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The Brocard and Tucker Circles of a Cyclic

Quadrilateral.

By FREDERICK G. W. BROWN.

(Received 4th September 1917. Bead 9th November 1917.)

1. The application of the geometrical properties of the Brocard
and Tucker circles of a triangle to a quadrilateral appears never
to have been adequately worked out, as far as the author can
discover. Hence, the object of this paper.

Some of the problems involved have been published, under the
author's name, as independent questions for solution, and where,
in the author's opinion, solutions other than his own have seemed
more satisfactory for the logical treatment of the subject, these
solutions have been employed, with due acknowledgments to their
authors.

2. Condition for Brocard poinU.

We shall, first establish the condition necessary for the
existence of Brocard points within a quadrilateral.

Let ABCD (Fig. 1) be a quadrilateral in which a point X can
be found such that the L. ' XAD, XBA, XCB, XDC are all equal;
denote each of these angles by o>; the sides BC, CD, DA, AB by
a, b, c, d; the diagonals BD, AC by e,f, and the area by Q; then

L AXB = ir -to - (A — <a) = TT - A.

Similarly LBXC = TT-B, L.CXD = TT-C, LDXA^TT-D.

Now AX: sin w = AB : sin AXB = d: sin (JT - A) = d : sin A

and AX: sin (Z? - w) = c : sin (ir - D) = c : sin D,

hence, eliminating AX by division

sin (D -<o): sin <a — d sin D : c sin A,
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from which cot <u = — cosec A + cot D.
c

Similarly cot w = — cosec D + cot C,
6

= — cosec C + cot B,
a

= -=- cosec B + cot A,a

. •. — cosec A + cot D H — cosec G + cot B
c a

= — cosec 2> + cot C + —r cosec />' + cot A = 2 cot u>.6 rf

Pig. 1.
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Hence,

— cosec A — r cosec B H cosec C - -7- cosec 2) = cot .4 - cot B
c d a b

+ cotC-cotZ> (2)
This is the general condition for all quadrilaterals in its most

general form.*

3. Reduction of Condition for any quadrilateral.

Condition (2) involves the eight parts Of the quadrilateral,
but for given data, it will need reduction in order to express it
in terms of the data. To effect this it is simpler to start with
equations (1). Let us suppose, for example, that the four sides
and the angle C are given, and the figure is subject to the
limitation that it must be convex, then, since

and «2 = a2 + & 2 ,

cos A and therefore L A become known, there being only one,
value of cos.4 in the eliminant of e- since A<TT.

Put cosec A = oc, cosec C = ft, cosec B — x, cosec D = y and
cotu> = A, then a, (i are known and x, y, k unknown constants.
Equations (1) now become:—

c

a 1
k = — .x+ N/ a.2- 1,

a

The condition for Brocard points in terms of a, 6, c, d and
L. C is therefore the eliminant of x, y, k in the above equations.

* Vide the author's note in Mathematical Gazette, Vol. IX., pp. 83-85.
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The following method of elimination is due to Lt.-Col. Allan
Cunningham, R.E.*

For shortness write i£= Jf32-\, F= Ja?-\, then the
equations may be written

(i) k-^.o,=

(ii) (k-E). A = y,

(iv)

Squaring and taking the differences of (i) and (ii), and of (iii)
and (iv), we get the two following equations independent of
x and y :—

which may be written as quadratics in k, thus

k2 (b- - c2) + 2k (cd a. - WE) + (V E* - d2 a? - c2) = 0,
A2 (ds - a-) + 2k (ab f3 - d"-F) + (d* F2 - b2 p2 - a2) = 0,

or pk* + 2q k + r = 0,
jtie + 2q'k + r' = 0,

the eliminant of which is

(pr'-p'rY+i(p'q-Pq')(qr'-q'r) = O, (3)
which is therefore the required condition.

When the substitutions are made, however, the relation is so
cumbersome that it is practically of very little value.

4. Reduction of Condition for a cyclic quadrilateral.

. When the quadrilateral is inscribed in a circle, the condition
for Brocard points becomes very simple, and many interesting
analogies to the triangle are revealed.

Going back to (2), we have for a cyclic figure,

cosecd = QosecC, cosecB = cosecD, cot A = -cot C, cotB = - coti>,
since ^A+ LC = L B + i. D = ir,

* Mathematical Questions and Solutions (F. Hodgson, London), Vol. 2,
p. 47.
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hence, (!') becomes

d b \ , fn c \ r, n

1 cosec/1 - I —- + — I cosec h' = 0
r. a J \a b J

or bd {ad + 6c) sin JJ = ac (ab + cd) sin.4.
But '2Q = (ab + cd ) sin A = (ad + be) sin B.
Hence, ac = bd,
and from Ptolemy's theorem, rf=ac + bd.

.-. ac = bd = \ef, (4)
the required condition.

We shall therefore confine the following investigation to a
cyclic quadrilateral.

5. Geometrical Proof of (4).

This simple relation for Brocard points may also be established
geometrically, and the following proof is based on one given by
Mr W. F. Beard, M.A.*

Produce AX, DX (Fig. 1) to meet DC, BC in E, F respectively,
join EB, FA, then

L. BXA = TT-A= LC

L XBA = L FDC.

.: As BAX, FDC are similar,

.-. CD:DF=BX:AB

or AB.CD = DF.BX.

Again, L AXF = supplement of L AXD

= supplement of w-D=

= supplement of L. B.

.-. A, B, F, X lie on a circle,

hence, L BFA = L BXA=ir- A= LC.

.-. AF is parallel to DC.

Similarly BE is parallel to AD.

Now LDAX= LBCX

A s ADE, BXC are similar.

* Mathematical Questions and Solutions (F, Hodgson, London), Vol. 3,
pp. 2-3.
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and AD:AE = XC:BC.
.: AD.BC = AE.XC.

Finally, LBXC*= LD and LAXF= LD, already proved.
.-. L BXC = L AXF=> L EXD

and LBCX= LEDX = LDFA, :-AF\\DE.
.: As BXC, AFX, DXE are similar;

hence, BX : XC = EX: XD = AX :XF=AE : DF.
.: BX . DF=AE . XC;

hence, AB.CD=AD. BC.

6. Second Brocard Point.
The point X has a corresponding one X' such that the angles

X'AB, X'BC, X' CD, X'DA are all equal, and it may be shown
in a precisely similar manner as for X that the necessary condition
for its existence is ac — bd = \«f.

Hence, when this condition is fulfilled, there are two Brocard
points, just as in the case of a triangle.

Let w' = each of the equal angles X'AB, etc., then, as in
Art. 2, it may be shown that

cot to' = —. cosec A + cot B.
d

But cosec A = cosec C, and from (4)
c : d •= b : a.

.-. coto>' = — cosecC + cotB = cott», from (1).
a

a)' = a).
X and X' are therefore isogonal conjugates.

7. Geometrical Construction for a Cyclic Quadrilateral having
Brocard Points.

A cyclic quadrilateral ABCD, such that AB.CD = AD.BC,
may be constructed by the following general method.

Draw any straight line LLX (Fig. 2); take any point A in it
and mark off AL2 = AL. Through A draw any straight line QQl •
join QLQL2, and draw QiLx antiparallel to LQ with respect to
L. Qx ALX; hence, draw BD parallel to Qr Lx and equal to QLZ.

Describe the circumcircle to the £\ABD and in it'place a chord
BC such that LDBC= LAL2Q; join CD, then ABCD is the
required quadrilateral.
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Since A, B, C, D are concyclic points,
.•. L BCD = supplement of LBAD = LL2AQ

and ±DBC= >-ALtQ\
) B y construction.

Hence,
As BCD, QA L., are congruous.

BC = AL, and CD = AQ.

Fig. 2.

Again, since BD, LQ are antiparallels with respect to L BAD,
.•. L, Q, D, B are concyclic points

.-. LA.AD = QA.AB.
But LA = ALt = BC and QA = CD, already proved.

.-. BG.AD = CD.AB.
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This general construction may, with a little modification, be
adapted to most cases of particular given conditions.

8. Location of Brocard Points.
As in the case of the triangle, X, X' may be located by Milne's

construction, i.e., by describing circles on AB, BC, CD, DA touching
the sides AD, AB, BC, CD respectively; X is then their common
point of intersection. Similarly if the circles described on AB,
BC, CD, DA touch BC, CD, DA, AB respectively, then X' is their
common point of intersection.

The geometrical proof given in Art. 5 affords, however, a
much simpler construction, for when AX, DX are produced to
cut CD, BC in E, F respectively (Fig. 1), then BE, AF are
parallel respectively to AD, CD, hence, the following construction :

Draw from two consecutive angular points, A, B, AF, BE
parallel to CD, AD respectively to cut BC in F and CD in E;
join EA, FD and their point of intersection will be 2!".

Similarly by drawing from C, D lines parallel to AD, AB
respectively to cut AB in E' and BC in F', then X' is the point
of intersection of E'D, F'A.

9. Important Formulae.

The expressions ad + be, ab + cd, ac + bd are of such frequent
occurrence in connection with the cyclic quadrilateral that it will
facilitate the discussion if we give the forms they may assume
when condition (4) is fulfilled.

1

also

Similarly

and from

ad^-bc

ad + be

(4)

acd'+ be2

c

abd + b2c

b

ad + bc =

ab + cd =

ac+bd =

bdf + bc1

c

a"c + 62c
6

b

c

b
c

c
b

c

"T
d
c

2ac = 2bd = ef

(c2 + cT-),

(a + ) .

(a- + b-)

(62 + c2) .(5)

The following formulae are now given for reference in their
usual forms. Modification by (5) will be made as necessary.
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Let R — radius of circumcircle of quadrilateral, then

sin A = sin C = —

sin B = sin D = —— |
2R)

and since 2Q = (ab + cd) sin A = (ad + 6c) sin B,
.: 41iQ = e(ab + cd)=f(ad + bc) (7)

Also e- (ab + cd) = (ac + bd) (ad + be) = 2ac (ad + be) -|
f- (ad + be) = (ac + bd) (ab +• cd) = 2ac (ab + cd) j ' '

Again, from (1),

ad + bc

cosec B, similarly.

2 cot to = — cosec A + cot D -\ cosec C + cot B
c a

. cosec A
ac

ab + cd
bd

.•. 2ac cot <u = (ad + be) cosec A = (ab + cd) cosec B. (9)
Finally, from (6) and (7),

. IRQ 2R 8RTQ
2ac cot w = —— . = — , from (4),

/ e 2ac

(10)

Other expressions for the functions of <D will be found in
Art. 12.

10. Distances from angular points and coordinates of X, X'.
From the triangle AXB (Fig. 3),

XA : sin u> = AB : sin AXB = d:sinA = 2Rd : e, from (6).

„ . 2Rd . . 2Rc . >
.-. XA = . sin ID ; similarly, X A = . sin o>,

e e

A V7> 2 R a • V . B 2 R d •

and XB = —-— . sin w ; „ X Ji — —— . sin w,
v n 256 . 2Ra .
XV = .sin co ; ,, XC = .sinco,

e e
v n 2Rc . 2Mb .
XD = ——. sin u>; „ X D = —-;— . sin (u
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From these values the following important geometrical results
are readilv deduced :

(a) XA.XB. XC . XD = X'A. X 'B .X'C . X 'D = iR' sin* a> ^

(6) XA. X 'D = XB .X'A= XC .X'B = XD. X'C = 2#-'siir

XA.XC X'A.X'C f- AC* (ab + cdf
(C) XB. XD ~ XB • XD ~ e- ~ BD2 ~ (ad + bcf

(13)

Pi?. 3.

To determine the Cartesian co-ordinates of X, X' with reference
to any of the sides, say BC, let P, P' be the feet of the perpen-
diculars from X, X' to BC, then
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CP = CXCOSta --

PX^CXsino-

Similarly, B P ' ••

IRb
e

Rb
e

2Rb
e

Rd
" f

. sin m . cos o>, from (11),

sin 2(u

. sin 2w

7 . sin to

(13)

Like expressions may similarly be found with reference to
each of the other sides.

From (13) and (4) we have
BF.CP = iffsshr2<o and PX. F X' = 2R- sin4 o>,;

these rectangles, being thus constant, are therefore the same for
every side.

To find the distance between X and X', we have
XX '• = (BP - BFf + (PX - FX 'f

* -2(a-CP).BF- IPX. P'X'
ad . . „ "I from (11)
— cotw + cos2o)-sin2w , / , , (
/« J and (13)

(14)

= 4-ffi2 sin• - Vain- a)
L /

n2to. cos2o), from (6) and (9).
.-. XX ' = 2/2 sin o>. cos^u

11. TAe Brocard Circle.
Let 0 be the circumcentre, K the intersection of the diagonals

AC, BD, and F, Z their respective mid-points (Fig. 3). Join

OK, OY, OZ, OX, OX', XY, XZ, ZK, X'Y, X'Z.

Then, since L KYO = L 0ZK= \ *,

.•. 0, Y, K, Z, are concyclic.
Again, LZBC= LCAD, and from (4),

a:%e=f: c,
or BC:BZ=AC:AD.

.: As ZBC, ACD are similar;
hence, L BZC = L ABC = LD= L BXC.

.-. Z, X, C, B, are concyclic points.
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Similarly, it may be shown that X YCD, X' YBC, X'ZDC are
each cyclic.

Now, because ZXCB is cyclic,

i. KZX = supplement of _BZX = _BCX=ia.

Because XYCD is cyclic,
L KYX = supplement of _XYC= _A'Z>C = o>.

.: t_KZX= -KYX:
hence, X, K, Z, Y are concyclic.
Similarly _ KYX' and L. KZX' = TT - u>,
therefore X', K, Z, Y are concyclic,
hence, the six points 0, Y, X, K, Z, X' lie on a circle whose
diameter is OK; this is the Brocard Circle of the quadrilateral.

Let CX, BX' intersect at ./,, then because

and ./j lies on the perpendicular to BC at its mid-point,
.-. Jx0 produced intersects BC at right angles at its mid-point.

.-. LOJ.X^ i.OJlX' = ^ir-la,

.•. 0Jt bisects LX'J^X,

and because LXYO= LOYK + LKYX=^TT + W,

L. s OJXX, XYO are supplementary,
.-. Ji lies on the Brocard circle.

Similarly if Jn be the intersection of DX, CX', J3 that of AX, DX',
and Jt that of BX, AX', it may be shown that J.2, J3, Jx lie on
the Brocard circle.

Hence the Brocard circle passes through the following ten
points: the two Brocard points (Z, X'\

the mid-points of the diagonals (Y, Z),
the intersection of the diagonals (A'),
the circumcentre (0),
the intersections of the joins of the Brocard points

and the angular points of the quadrilateral, i.e.,
the apices of the isosceles triangles having the
sides as their respective bases and u> as the equal
angles.
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12. Function* of to and its maximum value.

Before proceeding to find the iBrocard radius it is necessary to
evaluate some of the functions of w.

Let ua, ub, ue, ua be the lengths of the perpendiculars from
K to the sides BC, CD, DA, AB respectively; then, since OK is
the diameter of the Brocard circle,

.-. i.KJ^O = \TZ.
KJX is parallel to BC.

. : «.„ = perpendicular from ./j to BC = \a. tan to.
Similarly, ub = |-6 . tanu>, ue = £ c . tan <u, ud — ^ d . tan <o.

Now the area of the quadrilateral
Q = AAKB + i\BKC + ACKD + ADKA

= \aua + |-6ti,, + \cuc + \dua

= \ (a- + bi + ci + d-). tan to.

.-. cotw = -^r (15a)

But cosec2 w = 1 + cot2 o) = |"——

(ab + cdf + (ad + bcf
b y ( i )

...(156)

= cosec'vl + cosec-2?

Hence cot" to = 1 + cotvl + cot'-/> (15c)

Again, cos2 a) = cot2 to . sin'-' to = 1 . , (1 ytf )
* Za-6- + 2a-c-

since by (4), abed = a-<r = b~ d"
• 2 o i • " •- 4 (2a2)2 . Q*

sin11 Jw = 4sin-to . cos- to = ,„ „ ,„—.. ., „,„

cos 2w = 2cos2 to - 1

(15/)
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From (156) we have
cosec u = (cosec2 A + cosec2 B)l,

and since the right-hand side is the sum of two squares, it is
always positive, hence cosec to, and therefore to, is always real.

Now the minimum value of either cosec A or cosec B is 1, hence

cosec to is not less than J 2 , i.e., u> cannot exceed ~ o r 45°.
4

13. Radius of the Brocard Circle,

From Art. 11 we have

L KZX = L KYX = L KYX' = to (Fig. 3).
.-. KY bisects LXYX'.

But L. KYX = _ KOX in the same segment,
and L.KYX'= LKOX' „

L.KOX = ^A'OJT' = to,

and OK bisects L XOX';

hence, since OK is a diameter,
.-. OX=OX', KX = KX'

and XX' is perpendicular to OK.
Let XX' intersect OK at N, then

XJf=NX' = ^XX' = Bsin<o.cos^2<o, from (14).

But from above, LXON~ ^

Let /3 = radius of Brocard circle, then

= XN (cot to + tan to)

= 2.ff sin to. cos 2to. cosec 2 to, from above,

= R sec to. cos 2to

/3 = \R sec to . cos* 2to |

J
from (I5d) and (15/).
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The distance from each of the Brocard points to the circum-
centre may now easily be found, for

OX = NX cosec XON

= R sin oj. cos 2(o. cosec <o

= R cos 2o>.

.-. 0X = 0X' = Rcos*2
Similarly XK = KX' — R tan <o

14. Tucker Circles.
Take any point A (Fig. 4) in KA and through it draw HA'H

parallel to AB to intersect BD in B', and GAG' parallel to AD
to intersect BD in Z>'. Through D' draw /"Z*'^' parallel to CD to
intersect 46' in C"; join i?'C" and produce it in both directions
to meet AB, CD in E, E' respectively, then

KB : B'B = KA : A A = KD' : D'D = KC : C'C.
.-. .B'C' is parallel to BC.

Join IIG', EH, FE', GF, then
All: A A = sin A AH: sin 4'Z/4 = sin CAD : sin A'HD

= 6:2 j?sin 4,
since 2 R sin C4.D = 6.

Similarly A'G' : A A = a : 2 .K sin 4.
H e n c e , by d iv i s ion 4 7 / : A'G' — b:a

= c:d f rom .(4)
=AD:AB
= AD':A'B'.

.-. AH. AB' = A'G'. AD'.
. •. B', G', H, D' are concyclic;

hence, G'H is antiparallel to BD with respect to L A.
Similarly FE', HE, F'G are antiparallel to BD and AC with

respect to L S C, B, D respectively.
Let KA, KB, KC, KD intersect HG\ EH FE GF' in Tlt T2,

1\, Tt respectively, then, since AG'AH is a parallelogram,
.-. 1\ is the mid-point of HG'.

.-. KA is the symmedian of the &ABD with respect to LA.
Similarly KB, KC, KD are the symmedians of As ABC, CBD,

ADC with respect to L S B, C, D respectively.
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Again, because HG' is an antiparallel to BD and 0 is the
circumcentre of the £\ABD,

.•. OA is perpendicular to HG'.
Draw Ti U parallel to OA to meet OK in V, then

UTX
 also is perpendicular to HG'.

.: UG'2 = UT? + Tx &"- = UT* + T1H*= UH-.
.: UG'=UH.

Similarly, UF1 = UG, UE = VF, UE = UH'.

Pig. 4.

Let HE, HG' produced intersect in p, then
LpHH1 = L HG'A = L BDA = L BCA = _ BEH = .pHH.

.: pH'=pH,
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and since EG' is parallel to HH',

.: pE=pG'.

Hence, EH' = G'H.

Similarly, EH' = E'F, FF= FG, FG = HG'.

.: HG' = EH' = FE' = GF".

Further, UTX :OA = UK: 0K= UTt: OB.

.: UT^UTs.

Similarly, UTt = VTS = Ul\.

Hence Tlt T2, T3, Tt lie on a circle whose centre is U, to
which E'F, HE, G'H, F'G are tangents.

Since, however, these tangents have already been proved equal,
.-. the eight points E, E', F, F', G, G', H, H' also lie on a

circle whose centre is U. This is a Tucker Circle of the quadri-
lateral.

15. Radius of a Tucker Circle.

It is clear that after having once established the geometrical
properties of the figure, as in the preceding article, we may take
U to be any point in OK and then proceed to determine the radius
of the Tucker Circle having U as its centre, by finding the points
where it intersects the sides of the quadrilateral. OK is thus the
locus of the centres of all the Tucker Circles. To find a general
expression for their radii, let

OU:OK=k:\,

and let p = radius of the circle whose centre is K; then p is the
semi-length of the antiparallels through K.

Now UTX :OA = UK:OK

or VTX: . ff=l-A.:l .

.-. UTX = R(\~\).

This is the radius of the circle which passes through I7,, 1 \ , T3, T4.

Also G'T^.p^AT^.AK

= OU:OK
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If therefore r = radius of a Tucker Circle,

To completely define T, however, it is necessary to find a value
for the unknown p.

Now, if the parallel to HG' through K meets AB in G", then the

perpendicular fromKto AB = KG"sinAG"K-psinADB = \p. -=-.

or p = ^tanco (18)
Putting this value in the above expression for T, we get

2sec2a>) (19)

16. Particular cases of Tucker Circles.

When X— 1, U is coincident with A', and from (19),
r = R t a n o> = p.

This is therefore the radius of the Tucker Circle, which in the
triangle is known as the Cosine Circle. It may, however, be
appropriately called the Cosine Circle of the quadrilateral, since
the intercepts made by it on the sides JJC, CD, DA, AB are
2p cos BAG, 2p cos CBD, 2p cos AGD, 2pcos ADB respectively.

When A. = i, U is the mid-point of OK and therefore coincident
with the Brocard centre. The Tucker Circle having this point as
its centre corresponds to the Lemoine or Triplicate Ratio Circle of
the triangle. If r' be its radius, then putting A=£ in (19), we
have T' = ^i2seco> (20)

The intercepts made on the sides are not, however, directly
proportional to the simple cubes of the sides, for

ITF= M,, (cot B + cot C) = \a (cot B + cot C) tan w,
or II'F'= a - EE' = a - EK - E'K = a - u,t cosec B -ub coscc C

= a - it (d cosec B + b cosec C) tan u>

' f r o m ( 9 )

f r o m ( 4 ) .
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Hence, ITF= £a (cot B + cot C). tan o> = a ^ .

Similarly,

HF' = \c (cotB + cot C). tan <u =

^(? ' = | d (cot C + coti)) . tan a) =

: EG1 =a3 - ac2: Id"' - b3: a?c - c3: d3 - 62 d

= a? - bed : acd - b3: abd - c3: d3 - abc.

When A = 0, U is coincident with 0 and T = i?; the Tucker
Circle thus becomes the circumcircle.

17. Ex-Cosine Circles.

Let the tangents to the circumcircle drawn at A, B, C, D
intersect at A'j, A"2, A'., Kt respectively.

Through A', draw K^ FY parallel to E'F to meet GB produced
in ^"i, and Kx F^ parallel to GF' to meet DA produced in F-[, then

LK,F1B= LEFC= LBDC= LBAC= LBH'E= LKXBF,

since KXB || EH', both being perpendicular to OB.

.: K.F^K.B.
Similarly, K.F^K^A.

But L k\ A0=* L KxB0 = iTr, and 0A = OB,

.: K.A^K.B,

hence, K1A=K1B = K1F1^K\F1'.

.-. A, B, F}, Fi lie on a circle whose centre is AT,.

Let Pi = radius of this circle, then

d=AB = 2f t cos Kt AB = 2Pl cos AG'H= 2Pl cos ADB.

This circle is thus an ex-cosine circle of the quadrilateral.

Again, 2Pl cos ADB = d = 222 sin ADB,
.-. pj = R tan ADB = R tan ACB
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Similarly, it may be shown that there aie three other ex-cosine
circles having K2, K3, Xt as their centres. Let p.,, p3, p, be their
radii, then

.(21)
= R2 tan2 BDC =

22V
- e j

There are, however, two other ex-cosine circles having the
diagonals as their respective chords. Let the tangents at B, D
intersect at Ke; through Ke draw He Ge' parallel to HG' to meet
DA, BA produced in He, GJ, and draw Ee'Fe parallel to E'F
to meet CD, CB produced in Ec', Fe. Then it may readily be
shown that Kc B = Ke Fe = Kc II, — Ke E, = Ke Ge' = Ke D. Hence,
B, Fe, H,, Ee', GJ, D lie on a circle whose centre is Ke.

Let p, be its radius, then

e = BD= 2p, cos Ke BD = 2Pe cos C.

But e

Similarly it may be shown that there is another circle whose
centre Kt is the point of intersection of the tangents at A and C :
if pf is its radius, then

, pf=Rt&nB (22)

There are thus six ex-cosine circles to the quadrilateral.

The points K,, Kt bear also another significance, since FeE,
is parallel to FE' and is bisected at K,.

.•. CA and AKe are collinear.

Now AT1:AK=0U:0K=CTt:CK.

.: AT^.CT^AK-.CK.
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Again, Tx II: Ke GJ = AT,:A A \

a n d T3 E': K, EJ = CT3: CR\ .

But rL\lI='l\E' (Art. 14), and K.G.' = KCE.'.

.-. By division Al\: AK. = CTt: CKe.

or A7{<.:CKC = AT1:CT3

= AK : CK, from above,

neglecting signs.

Hence C, K, A, A',, form a harmonic range, and therefore Kt

iies on the diagonal joining the intersection of BA, CD produced
with that of CB, DA produced. Similarly, K, is the intersecting
point of the diagonal through Ke and BD produced; thus the
AA'A'̂ A'y is the diagonal triangle of the complete quadrilateral
formed by the four straight lines AB, BC, CD, DA.

18. Some relations between radii.

From (20), T'2 = \B? sec2 o>

= \BT- (1 + tan2 to)

= J(Jffi
2 + p2), from (18) (23)

From (16), p = ^BT-secr w . cos 2a>

(2 - sec" w)

= \{ST--P% from (18) (24)

Subtracting (24) from (23), we have

r"- = W + fF (25)

(IV)-
From (15a), cot2 w = '2 ,

and from (18),

ei(ab + cdf, from (7),

2ac (ad + be) (ab + cd), from (8),

2a2c2.2a2, from (4)

(26)
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From Fig. 3 -we have

o = ua (cot DBC + cot A CB).

.: cot to = \ (cot DBG + cot ACB).

But from (21), R (— +—) = cot ACB + cot CAD
\Pi pa/

= cot ACB + cot DBC

=.2 cot to,

= — , from (18),
P

1 1 2
• *. H — — •

ft ft p

o- -i i 1 1 2S i m i l a r l y , 1 = — .
ft Pi P

••• - ^ + ^ = 7 2
+ 7 4 = 7 (27)

Again, from (22),

( 1 1 \

= cot2 A + cot2.6, for cot C = - cot .4

= cot2ci>-l, from (15c),

R* .

IP

19. Comparison of Formulae.

To summarise the analogy, the principal formulae for both the
triangle and the cyclic quadrilateral are here collected and placed
side by side.
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TRIANOLE.

X X = 272sin<o . (2 cos 2™- I)2

<u < 30°

cotw = 2 cot A = -^-r-
4 A

cosec- <o =
2a-b*

cos- u> —
4 i V 6s

8 1 1 1 2 ( 0 =

COS 2cu

p = R tan (o

T" =H?(1 ~ 2k+ \-sec2 to)

ptl = R tan 1̂

/»..

CVCUC QUADRILATERAL

ac = bd.

X X = 2R sin to . cos* 2co

<o < 45°

cot2 <D = 1 + cot2 A + cot2 B

COt (0 = -——

cosec (u = -

COS2(o =

sin 2w = ;

cos 2<u = -

rA + cosec2-6

(3 =

= R tan (o

= 7 ^ ( 1 - 2 A . + X2 sec2 w)

=JfftanC

= A (/?2 + jo2) = i-52 sec2 o>
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