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A ONE-DIMENSIONAL FINITE-ELEMENT MODEL FOR 
1WO-DIMENSIONAL GLACIER FLOW 
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ABSTRACT. A description of the reduction of two­
dimensional equilibrium equations to one-dimensional form 
via the Kantorovich method is given. An appropriate inter­
polation function is obtained by relating basal shear stress 
to sliding velocity and integrating the constitutive model 
through the depth of ice. An example is presented which 
demonstrates the ability of the numerical model to effect 
solutions which are in good agreement with those obtained 
via full two-dimensional finite-element models; however, at 
a small fraction of computational and data input efforts. 
The technique described for the reduction of the 
equilibrium equations can also be used to convert three­
dimensional stress equilibrium to two-dimensional form. 

INTRODUCTION 

The short- term flow behaviour of large ice masses can 
be studied independently of mass and energy considerations, 
provided that the spatial distribution of material properties 
and temperature, and basal boundary conditions are known. 
Owing to the stress-strain-time behaviour of ice, residual 
stresses are quickly dissipated, unlike with other geologic 
materials. Consequently, the entire deformation history need 
not be traced in order to estimate large-scale stress and 
velocity fields in large ice structures; although it is 
important to recognize that the flow parameters may change 
with time due to strain-induced anisotropy (non-random 
fabric) . 

During the past several years the finite-element method 
has received an increase in popularity in glaciology for 
analysis of two-dimensional glacier flow. This paper extends 
recent work completed by the author (Stolle, 1986) where a 
zeroth-order stress model is extended and formulated within 
the framework of the finite-element method, taking into 
account coupling between stress and displacement fields via 
an integrated constitutive relationship . The emphasis in this 
paper is on boundary-valued problem-modelling technique 
via an integral approach and subsequent simplification, and 
not on material characterization. It is shown that the simple 
model presented herein is capable of effecting solutions to 
glacier-flow problems which are in good agreement with 
those of two- dimensional finite-element models. In an 
attempt to simplify the presentation, it is assumed that the 
ice mass is isothermal and homogeneous, and the ice is 
isotropic. 

TWO-DIMENSIONAL FINITE-ELEMENT MODELS 

As indicated previously, during the past several years 
there has been a move in glaciology toward two-dimensional 
finite-element modelling of large ice-mass dynamic 
phenomena, including: creep analysis due to gravity loading 
(Emery, 1978; Hooke and others, 1979; Hodge, 1985; 
Nguyen, unpublished); thermal analysis (Hooke and others, 
1979); creep and fracture simulation (Chan, unpublished); 
particle-path determination (Stone and Killeavy, 1986); and 
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large ice-mass instability (Stolle and Mirza, 1986). By no 
means does this list exhaust all finite-element literature in 
glaciology. For analysis of flow problems, two distinct 
approaches have evolved, i.e. initial strain method (DISP) 
where the discretized equations are obtained via the 
principle of virtual work, and the non-Newtonian fluid 
rheology approach (V-P) where the discretized equations are 
obtained via the principle of virtual velocities and an 
incompressibility constraint. The reader is referred to 
Zienkiewicz (1977) for details on these approaches. 

ONE-DIMENSIONAL GLACIER-FLOW MODEL 

While the two-dimensional models are useful for giving 
detailed information on glacier flow, the accuracies provided 
by these models are often undermined by poor quality of 
input data. Furthermore, even though good agreement may 
be obtained when comparing predicted and measured surface 
velocities, there is generally insufficient data available to 
confirm agreement of velocities at depth. Thus, the author 
feels that alternative approaches such as the one presented 
in the following sections are more appropriate for studying 
large-scale ice flow. 

Constitutive and sliding relationships 
A large number of creep laws have been proposed for 

modelling long-term ice creep. Most of these relationships 
have been developed using uniaxial creep data, and have 
been extended for multi-axial creep modelling assuming 
isotropy and ice incompressibility. The power creep law 
(Glen, 1952) has been adopted for this study due to its 
ability to predict creep response over the range of stresses 
typical in glaciers and ice sheets. The law in invariant form 
is 

(I) 

where E~ and <7e are Dorn's definitions for effective creep 
strain-rate (E~ = (2/ 3£7 .E7 )t) and effective stress (<7e = 

(3/2SijSij)t), respectiver'y. The extension of Equation (1) 
to multi-axial creep may be written, using index notation, 
as 

1 
-S· · 
2n I) 

(2) 

where £7 · and Sij are strain-rate and deviatoric stresses, 
respectivery, and n is the viscosity. Repeated indices where 
they appear imply summation. 

In general the coefficient, A, which depends upon ice 
temperature and fabric, varies throughout an ice mass. While 
the approach presented herein can take into account spatial 
variations in A, it is assumed that A is constant within each 
finite element. The exponent n tends to reflect the rate­
determining step for the creep process which in turn 
depends on the stress and temperature levels. For the range 
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of stresses and temperatures which are typical of large ice 
masses, n = 3 is appropriate (e .g. Colbeck, 1980). 

In order to account for highly concentrated shear near 
to an ice-bedrock interface due to sliding or presence of 
warmer and softer ice, the following law has been adopted 
herein 

(3) 

where Tb and v? are basal shear stress and basal velocity, 
respectively, C is a function depending on bedrock 
roughness, properties of ice, and basal velocity (e.g. Fowler, 
1979; Hutter, 1982). 

Kinematics 
Owing to typical ice-sheet and glacier geometries, it 

may be assumed that VI »v2 where VI and v2 are 
velocities acting in the ;: and ~~ directions, respectively 
(see Fig. I) . The notation ,i implies differentiation with 

Fig. 1. Coordinate system for glacier flow. 

respect to Xi' By replacing strain-rate in Equation (2) with 
rate of deformation dij = 1/ 2(Vi'

j 
+ Vj)' we may write 

(4) 

In order to allow explicit integration of Equation (4), to 
obtain the variation of the longitudinal velocity VI with 
depth at a certain point above the bedrock, let us fo1\ow 
the approach of Shoemaker and Morland (1984) and Sto1\e 
(1986) where variations with depth in S12 and Su are 
defined, a priori, as 

(1 - 9)Tb 

(m + 1)9mSu 

(Sa) 

(5b) 

where e represents a dimensionless x2-coordinate which 
ranges from 0 at t~ bedrock to I at the surface, Tb is the 
basal shear stress, Su is the average longitudinal deviatoric 
stress, and m is a parameter which controls the variation of 
Su with depth. If appreciable sliding is expected m = 0, 
otherwise m > O. It was found in a previous study that, 
for shear-dominated flow, the surface-velocity and basal 
shear-stress predictions were not too sensitive to the choice 
of m. For 0 , m < 2, horizontal surface-velocity and basal 
shear-stress predictions varied at most by 10 and 5%, 

Stolle: One-dimensional finite-element model 

respectively. The variations in the predictions were genera1\y 
much less (e.g. Stolle, 1986). 

Integration of Equation (4) subject to Equations (2), 
(3), and (5) yields 

(6a) 

with 

B(9) = I + 9Ahc{(m + I )2s 2 r e=m+l _ 9
2m+2] + 

u l.2m + I 2m + 2 

(6b) 

or 

(6c) 

with 

a = + 9AhC II + ~ G 
2(m + 1)2S2 T2} 

2m + IX2m + 2)(2m + 3) 5 
(6d) 

where VI is the average longitudinal cross-sectional velocity 
and 0(9) represents an interpolation function for the longi­
tudinal velocity through the depth of the ice mass. 

At this point let us briefly examine the influence of C 
for the two limiting cases of no basal shear resistance, C ... 
0, and the no-slip condition, C ... GO. For the case where C 
... 0, v(9) ... v? and Tb ... 0 which results in the ice weight 
being fu1\y supported by longitudinal deviatoric stress 
gradients rather than by shear, as anticipated. For the 
second case where C'" GO, v? ... 0 with Tb (= Cv?) 
remaining finite; that is, the basal shear stress becomes a 
function of ice-creep properties, ice-mass thickness, and 
variation in stresses through the depth of the ice mass'. In 
practice, the no-slip condition can be approximated by 
selecting a large value for C. 

Since the longitudinal velocity also varies along an ice 
mass, let us further approximate the spatial variation of VI 

as 

(7) 

where Ni is a polynomial interpolation function for average 
longitudinal velocity VI along the ice mass and VI ' are nodal 
velocities. The independent variable Xl has been included in 
n since ice-mass th ickness is a function of x

J
• The 

vertical velocity v2(x1'9) can be obtained by integratlDg the 
incompressibility constraint. 

The velocity gradients are given by 

(8a) 

and 

(8b) 

It should be noted that the first term on the right-hand 
side of Equation (8a) is generally negligible when compared 
with the second term, thereby a1\owing the shown 
simplification. 

Equilibrium 
It has been shown by a number of investigators, owing 

to the geometry of large ice masses, that plane-strain 
equilibrium may be approximated as 

with 

2 ---= 
8x I 

Tb - Yhsin OS + T (9a) 

(9b) 
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and 

J
hS JX2 8

2
S 12 

T = --dx dx 
2 ' 2 h h 8x1 b b 

(9c) 

where h is ice thickness, <Xs is surface slope with respect to 
the horizontal plane, Y is unit weight of ice, and the other 
terms are the same as defined previously (e.g. Col beck, 
1980). Assumptions incorporated into the development of 
Equation (9) include: (a) top surface is traction-free; (b) top 
and bottom boundaries do not deviate strongly from one 
another (1<Xs - abl « I); (c) ice is incompressible and 
isotropic; and (d) density is uniform with depth. For the 
one-dimensional model presented in this paper (4) = 0) both 
<Xs and ab must be small; see Figure I. 

Alternative formulations which improve upon some of 
the shortcomings of Equation (9) have been suggested, for 
example, by Shoemaker and Morland (1984), McMeeking 
and Johnson (1985), and Kamb (1986). However, given the 
previous assumptions, the equations developed by these 
investigators reduce to Equation (9). Although in recent 
years use of Equation (9) has been questioned, since proper 
interactions between flow field, temperature field, and basal 
boundary conditions may not be properly treated (e.g. 
Hutter and others, 1981), it will be shown in this paper 
that use of reduced equations similar to Equation (9) can 
provide solutions which are in excellent agreement with 
those obtained using more rigorous two-dimensional 
finite-element approaches for large-scale isothermal 
glacier-flow problems. 

Stolle (1986) used Equation (9) as a starting point to 
develop its integrated equivalent 

where SV1 is a weighting function consistent with the 
longitudinal variation in average longitudinal velocity VI' J 
is length of ice mass, and the other terms are the same as 
defined previously. Equation (10) in conjunction with 
properly vertically averaged constitutive equations as 
described by Shoemaker and Morland (1984) or by Stolle 
(1986) was used to formulate a one-dimensional 
finite-element equivalent of two-dimensional stress 
equilibrium. The author was able to demonstrate that the 
one-dimensional model, which he referred to as a 
two-dimensional line-element model, gives good predictions 
when compared with those by the more rigorous 
two-dimensional models, however at much smaller 
computational and data input efforts. The remainder of this 
section is used to describe the reduction of the 
two-dimensional problem to one-dimensional form via the 
Kantorovich method which makes use of the principle of 
virtual velocities. 

The equilibrium of an ice mass for planar problems 
can be written in integral form by using the principle of 
virtual velocities 

J Sdi/IijdA - J SVibidA -
A A 

J Sv·t ·dS 
// 

St 

o (I I) 

where Sdij is virtual rate of deformation consistent with 
virtual velocities SVi in Xi-direction, bi are body forces in 
A, Gij are total stresses and ti are surface tractions on 
boundary St. Equation (11) may be used to obtain a one-
dimensional equilibrium equation, by enforcing 
incompressibility exactly, i.e. Sdii = dii = 0, and noting 
that S22 = -Sw yielding 

2 J (SduSu + Sd12S12)dA - tSVibidA = O. (12) 
A 

The boundary integral term has been omitted since it is not 
required. 
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After substitution of Equations (2), (7), and (8) into 
Equation (12), we have 

J 
2 0 2 -2 (200 Ni Nj + -0 ,NiN)dAvl . 

A ,1 ,1 2' J 
= L ONiYsin <XsdA . (13) 

The assumptions which are incorporated into the develop­
ment of Equation (13) are the same as those for the 
development of Equation (9). The area integrals in Equation 
(13) can be completed numerically using, for example, 
Gauss-Quadrature rules. However, it can be shown, for the 
case of a linear flow law and no basal sliding, that 
Equation (13) is similar to a simplified form of Equation 
(10) where the last term containing T, which tends to have 
negligible influence on predictions (e.g. Kamb and 
Echelmeyer, 1986), is dropped. The stiffness matrix due to 
the shear contributions is identical for both formulations, 
with the stiffness due to the longitudinal extension 
contribution of Equation (13) being stiffer than that of 
Equation (10) by a factor of 1.2. 

This suggests that the influence of weighting through 
the depth of the ice mass for the non-linear flow-law case 
can be accounted for in Equation (10), in an approximate 
manner, by multiplying the first stiffness term of this 
equation by an appropriate weighting factor F, thereby 
eliminating the need for approximate numerical integration 
of Equation (13). This factor provides some flexibility in 
adjusting the stiffness contribution due to longitudinal 
straining relative to that which is due to shear. Based on a 
numerical sensitivity study of the ice mass described in the 
following section for n = 3 and varying C, suitable 
weighting factors have been found to vary between 1.0 and 
1.5. The reader is referred to the Appendix for more 
details on the matrix formulation used to study the ice mass 
which is described in the following section. 

(10) 

NUMERICAL EXAMPLES 

The finite-element models reviewed and described in 
the previous sections were used to simulate the flow 
behaviour due to self weight of Barnes Ice Cap, a medium­
sized ice cap located on Baffin Island, N.W.T., Canada. The 
geometry of the ice cap was taken from Hooke and others 
(1979); the finite-element grid for the one-dimensional 
model and geometry are shown in Figure 2. Since this 
paper emphasizes modelling technique and not material 
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Fig. 2. Finite-element grid 
one-dimensional model. 
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lee Cap for 

characterization, comparisons between models are made 
assuming isothermal and homogeneous conditions, and no 
basal slidin§; n = 3, A = 2.2 x 10-7 (kPar3 year-l, and Y = 
8.952 kN/ m . No basal sliding was enforced by specifying a 
large value for C. The solutions of the one-dimensional 
model (17 elements) are compared with those generated by 
the displacement (DISP) (372 elements) and non-Newtonian 
fluid rheology (Y-P) (93 elements) approaches. Quadratic 
element interpolation was incorporated into the one­
dimensional and Y-P models (e.g. Stolle and Killeavy, 
1986), while linear interpolation was used in the DISP 
mode\. The one-dimensional simulations were carried out 
using a TI Professional microcomputer with 8087 
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co-processor, while two-dimensional simulations were 
completed on a YAX-785 minicomputer. 

Figures 3, 4, and 5 compare predictions of horizontal 
surface-velocity, vertical surface-velocity, and basal shear­
stress variations along the ice mass, respectively. Two sets of 
predictions are given using the one-dimensional model. Since 
the complete velocity field within an element is defined by 
Equation (6), we can determine S11 variations with depth, 
thereby allowing us to obtain updated estimates for m 
within each element. However, it was found that updating 
of m had negligible influence on predictions and thus a 
linear variation of S 11 was adopted (m = I). Solutions 
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1-0 
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Fig. 3. Comparison between one- and two-dimensional 
models of horizontal surface-velocity predictions along 
Bames lee Cap assuming homogeneous isothermal ice 
mass. 
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Fig . 4. Comparison between one- and two-dimensional 
models of vertical surface-velocity predictions along Bames 
lee Cap assuming homogeneous isothermal ice mass. 
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Fig. 5. Comparison between one- and two-dimensional 
models of basal shear-stress predictions along Bames lee 
Cap assuming homogeneous isothermal ice mass. 

Stolle: One-dimensional finite-element model 

effected by the one-dimensional model for this study are 
given for F = 1.0 and 1.2. 

Figure 3 demonstrates that the one-dimensional model 
is capable of providing good predictions when compared 
with the two-dimensional models. By increasing the factor 
from 1.0 to 1.2 agreement of horizontal velocities between 
one-dimensional and Y-P is improved, as anticipated. 
Although not shown, a comparison of stream lines as 
predicted by Y-P (Stolle and Killeavy, 1986) and one­
dimensional formulations suggests that the velocity field 
predicted by each model is similar. The stream-line function 
'I' for one-dimensional modelling can be determined by 
integrating vl = frf/8x2 . The differences between DISP and 
Y-P velocity predictions are attributed to the use of tower­
order elements for the DISP formulation. This example 
clearly shows that the one-dimensional approach presented 
in this paper is capable of yielding better large-scale 
predictions than two-dimensional finite-element approaches 
using low-order elements. 

A final example is presented where the creep parameter 
A along the ice mass is optimized (see Fig. 6) in order to 
achieve reasonable agreement between measured and 
predicted horizontal surface velocities. In a separate 
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Fig . 6. Variation of flow parameter A along Bames lee 
Cap for optimized predictions. 

unpublished study, the author found, by incorporating the 
one-dimensional model into a non-linear optimization 
computer program, that the profile of Barnes Ice Cap 
investigated in this study must be divided into a minimum 
of eight regions in order to get reasonable agreement 
between predicted and measured horizontal surface velocities. 
Therefore, one flow law cannot be expected to model the 
stress-strain-rate response through an entire ice mass even 
if temperature influences are included. Although the most 
effective way of parameter estimation is via non-linear 
optimization techniques, these techniques do not always 
converge or may sometimes converge to an unreasonable 
solution (e.g. Draper and Smith, 1966). Owing to the form 
of Equation (6), optimization in this study was completed 
by using an iterative procedure where stresses were first 
estimated using initially assumed A parameters for the flow 
analysis, and then the A parameters in each region were 
updated using the updated stresses which were obtained by 
using the predicted velocities from the flow analysis, 
measured horizontal surface velocities, and Equation (6) . 
This procedure was repeated until reasonable agreement was 
achieved between measured and predicted surface velocities. 
While the optimization procedure adopted in this study 
yielded reasonable A parameters, the back-calculated solution 
is by no means considered to be unique. 

As shown in Figure 2, 17 regions were used for 
studying Barnes Ice Cap, each having a different A 
parameter. The variation in A parameter, as shown in 
Figure 6, is attributed to changes in mean temperature and 
fabric along the ice mass. Although the influence of 
vertical variation in temperature within each element can be 
accounted for in the one-dimensional model by introducing 
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a temperature dependency on the A parameter, it is felt 
that further improvements in flow modelling are not 
justified until more field data are available for model 
calibration. Figure 7 clearly demonstrates that optimization 
procedures may be used to obtain a reasonable distribution 
of the A parameter, which can lead to good agreement 

(a) 

6 

~-
> 

-- MEASURED 
---v-p 

o F=1.2, 1-0 

o 

-0.4 

o 2 4 6 8 10 
DISTANCE (km) 

Fig. 7. Comparison of measured and predicted (a) 
horizontal and (b ) vertical surface velocities along Barnes 
lee Cap using flow-parameter distribution shown in Figure 
6. 

between measured and predicted surface velocities. Based on 
a recent communication from G. Holdsworth, the measured 
vertical surface velocities reported in previous publications 
are 0.206 m a-I too high (e.g. Hooke and others 1979; Stolle 
and KiIleavy, 1986). Consequently, the agreement between 
measured and predicted vertical surface velocities in these 
publications is better than is reported. The optimized 
parameters from the one-dimensional model were also used 
for a Y-P simulation. As shown in Figure 7, good 
agreement was also obtained between the predicted velocities 
via the Y-P model and measured velocities. This suggests 
that the one-dimensional model can be used to estimate 
parameters for true two-dimensional analyses. 

CLOSING REMARKS 

The emphasis in this paper has been on numerical 
modelling of large ice-mass flow and the reduction of 
two-dimensional stress equilibrium equations to one­
dimensional form via the Kantorovich methodology. In other 
recent publications addressing one-dimensional modelling 
(e.g. McMeeking and Johnson, 1985; Kamb, 1986), the 
emphasis has tended to be on demonstrating the limits of 
applicability of the one-dimensional models and the 
significance of the various terms appearing in, for 
example, Equation (9). Unlike the integral approach 
described in this paper, the analysis approach in these 
(other and related) studies has involved direct use of the 
differential equations in conjunction with perturbation 
methods. 

It has been demonstrated in this paper that the 
solutions predicted by relatively simple one-dimensional 
models compare well with those of two-dimensional models 
for large-scale flow, provided that integration of constitutive 
relationships is properly treated. Use of the one­
dimensional model allows considerable savings in 
computational and data-input effort. The value of the 
approach presented in this paper lies not so much in 
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reduction of a two-dimensional problem to one-dimensional 
form for steady-state flow, but for the analysis of 
long-term transient flow and the reduction of three-dimen­
sional problems to two-dimensional equivalents which will 
be discussed in a separate paper. Of course, if details of 
the flow field are important, then full two- or three­
dimensional analysis is necessary. 
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APPENDIX 

SUMMARY OF ONE-DIMENSIONAL MODEL 

Substitution of Equation (6) into Equation (9) yields 

(A-la) 

where 

(A-Ib) 

(A-Ic) 

Stolle: One-dimensional finite-element model 

9A S + 
( [

(m + I)s - 2 

(3m + I) 11 

+ (m + 1)[ __ 1 ___ 2 __ + 3 ]r2 ]}-l 
m+1 m ,+2 m+3 b (A-Id) 

with F = I and all other terms are the same as defined in 
the main text. The last term containing T has been assumed 
negligible. 

The factor F was introduced into Equation (A-I b) in 
order to approximate the influence of weighting through the 
depth of the ice mass as provided for by Equation (I3). A 
standard Choleski procedure for symmetric banded matrices 
was used to invert the stiffness matrix. Since the ice 
viscosity is stress-dependent, the direct iteration method was 
adopted . Convergence in terms of the root-mean-square 
error of horizontal velocities between two successive 
iterations being less than 0.1 % was achieved within 15 
iterations. 

MS . received 8 August /986 and ill revised form /5 March /988 
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