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SOME SERIES INVOLVING THE ZETA FUNCTION

JUNESANG CHOI, H.M. SRIVASTAVA AND J.R. QUINE

Lots of formulas for series of zeta function have been developed in many ways.
We show how we can apply the theory of the double gamma function, which has
recently been revived according to the study of determinants of Laplacians, to
evaluate some series involving the Riemann zeta function.

1. INTRODUCTION

An over two-century old theorem of Christian Goldbach (1690-1764), which was
stated in a letter dated 1729 from Goldbach to Daniel Bernoulli (1700-1782), has re-
cently been posed as the following:

PROBLEM. (Shallit and Zikan [15]). Let 5 be the set of nontrivial integer fcth powers,
that is,

(1.1) S = {n* | n > 2, Jfc ^ 2} = {4, 8, 9, 16, 25, 32, 36, . . .} .

Show that

the sum being extended over all members w of 5 .
In terms of the Riemann zeta function (see Titchmarsh [18] and Ivic [10])

the summation formula (1.2) becomes (see [15, p.403])

(1.4)
fc=2
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As a matter of fact, it is not difficult to show also that

(1.5)
* = 2

(i.6) yj{c(2*) - 1 } = T **"* y^{c(2fe+1) -1} — - .
k=2 k=l

Formula (1.4) and hence also (1.2), and its variations (1.5) and (1.6) are, of course,
equivalent to various (known or easily derivable) sums of double series. The object of
this paper is to evaluate some series involving ((s) and the generalised (Hurwitz's) zeta
function C(a,a) defined usually by (see [14, p.22])

(1.7) C(s, a) = f ; ^ - y (Re(,) > 1 a ̂  0, - 1 , -2 , . . . ) ,

using the theory of the double gamma function. Using these results we can also obtain

the explicit form of the triple gamma function Fs .

It should be remarked in passing that both £(s) and ((a, a) are analytic functions

everywhere in the complex a-plane except for a simple pole at s = 1 with its residue 1.

The double gamma function had been defined and studied by Barnes [3, 4, 5] and

others about 1900, not appearing in the tables of the most well-known special functions,

cited in the exercise by Whittaker and Watson [20, p.264]. Recently this function has

been revived in to the study of determinants of Laplacians. Shintani [16] also uses this

function to prove the classical Kronecker limit formula. Its p-adic analytic extention

appeared in a formula of Casson Nogues [6] for the Lp-adic functions at the point 0.

Before Barnes, these functions had been introduced in a different form by Holder

[9], Alexeiewsky [2], Kinkelin [13].

Barnes [3] defines the double gamma function F2 = 1/G satisfying each of the

following properties:

(a) G(z + 1) = T{z)G(z), z e C ;

(b) G(l) = l;
(c) As n —• oo,

(1-8)

y + n + ^ + y + (n + 1)*] logn
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where F is the well-known g a m m a function and A is called Glaisher's (or Kinkelin's)
constant , defined by

(1.9)

the numerical value of A being 1.282427130

Prom this definition, Barnes deduced

(1.10) = (2ir)"ae-[<l+^»1+']/a TT fl + f )* e-'+'V",

where 7 denotes the Euler-Mascheroni constant given by

(1.11) 7 = lim ( l + i + - + - - l o g n ) =* 0.577 215 6 6 4 . . . .
n—»oo Y 2 n /

2. EVALUATION OF SOME SERIES INVOLVING THE ZETA FUNCTION

We first introduce Alexeiwsky's theorem [3]:

(2.1)

Setting z = 1 in (2.1), we obtain

f1 1
(2.2) / l o g r ( l + t ) < f < = - l o g ( 2 7 r ) - l .

Jo z

Replacing t + 1 by t + a in the expression (1.10) for G(t + 1) and differentiating
logarithmically the resulting formula with respect to t, we obtain

(2-3) j t

Integrating both sides of (2.3) from t = 0 to t = z, we find

(2.4)
, z(z + 2 a - l )

+ (z + a - 1) log T(z + a) - log ^ ^ - (a - 1) log r(o),
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which is the natural extension of Alexeiewsky's theorem.

It is known [3] that

f1 ( — 1)
(2.5) / logG(* + a)<ft = a lo g r (a)- logG(a + l ) - ^ - — ' - + £ log (2TT) + G,

Jo 2 2

where C is a constant whose value is given by

Indeed, let /(a) = / 0 log G(t + a) dt. Differentiating /(o) with respect to a and

considering G{\ -\- a) = T(a)G(a), we obtain ^ / ( o ) = l°gr(a). It also follows from

(2.4) that

(2.6) / log T(t) dt == alog r(o) - log G(a + 1) - a ( ° ~ 1 ) + J log (2TT).

Jo 2 2

We thus obtain

/ log G(t + a)dt = alog T{a) - log G(a + 1) - ^—21 + J iog ( 2 T ) + C,
7o 2 2

where C is a constant. Putting a = 1 in the resulting formula, we get

(2.7) C = f log G(< + 1) <ft - £ log (2TT).

We thus have from (1.10) that

4 o v ' 12 6
OO

+

I I I I I I ^ '•''*•" O **— I " " i "~ i / ; ! • " " " © " " ' rt

n—»oo | \ D / 2

(n2 + n) logn + o ~ V + I + H l o S r a

1 1
- log (2TT) + —
4 12
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from which we can derive the desired constant C in (2.5).

Now it follows from ([17, p.18] that (see Whittaker and Watson [20, p.276]; see

also Gradshteyn and Ryzhik [8, p.1074], Entry 9. 532)

(2.8) 2_s(-l)((k,a)—=logr(a + t)-logr(a)-t-tl>(a) (\t\ < \a\),
Jb=2

where tj)(t) = T'(t)/T(t) is often called the digamma function. Replacing t by — t in
(2.8), adding both sides of the resulting equation and (2.8), respectively, we obtain

(2.9)

Differentiating both sides of (2.9) with respect to t, and multiplying both sides of the
resulting equation by t2, we obtain

(2.10) 1

Integrating both sides of (2.10) from t — 0 to t — z, we get

°°^ {2k+2 fz r—z
(2.11) ^2((2k,a)- t2i()(a + t)dt+ t2i/)(a + t) dt (\z\ < \a\).

i=l « + 1 JO JO

Integrating by parts the first integral of the right-hand side of (2.11) successively, and
evaluating the resulting integral by means of (2.3), we can derive

(2.12)
,z ,z
/ t2tl>(a + t) dt = z2 logT(a + z) - 2 / tlogT(a + t)dt

Jo Jo

(a - I)2 logT(z + a) + (z-a + l)log G{z + a)

+ (a - 1) log G{a) - (a - I)2 log T(a) - [' log G{t + a) dt.
Jo

Replacing z by — z in (2.12), and considering the resulting equation, (2.11) and (2.12),
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we can deduce that, for \z\ < \a\,

(2.13)
Z2 2 2

l ( 2 ) +

)2+ (a - l)2{logT(a + z) + log T(a - z)}

+ (1 - a){log G(a + z)+ log G(a - z)}

+ (a - 1) log G(o) - (a - I)2 log T(o)

- / log G(t + a)di- I log G(t + a) dt.
Jo Jo

Setting o = 2 in (2.13), we deduce that, for \z\ < 2

+ log r(2 + z) + log r(2 - z)

- log G(2 + z) - log G(2 - z)

- ^ log G(t + 2)dt- f log G(t + 2) dt.
Jo Jo

Letting z = 1 in (2.14), we obtain

- / log G{t + 2) dt + / log G(t + 1) dt.
Jo Jo
/ /

Jo Jo

Setting a = 1 and a — 2 in (2.5), respectively, we obtain

1
/ logG(< + l )< i t=
o

(2.16) / logG(< + l)<
Jo

I log G[t + 2) dt = log (2TT) - 1 + C,
./o/o

where C is the given constant in (2.5).

Finally, we can obtain summation formulas involving series of the zeta function

from (2.15) and (2.16):
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NOTE. The formula (2.17) was evaluated in a different way in [7] and we showed there
that the evaluation of the formula (2.17) is equivalent to that of the determinant of
Laplacian on S s .

In a similar way, we can derive

or, equivalently

Indeed, replacing t by — t in (2.8), and subtracting (2.8) from the resulting equa-
tion, we obtain

(2.20) 2 f ) <W + 1>a)t2k+1 = log r(a - t) - logT(a + t)

Differentiating both sides of (2.20) with respect to t, and multiplying both sides of the
resulting equation by t2, and next integrating both sides of the resulting equation from
t = 0 to t = z, and finally evaluating the resulting integrals by means of (2.12), we find
that, for \z\ < \a\,

(2.21) ^

£ C ( 2 f e 1 ° ) ^ + 3 + §(*(«) - I)*' + (« " l)(2a - 1),
2 f e + 3

)2
+ (a - I ) 2 {log r (o - *) - log T(a + *)}

- (z + a - 1) log G{a - z) - (z - a + 1) log G(a + z)

+ / log G(o + t)dt- I log G(a +1) dt.
Jo Jo

Setting a = 2 in (2.21), and letting z = 1 in the resulting equation and considering
V>(2) = 1 — 7 and (2.16), we can readily see the desired equation (2.18).

REMARK. It follows from [17, Equation (5.9)] that
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In the theory of the F-function, it is fairly well known (see for example, Jordan
[12, p.62], Equation (2)) that

(2.23) logr(l +1) = -yt + f ) (-l)*C(fc)T d'l < *)
k=2 *

or, equivalently, (see, Abramowitz and Stegun [1, p.256, Equation (6.1.33)])

(2.24) log r(2 + t) = (1 - 7)< + £ (-!)*(«*) - 1 ) T (1*1 < 2).

By differentiating both sides of (2.23) with respect to i, we obtain (see for example,
Jordan [12, p.327, Equation (2)])

(2.25) tf (1 + t) = - 7 + f; (-l)*^*)**-1 (|t| < 1).
Jb=2

Multiplying both sides of (2.25) by t2, and integrating both sides of the resulting
equation from t = 0 to t = z, we obtain

(2.26) Y. (-1) «f c)rZ^ = ^ 3 + /
^ * + 2 3 Jo

dt

Setting a = 1 in (2.12), and applying the resulting equation to (2.26), we have that,
for \z\ < 1,

(2.27) ^ ( _ i ) * C ( 4 ) ] r _ = _(i -log(27r))z2 + i ( l +7)z»

+ «logG(z + l ) - / \ogG{l + t)dt.
Jo

It is readily seen from (2.7) and G(2) = 1 with z -> 1 in (2.27) that

(2.28)
Jt=2

It is noted that [17, p.13, Equation (5.5)]

(2-29)
* = 2
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It follows from (2.24) in a similar manner that, for \z\ < 2,

(2-30) £ (-!)*(«*) - 1)£1 =(§ -£ ) log (2.) + ̂  + £ - § .

+ log r(z + 2) + (a - 1) log G(* + 2) - / log G(2 + <) A.

Setting z = 1 in (2.30), and considering (2.16), we obtain

fc—2

Vigneras [19, p.241] introduces n-ple gamma functions F n by a recurrence formula.
So we can readily evaluate the Weierstrass canonical product form of the triple gamma
function 1*3 more explicitly by applying the above results. We obtained Fa as follows

[7]:

exp - - ( 7 + y + 2)x3 + 4 (7 + log(27r) + - j a ; 2 +nz

- i f -i / \ 2

where

1 / 3 7T2\ 1
fi = — I 7 - 3 log (2TT) H 1 + -

\ 2 12/ I n = 1 v . . _/v . _,

i(7n) = m\ + "12 4- Ti3 if TO = (mi,7712,7713) G N2 x N*, N is the set of nonnegative

integers and N* = N - {0}.

Now fl can be expressed in a closed form by means of some of the previous results.

Indeed, it is readily seen from (2.28) and (2.29) with ((2) = TT2/6 that the summation

part in fi is

(2.32)

(i + l)(* + 2) f
—3 K—3

We thus have

n = - - - l o g (2w)-log A.

NOTE. The exph'cit form of the triple gamma function Fs is necessary to compute the
determinant of Laplacian on S3, where S3 is the unit 3-sphere (see [7]).
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