cd) sin 4 = (ad + b¢) sin B,
4RQ=e(ab+cd)=F(ad+bc). .........ocoiiiiiiinin. (7)
Also ¢* (ab + cd) = (ac + bd) (ad + be) = 2ac (ad + be) (8)
JS2(ad + be) = (ac + bd) (ab + cd) = 2ac (ab+ed) |~ T
Again, from (1),
2cotw=% cosec 4 +cotD+% cosec C + cot B
=a,d+bc . cosec A
=%‘£ cosec B, similarly.
2ac cot w = (ad + bc) cosec 4 = (ab + cd) cosec B. ........ (9)
Finally, from (6) and (7),
4RQ 2R 8R'(Q
9 i, Sl Al
2ac cot w F e Yt from (4),
2R*Q
cotw= —a27 e ettiessetresrreteret et ary et ananan (10)

Other expressions for the functions of « will be found in

Art. 12.

10. Distances from angular points and coordinates of X, X'.

From the triangle 4XB (Fig. 3),

X4 :sino=4B:sinAXB=d:sind=2Rd e, from (6).

3 2
x4=2% Gno; similarly, X'A = f“ . sin o,
2Ra 2Rd
and XB= .8inw; ” X'B= . sin w,
S S
9 9
XC = dfb .sinow; ’ X'C= ..fa. . sin o,
2Rc 2Rb
XD= .sinw; » X'D= .sin
f S
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" From these values the following important geometrical results
are readily deduced :

() X4 .XB. XC . XD=X'4d. X'B.X'C.X'D=4R'sin‘o
() XA. X' D=XB.X'4=XC.X'B=XD.X'C=2Rsino0

© X4.XC X'4.XC f* AC® (ab+cd)
Y XB.XD X'B-X'D ¢  BD* (ad+be)

12)

Fig. 3.

To determine the Cartesian co-ordinates of X, X’ with reference
to any of the sides, say BC, let P, P’ be the feet of the perpen-
diculars from X, X' to BC, then
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&

CP=CXcosw= .sinw.cosw, from (11),

=— 8in 20
e

PX=CXSinw=%I:—b sin® @

g [ e (13)
Similarly, BP = 7 . 8in 2w
2Rd
PX'= .5in*w
S

Like expressions may similarly be found with reference to
each of the other sides.
From (13) and (4) we have
BP . CP=1R'sin*2w and PX.P X'=2R’sin‘v,;
these rectangles, being thus constant, are therefore the same for

every side.
To find the distance between X and X', we have

XX"=(BP-BP)+(PX-PX'y
=BX*+BX"-2(a—CP). BP -2PX.P X’

2 2
=4R*sin’e af%d“ —;—% cot w + cos® w — sin*w ] f:::; 8;;
=4R*sin’w.cos 20, from (6) and (9).
v XX'=2Rsinw.cos? 0. ..o, (14)

11. The Brocard Circle.
Let O be the circumcentre, X the intersection of the diagonals
AC, BD, and Y, Z their respective mid-points (Fig. 3). Join
OK, 0Y, 02, 0X,0X', XY, XZ, ZK, X'Y, X'Z.

Then, since L KYO=r 0ZK=1}r,
0, Y, K, Z, are concyclic.
Again, tZBC= L CAD, and from (4),
a:te=f:c,

or BC:BZ=AC:AD.
QAs ZBC, ACD are similar;
hence, LBZC = ADC= . D= BXC.
Z, X, C, B, are concyclic points.
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Similarly, it may be shown that XYCUD, X" YBC, X'ZDC are
each cyclic.
Now, because ZXCB is cyclic,
£ KZX =supplement of _LBZX= - BCX=q.
Because XYCD is cyclic,
2 AKTX =supplement of - XA1C=_XD(C=o0.
L KZX= _KYX;

hence, X, A, Z, Y are concyclic.
Similarly SKYX and D ANZX =7 - o,
therefore X', K, Z, Y are concyclic,

hence, the six points O, Y, X, Kk, Z, X’ lie on a circle whose
diameter is OK; this is the Brocard Circle of the quadrilateral.
Let CX, BX' intersect at .J,, then because
S CB= L JJi B0 =w,
S B=JC,
and J; lies on the perpendicular to B(' at its mid-point,
J, O produced intersects BC' at right angles at its mid-point.
L0 X= 0], X"'=}7-w,
OJ, bisects ~ X'J X,
and because XY0=_.0YK+ KYX=}7r+o,
£s OJ, X, XYO are supplementary,
J, lies on the Brocard circle.
Similarly if J, be the intersection of DX, C X', J,that of 4X, DX’,
and J, that of BX, AX’, it may be shown that J,, J;, J, lie on
the Brocard circle.

Hence the Brocard circle passes through the following ten
points: the two Brocard points (X, X'),

the mid-points of the diagonals (Y, Z),

the intersection of the diagonals (&),

the circumcentre (0),

the intersections of the joins of the Brocard points
and the angular points of the quadrilateral, i.e.,
the apices of the isosceles triangles having the
sides as their respective bases and v as the equal
angles.
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12, Functions of o and ils maximum value.

Before proceeding to find the Brocard radius it is necessary to
evaluate some of the functions of w.
Let %, u,, u,, 1, be the lengths of the perpendiculars from
A to the sides BC, CD, DA, AB respectively ; then, since OA is
the diameter of the Brocard circle,
LKL, 0=},
A, is parallel to BC.
u, = perpendicular from .J; to BC=1%}a. tano.
Similarly, u,=}06.tanw, u,=}c.tane, u,=1d.tano.
Now the area of the quadrilateral
Q=DNAKB+ ABKC+ACKD + ADKA
= }au, + $bu, + Leu, + Idu,
=1(a*+8"+c*+d”) . tano.

Sa®
cotw= G s (15a)
Y y 16Q° + (Za?)*
But cosec’w=1+cot’ v = ¢
_ =a*b* + 2abed
4¢7
_(abted)? + (ad+be) | W ([ (156)
= 4Qz y
= cosec’d + cosec’B
Hence cot*w=1+cot’d +cot’B. ...l (13¢)
Again cos*w=cot’w.sin"w =] Gy (15d)
gain, = . =S L B
since by (4), abed=a*c=b*d*
. . . 4 (Za*)*. ¥
sin® 20 = 4sin’w . cos* 0 = mﬁ
. 2.2a. ¢
sin 20 = SERETOEE (15e)
cos 2w =2cos’w ~ 1
_ Za'-4a’c
...... (15£)

- (% - ) + (B> - d°) [
=% (ab+cd ) + (ad + be)?

6 Vol. 36
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From (156) we have
cosec o = (cosec® 4 + cosec® B)},

and since the right-hand side is the sum of two squares, it is
always positive, hence cosec v, and therefore w, is always real.
Now the minimum value of either cosec 4 or cosec B is 1, hence

B — . 1r o
cosec w is not less than /2, 4., w cannot exceed ‘4‘ or 45°.

13. Radius of the Brocard Circle.
From Art, 11 we have
LKZX = KYX=":KYX'=0 (Fig 3).
K'Y bisects o XYX'.

But £ KYX = - KOX in the same segment,
and LKYX'= L KOX' " ’

L KOX = - NOX'=w,
and OK bisects « X0X';

hence, since O is a diameter,
0X=0X' KX=KX'
and XX’ is perpendicular to OA.
Let XX’ intersect OK at XN, then
XN=NX'=}XX'=Rsino.cos! 20, from (14).
But from above, Lt XON = X0K=u,
Lt ONX = OXK=1}n.
Lt KXN= L XON=o.
Let 3=radius of Brocard circle, then
3B=0K=0N+NK
= XN (cot w + tan w)
=92Rsinw. cos’ 2u. cosec 2 o, from above,
= Rsecw. cos® 20
B=4Rsecw. cost 20 )

_ R(Ead — 4a? cz)§ .............................. (16)
T Jz s
from (15d) and (15f).
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The distance from each of the Brocard points to the circum-
centre may now easily be found, for

0X = NX cosec XON

= Rsinw. cos’ 20 . COSeC w

= R cos! 20,
0X =0X'=Rcos* 2. } L e (17)
Similarly XA =KX'=Rtano.cos! 20,

14. Ducker Circles.

Take any point 4’ (Fig. 4) in A'4 and through it draw HA'H'
parallel to 4B to intersect BD in B, and GA4’'G" parallel to AD
to intersect BD in D'. Through D’ draw FD'F’ parallel to CD to
intersect 4C in C’; join B'C" and produce it in both directions
to meet AB, CD in E, E' respectively, then

KB :BB=HKA':A'4=KD :D'D=K(C:CC.
B'C’ is parallel to BC.
Join MG, EH', FE', GF', then
A'Il: A4 =sin A'AH :sin A'HA =sin CAD :sin A'HD

=b6:2 Rsin 4,
since 2 Rsin CAD=0.
Similarly LG :A4'd=a:2 RBsin 4.
Hence, by division 4'H:A4'G"=b:a
=c:d from.(4)
=AD:AB
=A'D':A'B.

AH AB=AC. AD.
B, G', H, D' are concyclic;
hence, 'l is antiparallel to BD with respect to - 4.
Similarly FE', H'E, F'G are antiparallel to BD and AC with
respect to - s (', B, D respectively.
Let K4, KB, KC, KD wtersect HG', EH' FE GF' in 1\, T,,
1,, T, respectively, then, since 4G 'A’'H is a parallelogram,
7', is the mid-point of /G
KA is the symmedian of the AA4BD with respect to - 4.
Similarly KB, KC, KD are the symmedians of As 4BC, CBD,
ADC with vespect to ~s B, C, D respectively.
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Again, because H@ is an antiparallel to BD and O is the
circumcentre of the A4 BD,
04 is perpendicular to HG".
Draw 7, U parallel to 04 to meet OK in U, then
UT, also is perpendicular to HG'.
Ua*=UT +T'@*<UT'*+ T, H*<=UH*.
U@ =UH.
Similarly, UF=UG UE=UF, UE=UH"

Fig. 4.

Let A'E, H® produced intersect in p, then
tpHH = . HA= . BDA= - BCA= _BEH = _pH'H.
pH =pH,
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and since EG ' is parallel to HH',
PE=pG'.
Hence, EH =G'H.
Similarly, FEH' =EF, EF=FG,FG=HG".
HG@ =EH =FE <=GF'.
Further, UT,:04=UK:0K=UT,: 0B.
Ur,=UT,.
Similarly, ur,=U01,=U07,.
Hence 7T,, 7,, T,, 7, lie on a circle whose centre is U, to
which E'F, H'E, G'H, F'@ are tangents.

Since, however, these tangents have already been proved equal,

the eight points E, £, F, F', G, ¢', H, H' also lieon a

circle whose centre is U. This is a Tucker Circle of the quadri-
lateral.

15. Radius of a Tucker Circle.

It is clear that after having once established the geometrical
properties of the figure, as in the preceding article, we may take
U to be any point in OK and then proceed to determine the radius
of the Tucker Circle having U/ as its centre, by finding the points
where it intersects the sides of the quadrilateral. OA is thus the
locus of the centres of all the Tucker Circles. To find a general
expression for their radii, let

OU:0K=X\:1,

and let p=radius of the circle whose centre is A ; then p is the
semi-length of the antiparallels through K.

Now UT,:04=UK:0X
or UT,: R=1-X:1.
ULL=R (1-A).
This is the radius of the circle which passes through 7%, 7, 7, 7.
Also Gl :p=AT,: AKX
=0U : 0K
=A:L
@1, = Ap.
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If therefore r =radius of a Tucker Circle,
?=U?=U1+T, 6"
=R (1 - A+ A p%
To completely define 7, however, it is necessary to find a value

for the unknown p.
Now, if the parallel to HG" through X meets 4B in G, then the

perpendicular from X to 4B =K@ " sin AG" K=psin ADB=1p. %—
3Bu,=pd
or p=Rtanw. ... (18)
Putting this value in the above expression for T, we get
=R (1 - A)* + A* R* tan® o,
=R (1-2A+A%sec®). cooviireniiinniinns (19)

16. Particulur cases of Tucker Circles.

When A =1, U is coincident with X, and from (19),
T=Rtan o=p.

This is therefore the radius of the Tucker Circle, which in the
triangle is known as the Cosine Circle. It may, however, be
appropriately called the Cosine Circle of the quadrilateral, since
the intercepts made by it on the sides BC, (D, D4, AB are
2p cos BAC, 2p cos CBD, 2p cos ACD, 2pcos ADB respectively.

When A =}, U is the mid-point of OK and therefore coincident
with the Brocard centre. The Tucker Circle having this point as
its centre corresponds to the Lemoine or Triplicate Ratio Circle of
the triangle. If +' be its radius, then putting A=} in (19), we
have T=4HRsecw. ....oiviiiiiiiiiii (20)

The intercepts made on the sides are not, however, directly
proportional to the simple cubes of the sides, for

HF=u,(cot B +cot C)=1a (cot B+cot C) tan w,
or I'F=a-FEE =a-EK - £'K=a-wu, cosec B -u, cosec (/
=a -4 (d cosec B+ cosec C) tan

cd be
= (1 “M‘m)' from (9)

=M from (4).

g
a*
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2 _ 2
Hence, H'F=}a (cot B+cot C).tan “’=a—(a2a_2~_c)’
Similarly,
2 _ A2
FG=}b(eot C+cot D). tanw= L0

2 _ .2
HF’=§c(cotB+cotC).tanw=c—0:"—a?£~) )

9 !

2 _ g2
EG’=}d(cot C + cotD) . tan w=2(& 8
H'F . EG:HF . EG =a*-act: bd*~b:a2¢c—-c*:d3-b6*d

=a® - bed : acd — b° : abd — ¢ : d* — abe.

When A=0, U is coincident with O and 7=2R; the Tucker
Circle thus becomes the circumcircle.

17. Ex-Cosine Circles.

Let the tangents to the circumcircle drawn at 4, B, C, D
intersect at K, A,, A;, K, respectively.

Through K, draw K, F, parallel to E'F to meet C I prodyced
in F,, and K, ¥ parallel to GF’ to meet DA produced in Fy, then

LK, F,B=t EFC=( BDC= L BAC= . BH'E= . K\BF,

since K,B | EH’, both being perpendicular to OB.

K F,=K, B.
Similarly, K F' =K A.
But LK AO= L K,BO=4w, and 04=02B,
K A=K, B,
hence, K A=K B=K F,=K F/.

A, B, F,, F\ lie on a circle whose centre is K.
Let p, =radius of this circle, then
d=AB=2p, cos K, AB=2p cos AG'H =32p,cos ADB.
This circle is thus an ex-cosine circle of the quadrilateral.
Again, 2p,cos ADB=d=2Rsin ADB,
p=Rtan ADB =R tan ACB
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Similarly, it may be shown that there are three other ex-cosine
circles having K,, K, K, as their centres. Let p,, p;, p, be their
radii, then

R*d*
3_ p2 2 —
pi= B tan? ACB = ",
2

pi= B tan? BDC = 2%

4R -o° .

IR b i 21)
p32==Rgtan2 CAD= ma

R
p42=.Rz tan’ ABD = m_—(# }

There are, however, two other ex-cosine circles having the
diagonals as their respective chords. Let the tangents at B, D
intersect at K, ; through K, draw H, G parallel to HG' to meet
D4, BA produced in H,, ¢/, and draw E,/F, parallel to E'F
to meet CD, CB produced in E/, F,. Then it may readily be
shown that K, B=K,F,=K . H,=-K,E'=K,G'=K,D. Hence,
B, F,,H, E,/ G/, D lie on a circle whose centre is X, .

Let p, be its radius, then

e=BD=2p,cos K, BD =%p,cos C.
But e=2RsinC.
p.=RtanC.
Similarly it may be shown that there is another circle whose

centre K, is the point of intersection of the tangents at 4 and C':
if p,is its radius, then

pe=RtanC, p=RtanB. ..................... (22)
There are thus six ex-cosine circles to the quadrilateral.

The points X,, X, bear also another significance, since # K,
is parallel to FE' and is bisected at X, .

C4 and 4K, are collinear.
Now AT, : AK=0U:0K=CT,:CK.
AT, :CT;=AK : CK.
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Again, TVH:K,G'=AT,: Ak,

and 7.8 :K . E'=CT,:CK,.

But TVH=T,F (Art. 14), and A, G/ =K &, .
By division 47, :4K,=CT,:CK,.

or AR :CKN,=AT,:CT,

=AK :CK, from above,
neglecting signs.

Hence C, A, 4, K, form a harmonic range, and therefore A,
lies on the diagonal joining the intersection of BA, C'D produced
with that of CB, DA produced. Similarly, A, is the intersecting
point of the diagonal through A, and BD produced ; thus the
AKK K, is the diagonal triangle of the complete quadrilateral
formed by the four straight lines 4B, BC, CD, DA.

18. Some relations between radii.

From (20), 12=1R*sec’w
=1R* (1 +tan’ o)
=} (R +p%), from (18). ....coovviinininnn. (23)

From (16), f*=}R*sec’w.cos2w
= }R*(2 - sec’ w)
=1R*(1 - tan® w)

=} (B -p%), from (18). ................ (24)
Subtracting (24) from (23), we have
=R+ B (25)
_ . (Za2)?
From (15a), cot* w= 1607 °

and from (18),
PP (S =16R*Q"
=¢*(ab+cd)’, from (7),
=2ac (ad + bc) (ab +cd), from (8),
=2a’c®. Za?, from (4)

Pt Zat=2a"F=20"d*=2abed. .........oooiiinnin. (26)
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From Fig. 3 we have
a=u, (cot DBC + cot ACB).
cot w=1}(cot DBC +cot ACB).

But from (21), B (i-+—}g)=cot ACB +cot CAD
P
=cot ACB + cot DBC
=3 cot o,
2R
=—, from (18),
P
1 1 2
—_——_—=
/PP
Simiin.rly, +L =—2—.
LI O
1 1 1 2
—_—t— = +l=——. ........................ )
P Ps P2 P P

Again, from (22),

R (iz+ i2>=cot"'0+éot"'l}

Pe P/
=cot’ 4 + cot? B, for cot C'= —cot 4

=cot’w -1, from (15¢),

R2
=?_1
a2
=Rzp2” =4§, from (24),

19. Comparison of Formulae.

To summarise the analogy, the principal formulae for both the
triangle and the cyclic quadrilateral are here collected and placed

side by side.
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TRIANGLE.

XX =2Rsinw. (2cos2w - 1):3
o < 30°
Za?

cotw=2cot 4 =—-

4A

Za®b®
EYAN

cosec? o = =X cosec’d

. i '_\:aZ)z
COS~ o _m
2A. Za*
Zat
“ISaw

sin 2w

cos 2w

B =}Rsecw.(2cos20 - 1)}
p =Rtanw
T =R(1-2A+Asec’w)
p. =Rtand
T =31 (R*+p%) =1R%sec’w
B ={(E-3p)=1"-p

1
PP

st

83

CYCLIC QUADRILATERAL
ac=10d.

XX =2Rsine. cosi 2w
0w < 45°

cot’w =1+cot’4d +cot*B
Sa?
cot w =
4¢Q
Y Za* b + 2a’¢?
osec” w = ——————
[¢] (0] 4 Q'
= cosec’d + cosec’B
. (Za)?
COS™ ¢ = T 9l o3
" T i Ca b+ 227 )
in 2 2Q.Sa®
sin = o
© Za* b+ 2a? ¢*
2 Zat— 4ac?
cos20 =————
2?6 1 2 )
B =1Rsecw. cos* 2
p =Rtanoe
™ =R(1-2A+Asec’w)
p. =ZRtanC

’

=3B+ = [Rsece
B =i (B = g

L2
P
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