
A RECURSIVE PROCEDURE FOR CALCULATION OF SOME
COMPOUND DISTRIBUTIONS

BY OLE HESSELAGER

University of Copenhagen

ABSTRACT

We consider compound distributions where the counting distribution has the
property that the ratio between successive probabilities may be written as the
ratio of two polynomials. We derive a recursive algorithm for the compound
distribution, which is more efficient than the one suggested by PANJER &
WILLMOT (1982) and WILLMOT & PANJER (1987). We also derive a recursive
algorithm for the moments of the compound distribution. Finally, we present
an application of the recursion to the problem of calculating the probability of
ruin in a particular mixed Poisson process.
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1. INTRODUCTION

Let

*= Z Y,

denote the aggregate claims amount where X = 0 if N = 0. It is assumed that
the severities Y{, Y2, ... are mutually independent and distributed on the
non-negative integers with common probability function

(1.1) fy=P(Yl = y), 3̂  = 0, 1, .. .

It is further assumed that N is stochastically independent of Y{, Y2,... with
probability function

pn=P(N=n), « = 0, 1,...

The compound distribution

(1.2) 9X=
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where/*" denotes the n-th convolution of/, can sometimes be calculated
recursively. PANJER (1981) derived his by now famous recursive formula for the
case where the counting probabilities pn satisfy the recursive relation

an + b
(1.3) pn = />„_,, n=\,2,...

SUNDT & JEWELL (1981) showed that (1.3) is satisfied by the Poisson, the
binomial, and the negative binomial distributions, and no other. PANJER &
WILLMOT (1982) went on to consider the class of counting distributions which
satisfy a recursion

k

Y, a>n'
i = 0

(1-4) Pn =

I M'

for some k, and derived recursions for the compound distribution when k = 1
and k = 2. These recursions were further developed by WILLMOT & PANJER
(1987). Recursions for a different extension of the class (1.3) can be found in
SCHROTER (1990) and SUNDT (1992).

In the case of arbitrary k, it is clearly not possible to give a complete
characterization of the class (1.4). ORD (1967) characterizes those distributions
which satisfy a difference equation analogous to Pearson's differential equa-
tion, and also derives a recursive relation for the (factorial) moments. Also
GULDBERG (1931) considered recursive calculation of moments for certain
members of the class (1.4).

Important distributions satisfying (1.4), which are not already covered by
(1.3), are the hypergeometric distribution (k = 2), the Polya-Eggenberger
distribution (k = 2), the Waring distribution (k = 1), and the generalized
Waring distribution (k = 2).

Note that the coefficients a, and bt appearing in (1.4) are only specified up to
a multiplicative constant.

In this paper we consider the class (1.4) and derive a new recursion for the
compound distribution (Section 2). The derivation is elementary, and is valid
for arbitrary k. In Section 3 we derive a recursion for the moments of the
compound distribution. In Section 4 the proposed recursive formula for the
compound distribution is compared to that of WILLMOT & PANJER (1987) for
k = 1 and k = 2, and is found to be more efficient. In Section 5 we present an
application of the recursion to problem of calculating the probability of
eventual ruin in a (particular) mixed Poisson process.
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2. RECURSION FOR THE COMPOUND DISTRIBUTION

A s s u m e t h a t p n satisfies (1.4) . F o r i=0, ...,k w e def ine t h e aux i l i a ry func-
t ions

(2.1) gUx =

and note in particular that g0 x is the compound distribution (1.2). Let

(2.2) gx = (do,x, •••,9k,x)',

and let m denote the smallest integer for which fm > 0. Thus, fy = 0 for
y = 0, ..., m—\. The following result gives a recursion for the vector gx, and
hence the compound distribution g0 x.

Theorem 1: Assume that (1.4) holds true. With initial values

(2.3)

the compound distribution gx = g0 x may be obtained by calculating gx

recursively as
gx= Tx~

ltx, x>m V 1 ,
Z> X X X ' '

where

(2.4)

and tx

(2.5)

(2.6)

with

Tx =

= ('o.

hx =

tk.x =

i

0

0

(bo-f(

x,---,t

1
X

I
.1 m y=

X= Y,
y = m V

*y J

I

cQ)

fy
1

fly.

— m/x

1

0

(61-/0C,)

is given by

/ n
+ y \ Ui +

{ X
k

X Ci9i,x-y,
1 = 0

0

— w/x

1

(*t-i-/oc*-,)

1, JC —J- T i)i,x-y > •>
X j

0

0

— m/x

(bk-fock)

( ^- A. ,
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Remark 2.1. Note that Tx does not depend on the values of g, z , and that tx can
be calculated when gz is known for all z < x. •

Proof: The expression (2.3) is obtained from the definition (2.1) of gix by
noting t h a t / 0 * " = / 0 " . Also the fact that gix = 0 for x = 1, . . . , m— 1 is an
immediate consequence of (2.1) s i n c e / / " = 0 for x = 1, . . . , m— 1.

F r o m D E P R I L (1985) we have the identity,

X
fy/T-y(2-7) 0 =

Multiplying (2.7) by pnn' and summing over n > 0 yields

(2-8) 0= £ / , [ -
y = 0 {X

By omitting terms corresponding to y = 0, . . . , m- 1 from the summa-
tion and substituting x-.= x-m, we obtain after a little rearrangement that

(2-9) gi

m
—
x

where tix is given by (2.5). From assumption (1.4) we obtain for n > 1 that

i = 0

(2.10) Pn

where

(2.11)

Multiplying (2.10) b y / / " = E ^
for x > 1 the relation

(2.12) S^^-=Z Z

k

1 = 0

and summing over n > 1 yields

( = 0 ^

By isolating terms involving gt x on the left-hand side, we rewrite (2.12) as
k

(2.13) Z V>-focdg,,x = tk,x, x > \ ,
; = 0

where tk x is given by (2.6). The linear equations Txgx = tx, with Tx given by
(2.4), now follow from (2.9) for i = 0, . . . , k-\ and (2.13). QED

Remark 2.2. It is useful to consider separately the to cases where m > 0
(/„ = 0) and m = 0 (/„ > 0).
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m > 0. When / 0 = 0 we note from (2.3) that 0o,o
 = Po a nd #,,o = 0 for r > 1.

Note also that the terms /0 c, in the last row of Tx disappear in this
case.

m = 0. The linear equations Tx gx = tx are easily solved analytically in this
case, and we obtain that

1 \-i {y y~x

(2-14) gitX = - ]_, fy{-9i+l,X-y + di,x-y
/o y= 1 { X X

^ , x k

(2.15) gf, x = ~ Z fy S
b {

k-l

/=o j

The initial values g, 0 may be expressed in terms of the derivatives #><

j = 0, ..., k, where 9)(•) denotes the probability generating function of the
counting distribution. However, for the class (1.4) of counting distributions,
there is in general no simple expression for <p(-).

•

Example 1: The Waring distribution arises as a mixed geometric distribution
with a beta mixing function. If P(N = n\p) = (1 —p)p", and p ~ Beta (a, /?),
then

Pn =
B(a,/0

and

n + a - 1

This corresponds to (1.4) with k = 1 and

a0 = a— 1

c0 = a c, = 1

where c, is obtained from (2.11). •

Example 2: For the hypergeometric distribution with parameters (s, D, S),

D\IS-D

n I \ s—n
Pn ~
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it holds that
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_

Pn ~
Pn-],

n[n + (S-D-s)]

which corresponds to (1.4) with k = 2 and

ao = (D+\)(s+l) a, = -(D + s + 2)
bo = O bi = S-D-s
c0 = Ds c, = -(D + s)

a2

b2

C2

Example 3: The Polya-Eggenberger (Negative Hypergeometric) distribution
arises as a mixed binomial distribution with a beta mixing function. The
probability function

oc + n — P+M-n-\

M-n
Pn =

M

satisfies

_ [n-(M+\)][n + (a-\)]
Pn ~ Pn

which corresponds to (1.4) with k = 2 and

b0

c0

= -(M+
= 0
= - M a

1)(« - 1 ) a, =

C\ =

-(M-oc + 2)
-(M + p)
(ix-M)

a2=\

b2= 1

a

Example 4: The generalized Waring distribution arises as a mixed negative
binomial distribution with a beta mixing function,

Pn
r(0+c)

and

r(c)n\

Pn
n[n + (tx+P+c-\)]

Pn-\ •
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This corresponds to (1.4) with k = 2 and

a0 = (a— 1) (c — 1) a , = ( a + c —2)

c0 = ac = a + c

a2 = 1

b2=\.

c2 = 1

3. RECURSIVE CALCULATION OF MOMENTS

For the class (1.3) of counting distributions it was pointed out by D E PRIL
(1986) that also the moments ms = EX\ 5 = 0 , 1 , . . . , of the compound
distribution can be calculated recursively in a simple manner. Expressions for
the moments ms are useful if one wants to calculate the NP- or Edgeworth
approximation to the compound distribution as an alternative to the (exact)
recursive method.

Let

denote the s'th moment around the origin of the severity distribution, and
define

(3.1)
x=0

where g, x is the auxiliary function (2.1). Note in particular that m, = m0<s is the
.y'th moment of the compound distribution. The following result gives a
recursion for the vector (mOs, . . . , mk J), s = 0, 1, . . . , and hence the moments

m,.

Theorem 2: Assume that (1.4) holds true. With initial values
00

(3.2) m,0=EN'= £ Pnn', i = O,...,k,

the moments m, = mOs of the compound distribution may be obtained by
calculating (w0 ,, . . . , mk ,) recursively for s = 1 ,2 , . . . as

(3.3) m,, =
7 = 0

s —

j

.1-1

Av-/
7=1 7 - 1

(3.4)
s-\

;=o /=o

fc-1

,=o

Remark 3.1. When (m0 u, ..., mk J is known for u < s, one calculates mt s for
i = 0,...,k-\ from (3.3) and then mks from (3.4). D

https://doi.org/10.2143/AST.24.1.2005078 Published online by Cambridge University Press

https://doi.org/10.2143/AST.24.1.2005078


26 OLE HESSELAGER

Proof: According to (3.1) and (2.1) the initial values are given by

fW,-O= la 9i,x =
x = 0

00

fipnfr= Z />,«'•

T o verify (3.3) we multiply (2.8) by x s , s>\, and sum over x > 0 to
obtain

o A0= Z Z
x = 0 y=0

By changing the order of summation and using the binomial formula

(3.5) -I
J

y'-J(x-yy,

(and the similar expression for xs ) it follows that
00 r- S— 1 / , i

° = S ^ U Z i ~ /"'~y(^+1,7+^,7)-
y=o |_ >=° \ 7 / /=o

7 = 0 j 7=0 \J

Equation (3.3) now follows by extracting the term corresponding to j = s
from the last sum and making use of the fact that

j

s-\

7-1

To verify (3.4), multiply (2.12) by xs, s > 1, and sum over x > 0 to obtain
£ £ 00 X

Z bimUs= Z Z Z x'fy9i,x-yCi.

By changing the order of summation and using (3.5), it follows that
k k 00 s

(3.6) X ^ = I Z Z
1 = 0 (=0 y = 0 7 = 0 _/'

/=o 7=0

and (3.4) follows by solving (3.6) for mk s. QED
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4. COMPARISON WITH THE RECURSIONS OF WlLLMOT & PANJER (1987)

In PANJER & WILLMOT (1982) it is demonstrated how recursions for the
compound distribution may be obtained by use of generating functions; in
principle for arbitrary k when the counting distribution satisfies (1.4). Formu-
las for the cases k = 1 and k = 2 are found in WILLMOT & PANJER (1987). We
cite the following recursive procedure:

Define the auxiliary function

(4.1) <70 = m,

(x + m)fx + m A f +m
Vx = ~ " L —^—1x-y,

Jm y=l Jm

where m is the smallest integer such that fm > 0, and also

t0 = r~\,

, , , , , _(
(q,Z) tx rfr

where r is the smallest integer such that rfr > 0.
For k = 1 the class (1.4) may be rewritten as

P(nl) + K
Pn = Pn-\, n=l,2, ...,

<x/i+l

and the compound distribution gx satisfies the recursion

(4.3) gx = —

For k = 2 and b0 = 0 we may rewrite (1.4) as,

P ( n l ) ( n 2 ) + K ( n l ) + 6
Pn = Pn-i, "=1,2,

n(n— l) +

Define a new set of auxiliary functions,
X

(4-4) Ux= Y, Wlx-yfy, Vx=
y=Q y=0

and gx can be calculated recursively as

y=\

(4.5) gx

*[(*-/„-
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where

(4.6) kx y = (x—y) {ty — aqy—f5\

It is interesting to compare the recursions (4.1)-(4.6) to the one proposed in
Theorem 1.

Each step in the proposed recursion involves (k + 1) summations of the type
E*=1 fyhxy (for some function hxy). The number of computations involved
with the calculation of gx when g0, ..., gx~\ are known is therefore propor-
tional to x, and the number of computations involved with gx is of order x2. In
practice, the severity distribution fy has finite support such that fy = 0 for
y > .Kmax* saY- In this case the sum E*=1 fyhxy involves only ym3tX non-zero
terms, and the number of computations involved with gx is of order x.

TABLE l

COMPUTING TIME, minutes:seconds TO OBTAIN gx FOR k = 2 WHEN fy HAS FINITE SUPPORT

WITH >>mM = 50

X

200
400
600
800
1000
1200
1400
1600
1800
2000

m> 0

0:04
0:09
0: 14
0:20
0:26
0: 32
0: 39
0:46
0: 54
1 :02

m = 0

0:04
0:08
0: 13
0: 19
0:24
0:30
0:37
0:44
0: 51
0: 59

Willmot & Panjer

0:07
0
0
1
1
2
3
4
5
7

22
45
16
54
41
37
43
54
18

Also the recursions (4.3) and (4.5) of WILLMOT & PANJER (1987) involve
summations £* = ) . However, these sums do not simplify in the case where fy

has finite support, and the total number of computations is therefore of
order x2.

Table 1 shows for k = 2 the total computing time as a function of x for the
recursion of WILLMOT & PANJER (1987) and for the proposed recursion. For
the latter, we have treated separately the two cases where m > 0 and m = 0 (see
Remark 2.2). In the first case we have programmed the recursion as presented
in Theorem 1, and the matrix Tx has been inverted using STSC APL standard
facilities. In the latter case we have used the formulas (2.14) and (2.15). The
computations were done on a 486,50 mHz PC. The severity distribution has
been chosen such that ymax = 50. It should be noted that the computing time
does not depend on the actual choice of parameters for the counting
distribution, and also not on the actual choice of severity distribution (except
for the choice of j m a x ) . The results are also displayed in Figure 1, where the
computing times (in seconds) are shown as a function of x. It is seen that the
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Computing time
.Seconds

m>0
m = 0
Willmot & Panjer

200 400 600 800 1 000 1 200 1 400 1 600 1 800 2000

X

FIGURE 1. Computing time to obtain gx for k = 2 when fy has finite support with >>max = 50.

total computing time is linear in x for the proposed recursion and quadratic for
the recursion of WILLMOT & PANJER (1987).

With a hypergeometric counting distribution (k = 2) we have checked the
recursions for numerical instabilities. We consider two different severity
distributions, 20

/ 2 , ,= 1/150, 7 = 0, . . . , 149.
The distribution/, is very short-tailed with a high probability/0 = 0.2837 of

zero-claims. The second distribution f2 is more heavy-tailed with a " large"
average claim size EY = 74.5. For each of the severity distributions/! and/2 we
have calculated the compound distribution using a hypergeometric counting
distribution with parameters (s, D, S) (see Example 2), where D = S/4 and
s = qS, and (S, q) varies in the set {40, 100, 200} x {0.25, 0.5, 0.75}. The
corresponding average number of claims, EN = sD/S = qS/4 is shown in
Table 2. For the proposed recursion, m > 0, we have shifted the distributions/,
and f2 one step to the right, such that m = 1 in this case. The check for
numerical instabilities was performed by simple graphical inspection. In
Table 3 we have indicated by a * those cases where instabilities were found. All
computations were continued until the 99.5% fractile of the compound
distributions was reached.
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5 = 40
5 = 100
5=200

TABLE 2
AVERAGE NUMBER OF CLAIMS,

q = 0.25

2.5
6.25

12.5

EN = qS/4

? = 0.5

5
12.5
25

q = 0.75

7.5
18.75
37.5

TABLE 3

NUMERICAL INSTABILITIES FOR COMPOUND HYPERGEOMETRIC DISTRIBUTIONS.

INSTABILITIES ARE INDICATED BY A *

5 = 40

5 = 100

5 = 200

5 = 40

5 = 100

5 = 200

5 = 40

5 = 100

5 = 200

Severity distribution / ,

q = 0.25 q = 0.5 q = 0.75

Severity distribution/^

q = 0.25 q = 0.75

m > 0

m = 0

* *

*

* *

Willmot & Panjer

*

*

*

*

*

It is noted that no instabilities were found for the proposed recursion in the
case where m > 0. The recursion of WILLMOT & PANJER (1987) was unstable
for the severity distribution/^, when the average number of claims exceeds 10
(in this case). These instabilities can be attributed the accumulation of
round-off errors. The proposed recursion, when m > 0, was unstable for
" large " values of S and " small" values of q—irrespective of which severity
distribution was used. An explanation for this instability can be found by
examining the expression for gk x in (2.15). This expression involves subtraction
of terms &,•#,• x, i < k, and subtraction (of equally large numbers) is known to
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increase the relative errors. For the hypergeometric distribution it holds that
b0 = 0 and b2 = 1, whereas 6, = S-D — s (see Example 2). For the present
combination of parameters it holds that b{ = S(0J5 — q), which assumes its
maximum when S is "large" and q is "small". In general, we would therefore
expect that the proposed recursion is unstable for m = 0 when S—D ^> s and
stable when S— D x s.

It should be noted that all calculations were done with single precision, and
that the results could (obviously) be improved by using double precision.

5. CALCULATION OF RUIN PROBABILITIES

Let
N(t)

S(t)=
( = 1

where N(t) denotes the number of claims incurred during [0, / ] , and
Z\, Z2,. • •, denote the corresponding claim amounts. The amounts Z, are
assumed to be independent of N(t) and mutually independent with common
distribution H. The average claim size is denoted by n = EZY.

If premiums are paid continuously at a rate B pr. time unit, the maximal loss
incurred is

L= sup {S(t)-Bt},

and the probability of ultimate ruin is

where u denotes the initial capital. Assume that B = (1+0)1//, where the
relative safety loading 6 is non-negative. It is a well known result (see e.g.
BOWERS et al., 1986) that if {N(t)} is a time-homogeneous Poisson process with
claims rate I, then

M

(5.1) L = S L^
;=o

where M has a geometric distribution

(5.2) P(M = m) = (\-p)pm, p = , w = 0, 1, . . . ,
1+0

and L,, L2, ... are mutually independent with common density

(5.3) f(y) = (l-H(y))/M.

PANJER (1986) suggested a discrete approximation to f(y), and then to
calculate y/(w) recursively by means of the Panjer-recursion, which is valid in
the case of geometric counting distributions.
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Consider now the case where {N(t)}, conditionally given A = k, is a Poisson
process with claims rate k. Since, in this case,

M

;=o

with M and L, being distributed as before, it follows that
M'

where L, still is distributed according to (5.3), and M' has a mixed geometric
distribution. If we take a beta mixing function with parameters (a, y?) for p
appearing in (5.2), it follows that M' has the Waring distribution from
Example 1. Using the same method as suggested by PANJER (1986) for
discretizing the density (5.3), we may then apply Theorem 1 with k = 1 to
obtain a recursive method for calculating y/(u).

Note, that if p is beta distributed with parameters (a, p), then the claims rate
A is distributed as (B/fi) U, where U is beta distributed with parameters
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