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REFLECTION OF STATIONARY SETS AND THE TREE PROPERTY AT
THE SUCCESSOR OF A SINGULAR CARDINAL

LAURA FONTANELLA AND MENACHEM MAGIDOR

Abstract. We show that from infinitely many supercompact cardinals one can force a model of ZFC

where both the tree property and the stationary reflection hold at R » .

§1. Introduction. One of the most fruitful research areas in set theory concerns
the investigation of models of set theory where properties of large cardinals hold
at small cardinals. The results presented in this paper focus on two properties of
weakly compact cardinals that, under large cardinal assumptions, can be forced
at small cardinals, the tree property and the reflection of stationary sets. To get
a model of the tree property at the double successor of a regular cardinal it is
enough to assume the consistency of a weakly compact cardinal and force with a
classical poset due to Mitchell (see [6]). Forcing the tree property at the successor
of a singular cardinal is harder and requires much stronger assumptions. The first
model of the tree property at the successor of a singular cardinal, was defined by
Magidor and Shelah in [4] who proved from large cardinals the consistency of
the tree property at X, ;. The hypotheses used in such result have the consistency
strength of a large cardinal between a huge cardinal and a 2-huge cardinal; this was
later improved by Sinapova [10] who was able to force the tree property at 8, | from
weaker large cardinal assumptions, namely assuming the consistency of infinitely
many supercompact cardinals. Another paper by Neeman [7] shows that, assuming
the consistency of infinitely many supercompact cardinals, one can force a model
where the tree property holds simultaneously at X, and at every 8, with n > 2.
All these constructions can be adapted to force the tree property at the successor
of any singular cardinal x of countable cofinality, however in all these models the
reflection of stationary sets fails at x*. In the case of N, 1. for instance. these forcing
constructions all add a bad scale. So it is natural to ask whether the tree property
and the reflection of stationary sets are incompatible at the successor of a singular
cardinal. In this paper we answer this question for a particular cardinal, namely
N2, 1. We show that, assuming the consistency of infinitely many supercompact
cardinals, one can force a model where both the tree property and the stationary
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set reflection hold at N>, ;. Whether the same can be proven for N, remains an
open problem.

We will use a forcing construction due to Magidor and Shelah [5] that was
introduced to define a model where R, ., satisfies a strong reflection principle,
denoted Ay, , x , ,- The principle is defined as follows.

DEerNITION 1.1, Given two cardinals k < A, A, ; is the statement that for every
cardinal u < , for every stationary set S C E%, := {a < 1; cof(a) < s} and for
every algebra 4 on A with u operations, there exists a subalgebra 4’ of order type a
regular cardinal 7 < & such that S N A’ is stationary in sup(4’).

Let us denote by A_; ; the principle V& < 4 A, ;. Under this principle it is possible
to prove several ‘compactness’ results, namely theorems where, given a structure of
size A, properties of substructures of size < x imply a global property for the whole
structure. For instance, assuming A, ; one can prove that every almost free Abelian
group of size A is free (where ‘almost free’ means that every subgroup of smaller size
is free). Magidor and Shelah proved in [5] that assuming the consistency of infinitely
many supercompact cardinals, there exists a model of ZFC+ GCH where Ay , x , |
holds. The results presented in [5] combined with other previous results (see [1]. [8].
[9]) showed also that R, ; is the smallest regular cardinal / that can consistently
satisfy A, ;. In this paper we prove that in the Magidor—Shelah’s model, N,
satisfies even the tree property.

THEOREM 1.2.  Assuming the consistency of infinitely many supercompact cardinals,
there exists a model of ZFC where both AN(J)Z,er)2+] and the tree property at X1 hold.

The principle A, ; expresses a strong form of reflection, in particular A, ; implies
the reflection of stationary subsets of 4. It follows from Theorem 1.2 that, assuming
the consistency of infinitely many supercompact cardinals, R,.,; can consistently
satisfy both the tree property and Ay , x , . hence the stationary set reflection.

In the second part of this paper we show that Ay , x , =~ does not imply the tree
property at X, ., ;. More precisely, we prove the following theorem.

THEOREM 1.3.  Assuming the consistency of infinitely many supercompact cardinals,
we can force a model of ZFC where A, ,  holds while the tree property fails at
No2i1-

The paper is organized as follows. In Section 2 we recall some classical results that
will be used repeatedly in the proofs of Theorems 1.2 and 1.3. In Sections 3 and 4 we
present Magidor—Shelah’s forcing construction for building a model of Ay , x , -
In Section 5 we prove that in the Magidor—Shelah’s model the tree property holds
at N2, 1, so we prove Theorem 1.2. Finally, Section 6 is devoted to the proof of
Theorem 1.3.

§2. Preliminaries. In this section we list some classical results about forcing that
preserve Aronszajn trees. We recall that a xk-Aronszajn tree is a k-tree with no
cofinal branches. To simplify the notation, we will always assume that our x*-trees
are subsets of k™ x &, and that for every o < k™ the a-th level of the tree Lev, (T)
is a subset of {a} X k.

A simple argument shows that if 7" is a xk-Aronszajn tree and P is a k-Knaster
forcing notion, then 7' remains Aronszajn after forcing with IP : otherwise. if b is a
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name for a cofinal branch on 7, then we can pick for every a < x a condition p,
deciding the value of b N a. By the Knaster property there exists a cofinal subset
I C & such that the conditions in the sequence (p,; a € I) are pairwise compatible.
Say that p, I+ bNa = t, for each a, then {t,: a € I} is a cofinal branch for 7,
contradicting 7" is k-Aronszajn. The following lemma by Unger show that for a
forcing P to preserve k-Aronszajn trees it is enough that P x P has the x-chain
condition.

Lemma 2.1 (Unger [11]). Let P be a forcing notion such that P x P is k-c.c. Then
P has the k-approximation property, i.e., given a set of ordinals A in a P-generic
extension V|G, if ANx € V for every x € V of size < kK, then A € V. In
particular, if T is a k-tree and P x P is k-c.c., then forcing with P does not add cofinal
branches to T.

_ProoF. Suppose for a contradiction that for some ordinal t there exists a P-name
A such that
Fp ACt. Vx e[t]*(ANx € V)and 4 ¢ V.

We inductively define conditions (p?, p!);ic, in P x P, sets (d, d!) i<, in [t]<" and
a C-strictly increasing sequence (x;);«, in [t]<* such that

(1) fore € {0.1}, pf I+ ANx; = df:

(2) df # d} and d) N (Uj<i xj)=d}'n (U_/<i X))

Suppose we have constructed (p?. p!)ic;. (d.d})ic; and (x;)i<; successfully. Let
x = U Xi and let p be any condition in P deciding the value of 4 N x to be
d € [t]<*. As A does not belong to ¥, we can find pY. p} < p. distinct df.d} and
x; D x such that p§ - ANx; =d; fore € {0.1}. Then p5 I d =Anx =diNnx
hence d) Nx =d =dj Nx.

Now we claim that (p?. p!)<, is an antichain, contradicting the -chain condition
at P x P. Suppose that for some i < j. the conditions (p}. p;) and (p%. p}) are
compatible. Then d} Nx; = d and d] Nx; = d;. By construction d} N (U, x1) =
d} 0 (U, x1). in particular d) N x; = d] N x;, contradicting d # d;'. -

The following results by Magidor and Shelah shows that forcings with g-closure
preserve Aronszajn trees over successors of singular cardinals of countable cofinality.

LemMA 2.2 (Magidor and Shelah [4, Theorem 5.2]). Let / be a singular cardinal
of countable cofinality and let T be a 7" -tree. Assume that P is a o-closed poset. then
Jforcing with P does not add cofinal branches to T.

PROOF. Let b be a P-name for a cofinal branch of 7, and suppose for a contra-
diction that such a branch is not in V. We can inductively define for every n < w,
conditions (py; s € "A) and ordinals (ay; s € ") in A" such that

(1) s C ¢ implies p; < p;. .

(2) ps~o and ps.~; force contradictory information about b N Lev,, (7).

Then, we let a be the limit of all &, and, for each f € “A. we let p, be a lower
bound for the sequence (p,; n < w) that decides the value of b N Lev,(T) as x;.

By construction the x’s are pairwise distinct. This implies that Lev, (7") has size
2%, a contradiction. -
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When we work with a x*-tree 7" in a generic extension by some forcing notion P,
it is often useful to consider the following relations <, on k™ x k where p € P : for

(@.0). (B.n) € T x K, welet (a.{) <, (B.n7)when p Ik (a.{) <7 (B.7). This
lead us to the notion of system introduced by Magidor and Shelah in [5].

DEFINITION 2.3 (Magidor and Shelah [5]). Let D be a set of ordinals and 7 a
cardinal. A system over D x t is a collection of transitive, reflexive relations { R; };¢;
on D x 7 such that:

(1) if (. {) R (B.77) and (a. () # (B.7). then a < B

(2) if (ap. o) and (. () are both below (B.7) in R;. then (ap. (o) and (oy. )
are comparable in R; (by condition (1) this implies that (o, (o) R; (1. (q) if
ag < ar. (a1.{1) R; (. 10) if a1 < . and {o = {1 if ap = o)

(3) foreverya < Bbothin D, thereisi € I and{,7n € 7 suchthat (a.{) R; (B.7).

If #Z := {R;}icr is a system over D x 7, then every element of D x 7 is a node
of Z. For every a € D, the a-th level of Z. denoted Lev, (Z), is the set {a} X k.

DEFINITION 2.4 (Sinapova [10]). Let {R;};c; be a system on D x t. A branch
through some R; is a partial function from » : D — 7 such that for any f €
dom(b) and any a < B in D, a € dom(b) if and only if there exists { such that
(a.l) R; (B.b(B)) and b(a) is equal to the unique { witnessing this (¢ is unique
by condition (2) of the definition of system). We say that b is a cofinal if dom(b) is
cofinal in D.

Sinapova proved a useful preserving theorem for systems.

THEOREM 2.5 (Sinapova [10]). Suppose that v is a singular cardinal of count-
able cofinality and % = {R;}icsr is a system on D x © with D cofinal in vt
andmax(|1|,t) < v. Suppose that P is a y-closed forcing notion with y > max(z, |I|)*
and G is a generic filter for P over V. Suppose that in V[G] there are (not necessarily
all cofinal) branches (b;s: i € 1.0 < t) such that

(1) every b;s is an R;-branch, and for some (i.9), b; 5 is cofinal;

(2) forall @ € D, there is (i,8) such that Lev,(Z) N b; s is non empty.

Then Z has a cofinal branch in V.

§3. The Main forcing. In this section we present Magidor—Shelah’s forcing con-
struction for building models of AN(J)Z‘NmZH . We assume that (k)< is an increasing
sequence of supercompact cardinals which are indestructible by directed closed forc-
ings (i.e.. if P is a x,-directed closed forcing notion, then &, is still supercompact in
V'®, see Laver [3]). We let A := lim, -, 5, and we assume that, for every n < w, we
have 2% = k;\". For every n < , we let

Sn = H COH(K;Z, < Km-&—l)'

m>n

Since every S, is k,-directed closed. x, remains supercompact in V> so we can
fix, for every n < . an S,-term F, for a normal ultrafilter on P, (1) in V5,
F, has a natural projection to a normal ultrafilter U, on k,. The poset S, is
actually x;/2-closed and we assumed 2% = &, therefore forcing with S, does not
introduce new sets which are hereditarily of size < ;. hence we have U, € V.
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We let z, : V' — N, be the elementary embedding corresponding to U,. Consider
CollV"(k;**+2, < 7,(k,)). this forcing has the 7,(k,)-chain condition in N, and
7(k,) is inaccessible. Therefore, there are 7, (k, ) many dense subsets of this forcing
which arein N,,. On the other hand |7, (, )| = &, and the forcing is &, -closed in N,,.
Therefore, one can inductively define in V' a generic filter K,, for CollM (,Lcn+ w+2
< 7,(k,)) over N, by meeting each dense set in N,,. We define the main forcing P.

DEerNITION 3.1, Conditions of IP are sequences of the form

P = <040:g0,f0,~~~ea’nflegnflafnfleAn,gneFn,~~~>
such that:

(1
(
(
(
(

) every o; is an inaccessible cardinal between &;_; and x; (with k_; 1= );
2) go € Coll(w. af”) and for 0 < i < n, g; € Coll(s; . < o):

) fi € Coll(e; "2, < k;):
) A; € U; and every element of 4, is an inaccessible cardinals:
) for j > n. g; € Coll(k;".< «a) for the least a in A; (hence for every
a€Ad;):
(6) F; is a function with domain 4; such that F;(a) € Coll(a™*2, < &;) for
every o € A;. and such that [F ]U € K; ([F lu, is the equivalence class of
F;asa rnernber of the ultrapower Ult( V U))).

Given two conditions

p={of.& . f{.- oy Gy S AR gl FlL )
q:<a0’g0’f0""’am—l’gm—l’fm—l’ m’ggz Fi;11’>
we say that p < ¢ if and only if, the following hold
(1) mgnandfori<m,a{’:o¢§’andfi”gfiq;
(2) foreveryi < w. g <gl
(
(

3
4
5

3) form < j<n of 6A"andf”<Fq( al):
4) for j > n. Ang;fandFjp( a) < Fl(a) foralla € 47.

The only difference with the forcing defined in [5] is in the definition of the gy
coordinates. Magidor and Shelah showed that forcing with P determines a model
of AN,UZ R, SO in order to prove Theorem 1.2 we just need to show that there exists
a generic extension by [P where the tree property holds at R > ;.

Given a condition

P=<Oéo,g0=f0 ----- anlgnlfn lAngn F,.. >
we say that

(1) nis the length of p. and we denote it /g(p):

(2) the subsequence (g, go. f0s- -+ Qn—1.8n—1. fn_1) is called the lower part of
p or the stem of p. denoted stem(p);

(. ..., an_1) is the a-part of p:

(go, . gu—1) is the g-part of p;

(For e far) is the f-part of p:

(A4 : j > n)is the A-part of p:

(gj: j >n)isthe S-partof pandfork > n, (g; : j > k) is the Sk-part of p:
(Fj: j > n)isthe F-part of p;
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Given two conditions p and ¢, we write p <; ¢ when p < q. lg(p) = Ig(q).
plk=qlkandgl =g/

84. Basic properties of P. We list some basic properties of P.

ProrosITION 4.1 (Magidor Shelah [5. Lemmas 2 and 3]). The following hold
for P

(1) every <,-decreasing sequence (p;: : { < n) of less than k,-many conditions
each of length n has a lower bound.;

(2) every <i-decreasing sequence (p; : { < n) of at most a)°-many conditions
each of length n > k has a lower bound.;

(3) P satisfies the Prikry property in the following version: given a formula ¢ and
a condition p € P of length n and given k < n, there exists a condition q such
that ¢ <j p and q decides p modulo k. that is if r < q decides ¢ and q’ is the
condition obtained from q by replacing q | k with r | k. then q' decides ¢ the
same way r does.

(4) P preserves A*:

(5) forcing with P turns A" into R ;.

We fix a generic filter G for Sy over V. In V[G], we define

P* :={p € P; the S-partof pisin G}

ordered as a subposet of IP. We should point out that if the length of p € Pisk > 1,
then its S-part formally does not belong to Sy but to Sy, 1; however Si, | naturally
embeds into Sy in such a way that G naturally induces an Sy |-generic filter.

LemMA 4.2 (Magidor and Shelah [5. Lemma 6]). VT C PSP

We will perform the proof of Theorem 1.2 in VS where we will work with
conditions of P*. The nice feature of > is that in this model &y is still supercompact
and, for every n < @, we can easily get a generic supercompact embedding with
critical point x,. Moreover, working with conditions of P* allow us to use the
following nice property.

REMARK 4.3. Every two conditions of P* with the same stem are compatible.

It is convenient to introduce a notation for the S-part of a condition p in P*, say
Spart(p). For a condition p € P* and for j > Ig(p) we denote by Spart(p)(j) the
j-th coordinate of the sequence Spart(p).

A stem & and a condition r € Sy determine a unique condition p € P that
we call the closure of h with r and we denote it c¢/(h,r). This is the condition
P ={0.80, f0,--»Qn—1.8n—1s fn—1-An, gn. Fu,...) whose stem is 4 and such that
for all j above n, g; = r(j), A7 = k; and F/ is the function that associate to every
a € A% = £; the maximal condition of Coll(a™*2, < ;).

Assume (g,) <o and (h,),<., are two conditions in Sy, we let

(gn)n<w ~ (hy)n<w : < forlarge enough i. g; = h;.
For g € Sy, we denote by [g] its equivalence class. Define So/~ = {[g]: g € So}.
with the ordering [g] < [/] if and only if for large enough i. g; < h;. Let G* =
{lg]: g € G}, then V[G]is a generic extension of V'[G*] via the forcing Sy/G*.
LemMA 4.4 (Magidor and Shelah [5]). If H is a generic filter for P* over V[G*].
then V[G*|[H] = V[H].
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ProoF. It is enough to show that G* can be defined in V'[H]. We prove that
G* = {[r] € So/~: 3p € H ([Spart(p)] < [r])}.

If p € H. then by definition of P* we have Spart(p) € G. hence [Spart(p)] € G*.
Conversely, if [r] € G*, then an easy density argument shows that there exists p € H
such that [Spart(p)] < [r]. Indeed. if ¢ € P*, then [Spart(q)] is in G* and it is

therefore compatible with [r]; then, one can easily extend ¢ to a condition p € P*
such that [Spart(p)] < [r]. -

We now define in V'[G*] the poset
P = {p € P; [Spart(p)] € G*}.
PrOPOSITION 4.5. In V[G*]. the product P** x Sy/G* x So/G* has the A*-chain
condition.
Proor. Assume that for some r € S,

[F]IF A C P x So/G* x Sp/G™ is a maximal antichain.
For every m < w, we define two sets Q,, and H,, as follows:
o Q=1 Coll(nj’z, < Kigl)-
e H,, is the set of all sequences of the form
(0. 80. 0w 1. 8k—1- k-1 &ko -+ 8m—1)-
where k& < m and there is p € IP of length k& with stem

(0. 0. f00 - k1. 8k—1. f5-1)
such that g; = g7 fork <i<m.
For a condition p € P of length k < m, we denote by &,,(p) the sequence

PP D P P p p P
(0F. &5 S0 O & SE 1 8L~ &m)-

Note that 4,,(p) belongs to H,,.

As every H,, x Qp x Q,, has size &,,, the union (J,,_, H»n x Q, x Q,, has 2-
many elements and we can enumerate this poset as {(hs.sp.5;): f < 4}, where
for k; < B < Kiy1. (h[;,sg,s/lf) belongs to H;y 1 x Qi11 x Q;y1. For ¢ € Sy and
p € Q. we denote by ¢ x p the unique condition u € Sy such thatu [ m = p
and u(i) = q(i), for every i > m. We inductively define a decreasing sequence
(rg: p < 4) of conditions in Sy, such that for all f, y between «; and ;. we have
rpli+l=rli+1

We let ro := r. For f8 limit, ry is defined by r(i) := U, 1, (i). for every i (the
inductive hypothesis and the closure of Coll(ﬂfz, < Kiy1), for k; > B, guarantee
that ry is a condition in Sy).

Suppose that rg has been defined, we want to define rg ;. Let m be the least such
that f# < k,,. and let g be the following statement:

“There exists (p.¢°.¢"') € 4 such that

(1) hwm(p) = hg (hence p is a condition of length m),

(2) ¢° I'm=spandq' [ m=s,

(3) for j > m the conditions ¢°(j). ¢'(j). rs(j) and g/ (the j-th coordinate of
the S-part of p) are pairwise compatible”.
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There exists a condition rgyy such that [rg, (] < [rg] and [rp4q] decides the
statement ¢ . We can assume without loss of generality thatrg i [ m+1 =rg [ m+1
or wereplace rp41 by an equivalent condition. So the inductive hypothesis is satisfied.

If [rp1] I+ @p. then let (pﬁ,qg,q};) witness it. The condition [rg, ] forces that
[44]. [g}]. [r] and the class of the S-part of ps are in G*. hence [rg1] must be
stronger than all of them. It follows that for all j above some k, we have

rp () < aqg(i)-qp(i).rp (). 7"
If m < k. then for j between m and k the conditions (). ¢4(/). r5(j). and
g} are compatible by item 3, hence ¢(;j) U ¢4(j) U rg(j) U g} is a condition
in Coll(k;"*. < kj41). Since we can replace rp,; by an equivalent condition, we
can assume without loss of generality that for all j between m and k, we have
rpa(J) = a3 (j) Uqp(j) Urg(j) U g Tt follows that

(1) Tp+1 *52 < 612,

(2) rgxsp < gy,

(3) forall j > m. rg.1(j) < g/’

Now, we let o, € Sy be defined by 7. (i) := | i rp(i). We define

E = {(pp.qp-qp): B<lrpl - op}.

We show that [r.] forces that every element of 4 is compatible with an element
of E. Since E has size A, this will prove that the size of the antichain is at most 4.

Assume that for some s € Sy and for some (p. ¢°. ¢') we have [s] < [roo] and [s]
forces that (p.¢°. ¢') € A. Without loss of generality s < ro.. Also [s] forces that
[¢°]. [¢'] and the class of the S-part of p are in G*. hence [s] is stronger than all
those conditions. For some m we have s(i) 2 ¢°(i) U ¢'(i) U g/ for every i > m.
The triple (7,(p).q" | m.q' | m) appears in our enumeration as (hg. sp.s;) for
some ff < K. Clearly (p.q° ¢") witnesses the truth of % thus [s] IF ¢ because
[s] < [rp+1]. So [s] forces that both (p. ¢° ¢') and (pp. qﬁ qﬂ) are in the antichain.
We prove that they are compatible, hence they are equal. The condmons pand pg
have the same stem, let i be their common length. We claim that g/ and gp  are
compatible. For i < m this is true because s(i) extends both g7 and g/”. Similarly
q” and ¢' are compatible with ¢ and ¢ respectively. This completes the proof.

COROLLARY 4.6. |Fp«v So/G* X So/G* is AT-c.c.
PrOOF. Suppose for a contradiction that for some p € P**, we have

p IF A is an antichain of size A*.

For every a < A%, we fix a condition p, < p that decides the value of the a-th
element of 4 as apcur (s0,51) € So/G* x Sy/G*. Fora < B < i*,if (¢.1°.¢!) <
(Pa.52.50). (pg. s/f sﬁ) then
q - (s2.s)). (sg,s}) € Aand (1. 1") < (s2.s). (sg,s})
Ca< AT}

contradicting the fact that 4 is an antichain. It follows that {(p,. s%.s}):
is an antichain of P* x Sy/G* x Sy/G*. By Proposition 4.5 this product has the
A*-chain condition, so we have a contradiction. -
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§5. Forcing the tree property at N,. ; with P. In this section, we prove that
there exists a [P-generic extension of ' in which R, has the tree property. thus
we demonstrate Theorem 1.2. In the proof we will use a technique described in
Sinapova’s paper [10] for getting the tree property at the successor of a singular
from a diagonal Prikry-type forcing. However, Sinapova’s approach is based on a
typical property of diagonal Prikry-type forcings, namely that any two conditions
with the same stem are compatible; this is not true for the forcing P. The forcing P*
on the contrary does satisfy this property, so we will work with P* over V[G] and
make the relevant changes to apply Sinapova’s technique to our case.

Suppose for a contradiction that no P-generic extension of V' forces the tree
property at 2™, then we can find a P-name 7 such that

0 lIFp T isa A™-Aronszajn tree.

We can assume that 7" is a name for a subset of A+ x /.

We are going to prove that in V'[G] there exists a sequence of pairwise compatible
conditions (pg: f € J) in P* and a sequence of elements (uz: f € J) in At x 4,
where J is a cofinal subset of A*. such that for all f < f’ in J the weakest common
extension of pg and pg forces ug <; up . Once those sequences are defined, we get
a contradiction with the following argument. We claim that there exists a generic
filter H for P* over V'[G] such that {f: pg € H } is cofinal in /7. Indeed, if no such
filter exists, then we would have §) IFp- {f; DPp € G}.is bounded. As P* is AT-c.c.
there would be 6 < A% such that 0 IFp« {f: pg € G} C 6. Let &' € J above d,
then ps IF ps ¢ G. a contradiction. It follows that B := {ug: ps € H} is a cofinal
branch for the tree in V' [G][H]. We recall that H was IP*-generic over V' [G], it is also
P**-generic over V'[G*]. We have V[G|[H] = V[G*][H][G/G*] = V[H][G/G*].
namely V' [G][H] can be seen as a generic extension of V' [H] via the forcing Sy/G*.
By Corollary 4.6, we know that Sy/G* x So/G* is AT-c.c. in V[H]. Since B is
approximated, we can apply Lemma 2.1, thus B exists in V[H]. So we found a
cofinal branch for 7 in a P-generic extension of ¥, contradicting the assumption
0 I-p T is Aronszajn.

The first step is to prove the following.

LemMa 5.1. In V[G] there are n,m < w and a cofinal set I C L% such that for
all a < B in I, one can find (. < K, and a condition g € P* of length n such that

qlF (. 0) < (B.).

Proor. We let j : V[G] — M be the elementary embedding corresponding to
FC. So the critical point of j is ko, j(ko) > A" and M is closed by sequences
of length A*. We fix H a generic filter for j(P*) over V[G] such that the first
element of the a-sequence added by H is . This implies that A* is not collapsed.
because 4t = ;"' and. by definition of our forcing, H does not collapse any
cardinal between x;” and x;“*2. Fix any ordinal y between sup j”/* and j(A*).
Let 7% := j(T)". T*is a j(A%)-tree. so we can fix a node u of 7* on level y. For
every f < A%, there are my < w. {p < j(lﬁmﬁ) and a condition pg € H such that

pplE e (j(ﬁ),C/f) <j(7) U-
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For some n.m < w and for a cofinal 1* C 1", we have Ig(pg) = n and mg = m. for
every f € I*. We can write each condition pg with f € I* as

pﬁ:</€0ag(l)gef0ﬁa~~~ flg,, 12 fn ], ngnﬁ>
As the pg’s are pairwise compatible conditions, they satisfy the following

properties:

(1) the pp’s have the same a-part (ag. ....a,—1):

(2) we can assume that for some gy € Coll(w,
(we can shrink 7* if necessary);

(3) for every 0 < i < n, the sequence <giﬂ )per has a lower bound g; (indeed
Coll(j(k;_1). < ;) has closure > AT);

(4) for i < n, the sequence (/" 4 )per has a lower bound f; (these are conditions
in Coll(e;/*2, j(k;)) which has closure > k™! = 17).

So we defined a stem

), we have gg = g for all B*

= (k0.80. f0.- - Qn—1.8n—1. [ n—1)

such that for all § € I*, there exists a condition p € j(P*) with stem s forcing
(j(B).Lp) <7+ u. By letting

I:={p< 2" 3pe j®)(stem(p) = s NI < j(kn)(pIF (j(B).0) <u))}

we get a cofinal subset of 1™ which is in V'[G] and has the desired property. Indeed,
if B < B’ arein I, then there are p, p’ € j(IP*) with stem s and {,5 < j(k;,) such
that

(1) pIFGB).O <y u.

(2) p'IFGB)m) <jeiy u.
As they have the same stem, the two conditions are compatible, so there exists a
condition ¢* < p. p’ forcing (j(f).{) <,z uand (j(B).n) <;iz) u.

It follows that ¢* Ik (j(B).{) <;i) (j(B').n). By elementarily, we can find

a condition ¢ € P* of length n and two ordinals {,# < &, such that ¢ II—V[G

(B.0) <4 (B’.n). That completes the proof of the lemma. 5

We fix n,m, and I as in the conclusion of the above lemma, without loss of
generality n < m. In V[G] we say that a stem s ‘forces’ a statement ¢ and we write
s IF ¢, when there is a condition p € P* with stem s such that p I . We prove the
following.

LemMma 5.2. In V[G], there exists a cofinal J C I. a stem h of P* length n and a
sequence (ug: f € J) withug € {f} X Ky, for p € J. such that for every f < p’ in J.
we have h |- ug <j ug:.

Proor. Let I = m + 2. If V; is the S;-generic extension determined by G, then
Ky is supercompact in V; and there is a AT-supercompact elementary embedding
Jj i Vi — M with critical point &,. Let G¢ be the generic filter for Coll(k, %, < m)

- X Coll(/»cl |- < k) determined by G. then by forcing with Cr, = Coll(/cl -
< j(kr) \ K1) over V[G] we get a generic object H* such that j[G] C G¢ * H*,
hence we can lift j to an embedding j* : V[G] — M;[G¢][H *] that we rename j.
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I/"

Let y € j(I) be above sup j”A". For every f € I. we fix (4.73 < kn and a
condition pg € j(P*) of length n Wlth stem /15 such that

pp = G(B).Cp) <y (rmp)-
In V[G] we define a system {R;; £ is a stem } over AT x k,, by letting
Ry = {(u.v): Ip € P, stem(p) =h, plku<; v}.

Every Ry, is transitive, because in V'[G] two conditions of [P with the same stem are
compatible. We also define for every stem / and for every # < k,, a set

by = {(B.0) € AT x ki Ip € j(P)(stem(p) = h A plE (j().0) <) (r.1)}-

Note that every b, is an Rj,-branch. Moreover, in V[G] A" is regular and the
stems of j(IP) of length n are < k. The forcing Cryj is /-cf_zl -closed. hence it doesn’t
add < k,-sequences. So we can find in V[G][H*]acofinal J C I, astem #* and two
ordinals {*, #* such that for f§ in J, we have g = h*, {3 = {* and ng = n*. Thus
by« »+ 1s a cofinal Rj,«-branch and we can apply Theorem 2.5. We get that the system
has a cofinal branch in V' [G]. i.e., for some stem /, there exists a cofinal J/ C I, and
a sequence (gg: f € J) such that for § < ' in J h Ik (B.op) <; (B'.0op). Set
ug := (p.op) for p € J. then J and (up: f € J) are as required. -

Let i, J. and « — u, be as in the conclusion of the above lemma. By shrinking
J, we may assume that for some { < k,,. we have u, = (a. () for each o € J.

LEMMA 5.3. Suppose that s is a stem of length k. L C A" is unbounded and
forall a < f witho.p € L. s |- uy <j up. Then, there are p < A" and sets
(A%. g% F%)qerny in V]G] such that:

(1) A* is in Uy, g* is in the generic filter for Coll(k; ", < min(A4)) induced
by G. F® is a function of domain A® such that for every x € A%, F%(x) €
Coll(k}*2, < ki) and [F*]y, € Ki:

(2) forevery a< Bin L\ p. forall x € A~ N AP,

s~ (x.g*Ugl FO(x)UFF(x)) Ik uq <4 up.

Proor. Let [ be k + 3. If V; is the S;-generic extension determined by G, then
Ky is supercompact in ¥; and there is a A*-supercompact elementary embedding
j: V; — M; with critical point ;. Let G¢ be the generic filter for Coll(kg~, <
K1) % -x Coll(k;?,. < ;) determined by G. then forcing with C,; := Coll(/cl - <
j(kr) \/c;) over V[G] we get a generic object H* such that j[G] C G¢ x H*, hence
we can lift j to an embedding j* : V[G] — M;[G¢][H*] that we rename j. Note
that the forcing C,,; is k;_1-closed. that is ;4-closed. Choose y € j(L) above
j[4*]. By elementarily, we can pick for all & € L a condition p, € j(IP*) with stem
s such that

pa - (). 0) <) (1. 0).

Every p, is of the form s ~ (A¢. g, F2....) where A} € j(Uy) = Ux C P(ky).
gf is in the generic filter for Coll(mk - < min(4%)) 1nduced by G. and FQ is a
function with domain A¢ such that for every f € AY. FX(f) is a condition in
Coll(p+**+2, < k) and [F2]y, € Ky There are |7?(/ck) = Ky.1-many possible
triples (4. g. F) in the range of the function a — (A{. g¢*. F&). Since 4™ is regular
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in V[G][H*] and C,,; adds no sequences of length less than k;,, the function
a — (A, g2. F®) must be constant on an unbounded subset L’ of L. So there is
(A*.g*. F*) such that (4%, g*. F*) = (A}. g, F?) foreverya € L'.

Now we step back to V' [G] where we define E as the set of all triples (4. g. F') such
that 4 € Uy, g is in the generic filter for Coll(/»ck 1< min(4)) derived by G. and F is
a function with domain 4 such that [F]y, € K; and F(x) € Coll(x***2, < &) for
allx € A. Forevery (4.g. F) € E. wedefine a relation R4 4 r on L x {{}, by letting
a Rgr b when there exists a condition p such that p [k +1 =15 ~ (4,g. F) and
plFa <; b. Then {Rygr}(4qr)eck is asystem, because for every two conditions
p.p' € P* extending s ~ (A4, g. F) and forcing a statement ¢, we can find a third
condition ¢ < p. p’ extending s ~ (4. g, F) and forcing the same statement ¢.

Now in V[G][H*] we can define a system of branches for {R4,r}(4¢r)cE @S
follows. We let b4 ¢ r be the set of all pairs (e {) such that there is a condition p in
j(P)suchthatp [k +1 =5~ (4.g F)and pl- (j(a).() <;i (7.()) The triple
(A4*.g*. F*) defined above determines a cofinal branch b 4+ ¢« +. By Theorem 2.5
(applied to C,,; which is ky.-closed), a cofinal branch for the system exists also
in V[G]. So there exists L* C L and (4, g. F) such that for all « < f in L*, there
exists a condition p € P* extending s ~ (4. g, F) that forces u, <j up.

Let p be the least element of L* and, for every a € (L \ p) \ L*, let a* be the
least element of L* above a.. For o € (L \ p)\ L* there exists (4%, g*. F®) such that
some condition extending s ~ (A%, g%, F®) forces u, <j o~. So given a € L\ p.
we define (4%, g%, F*) as follows. If o € L*, then we let (4%, g%, F%) be (4.g.F).
If @« ¢ L*, then we let 4% be a subset of 4 N A® such that for every x € A%,
F(x) and F(x) are compatible; we let g® be a condition in the generic filter for
Coll(k; 1. < mm(A N A%)) induced by G. and we let F*(x) = F(x) U F(x). The
sequence (A%, g% F%),cy\, is as required. .

We are now ready for the final step.
LemMmA 5.4. In V[G] there exists a sequence of pairwise compatible conditions

(pp: B € J\ p) inP* with stem h where p < ™ and for all p < " in J the weakest
common extension of pg and pg forces in P* that ug < ug:.

Proor. By induction on k < w, we define (pr: k > n). and (47.g2. F2: k > n,
a € J \ pi) such that:
(1) foralla € J\ pi. we have AY € Uy, gi is in the generic filter for Coll(k",. <
min(A4¢)) induced by G. and F* is a function with domain 4§ with [F?]y, €
K such that F#(B) € Coll(**2, < ki) for every f € A2
(2) forall B < B"in J \ py. if s is a stem of the form

h /-\ <an’gﬂ9.fn9""akbgk’fk>

such that forn < i < k, o; € A{f N A,/.fl, g; 1s in the generic filter for
Coll(x;",. @;) derived from G. and f; < Fiﬁ (ozi)UFi/f/ (o), there is a condition

of P* with stem s that forces ug <; up
pnand (A%, g F2: a € J\p,) are given by the above lemma applied to 4. Assume
that we have deﬁned pi. and (A¢.gr. F&: a € J \ pi). we want to define py1.
and (A¢, . g . F¢. 1 @ € J \ pry1). For astem s = (0. g0, fo. .- . 8k: fk)
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extending / we let
Ji={aeJ\p: Vi <k a€ A?, g <gland f; < F*(ay)}.

We define p* as follows: if J* is bounded in 4™, then p* is a bound: otherwise we let
p*and (4%, g>* F** « € J*\ p*) be given by the above lemma applied to s and
J*. Let

Pi+1 = sup{p’; s is a stem of length k + | extending /}.

Foreach a € J \ p,+1, let
Hy(k + 1) := {s: s is a stem of length k + 1 such that h C s and a € J*}.

Note that the set AP, = (\cpy o A™® I8 In Uy and [F]y,., =
U{[F**1u,.,: s € Holk + 1)} is in Kiyy. By shrinking A7, , we can assume
that for all x € 47, . F*(x) = U{F**(x): x > ax}. We let g be the con-
dition U ¢y 441 &"*- We check that (1) and (2) hold for k + 1. Condition (1)
holds by construction. For condition (2), consider a < S both in J \ pi;; and
suppose that s = h ~ (A4,.gu, F. ..., Ak+1, Qk+1. Fra1) 18 a stem of length k + 2
such that o, f € J°. As both a and f are in J* and pr4; < . f. we have that
J* is unbounded and p*® was obtained by applying the previous lemma. There-
fore s € Holk + 1) N Hglk + 1), agy1 € A N AP, gy < g% g% and
fre1 < F*(ayq1) U F*P(ay41). So by construction of 4%®, AP Fse FsF we
have s IF uy <; ug.

This completes the definition. Finally, we let p := sup,_,, p» and for every a €
J \ p. we let p, be the condition h ~ (Ay.gy. F.....A%.g7. F¢....). Then
(Pa: o € J\ p) is as desired. Indeed. if « < f arein J \ p. then p, and py are com-
patible in P* and if ¢ < p,. pp is in P*, then by construction stem(q) I+ uq <; ugp.
i.e., thereis a condition of P* with the same stem as ¢ that forces u, <; ug. Two con-
ditions of P* with the same stem are compatible. hence g I uo £; up. It follows
that the weakest common extension of p, and pg forces u, <; ugp. —|

That completes the proof of Theorem 1.2.

§6. Stationary set reflection and the failure of the tree property at 8., ;. In this
section we show that the stationary set reflection at R,.,; does not imply the tree
property. We force from large cardinals a model of Ay , x , | Where the tree property
at N, fails, thus we demonstrate Theorem 1.3. The proof combines Magidor
and Shelah’s technique for getting Ay, , x ,  Wwith some ideas from Kunen’s paper
(see [2]).

We start by assuming the existence of infinitely many supercompact cardinals
(Kn)n<w: as usual we assume that the sequence is increasing and that the super-
compactness of each k, is indestructible by «,-directed closed forcings. We let
A = lim,<, K, and we assume that 2 = g, for every n < w. We consider the
following forcing notion R: a condition ¢ of R is either the one-point tree {0} or an
homogeneous tree 1 C * 2 of successor height such that (0) and (1) are in 7. R is
partially ordered by end-extension. It is proven in Kunen’s paper that forcing with
R adds a Suslin tree, let 7" be such a tree. Kunen observed that the iterated forcing
R * T is equivalent to a A*-closed forcing

Q:={(r.t):reR. ter ht(r) =dom(s) + 1. and r Ikt € T}.

+1
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We observe that Q is even A" -directed closed: if (ry, 14 )a<, is a directed sequence
of conditions in Q. then r := (J,_, 7. is an homogeneous tree of height y :=
sup,.; ht(ro) and ¢ := | J; #, is a path through r. We can extend r to an homogeneous
tree of height y + 1 by adding at level y all sequences s ~ (¢ \ ) such that s € .,
where 7 \ « denotes the unique s’ such that 1 [ @ ~ s’ = ¢. This provides a common
extension for the sequence (ry., fa)a<-

Since we assumed that the supercompactness of each k, is indestructible by
directed closed forcing, , remains supercompact in V'®*7 as well as in the model
y ®=T)xS, (S, denotes the same poset as in the previous sections). We use this fact
to define in V' a variation of the forcing P discussed in the previous sections: each
F,, is replaced by an (R * T') x S,-name for a normal ultrafilter on P, (A*). and
U, denotes now the projection of such ultrafilter to a normal utrafilter on &,,. Since
2fn = k" and forcing with (R * 7') x S, does not add sets which are hereditarily of
size < k7, once again we have U, € V. The generic filters K; are defined as before.

We want to prove that forcing with R x P we obtain the desired model. Let be
S := Coll(w, < Kg) x So. and let Gs, be a generic filter for Sy over V. As before, we
denote by P* the poset whose conditions are the conditions p of P such that the
S-part of p isin Gg,.

We will need the following lemma.

LemMA 6.1. T is A*-strategically closed in V®.

Proor. T is A'-strategically closed if Even has a winning strategy in the game
G+ (T) where two players Odd and Even take turns to play conditions ¢4 for A* many
moves with Odd playing at odd stages and Even playing at even and limit stages. Even
must play the maximal condition of 7" at move zero and. at move f. the condition
tp must be stronger than any condition played until then. Even wins the game if
he can respond at any move. We describe the strategy as follows. At each move f,
Even chooses a condition rg € R in addition to t5 € T in such a way that 5 € 1y
and ht(rg) = dom(zg) + 1. It follows that for every f§ even or limit, the pair (r4. 75)
belongs to Q. The closure of QQ ensures that Even can chose (r/f, 15) at each stage.

THEOREM 6.2. The tree property at R fails in VT,

ProOF. T is A*-Suslin in V'E, we prove that forcing with S * P* over V¥ does
not add a cofinal branch to 7T'; in particular T remains Aronszajn in V' ®*F which is
a submodel of V®*5*F" The forcing S is a product of a forcing of size o, namely
Coll(w. < ko). with a o-closed forcing. namely Sy. Sy is o-closed, hence by Lemma
2.2 it cannot add cofinal branches to 7 over V'E. The poset Coll(w. < kg) is A*-
Knaster in VRS therefore it cannot add cofinal branches to 7 over V&S It
follows that 7" remains Aronszajn in V"®*S,

CLamM 6.3. P* is A *-Knaster in VS,

Proor. Given a sequence (pg: ff < A*) of conditions in P*, there exists n < @
and a stationary set S* C A" such that p; has length n for every f € S*. The
possible stems of P* length n are < k,.1 < AT hence there exists s and a stationary
subset S C S* such that stem(py) = s for every f € S. Two conditions of P* with
the same stem are compatible, hence the conditions in the subsequence (ps: f € S)
are pariwise compatible. =

It follows that P* cannot add cofinal branches to 7. hence 7' remains Aronszajn
in V]R*S*]P’* ) _|
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THEOREM 6.4. V¥ |= Ay , x

To prove the theorem we want to use the old argument from Magidor and Shelah’s
paper. the main difficulty is to deal with the presence of the generic Suslin tree T.
For the argument to work, we need T to be A™-c.c. in J7R*Su- this motivates the
following lemma.

w241

LEMMA 6.5. For every n < w, the tree T remains A" -Suslin in V=5
ProOF. We work in VR, Let be s € S,, and A4 such that

s I+ A4 1s a maximal antichain in 7.

We let 0 be some regular cardinal much larger than any cardinal under discussion
and let Hy be some expansion of (Hy, €) by at most countably many constants,
functions and relations including s, 7. S, and everything relevant to this proof.
We fix a A™-approximating sequence, namely a continuous increasing sequence
(My)ae;+ of elementary substructures of Hy of size < AT such that for all .
e My, (Mp: p<a)e My and M, N AT is an ordinal of A*.

By Lemma 6.1 T is A*-strategically closed, we assume that every M, contains
the corresponding strategy .

CrLamM 6.6. Given a model M in the approximating sequence, for every k > n,
q € Syand x € T N M. there exists t* > x in T N M and a condition ¢* < q with
q* | k = q | k such that g* |- t* is above some element of A.

Proor. Let {p,: y < ki} enumerate all the sequences ¢ | k for § < ¢q. We
inductively define a decreasing sequence of conditions (¢qa)acs, in S, N M and an
increasing sequence of nodes (#y)qecr, in T N M such that

(1) go :=gand 1y := x.

(2) go | k =q | k for every «
moreover, we make sure that the nodes are chosen according to the strategy 7. For
o limit ordinal, we let ¢, be the union of all ¢4 where f < a. and ¢, is the node
given by the strategy 7 applied to (74)s<q. Suppose that g, and #, are defined, we
define ¢, 1 and ¢, as follows. We denote by ¢, * p, the unique condition r € S,
such that 7 [ k = p, and r(i) = g, (i) for all i > k. Let ¢, be the statement:

“There is a condition ¢ compatible with ¢, * p, and there is a node ¢ > ¢, such
that g IF 7 is above some element of 4.”

If the statement is true, then we let 7,1; > ¢ be the node given by the strategy t and
we let g, be given by

(l) - qa(i) 1fl<k
Qo) = 40 (1)U G(i)  otherwise.

If the statement is false, we let ¢, 1 be ¢, and we let 7,1 be 7,.

Using the closure of Sy, let ¢* be a lower bound for {¢q,: a € ki) (such a lower
bound exists because the conditions in the sequence have the same k-lower part).
We also let t* be the node given by the strategy t applied to (f,: o € ki). By
elementarity of M we can assume that both ¢* and #* belong to M. We show that

g* |- t* is above some element of A.
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Suppose otherwise, we will reach a contradiction. ¢* forces that A4 is a maximal
antichain, so we have

q* I t* is compatible with some element of A.

Let be t** and ¢** be such that ** is compatible with ¢*, ¢** < ¢* and ¢** forces
that ** is in 4. The sequence ¢** | k appears in the enumeration as p, for some
a, so by construction ¢** is compatible with ¢, * p, and ¢** is compatible with ¢,
It follows that the statement ¢, is true, hence 7,1 and ¢, were defined so that
tas1 > to, and

Ga+1 IF 1441 1s above some element of A.

This prove that ¢** and ¢** are as required. -
We resume the proof of the lemma. Using the claim, we can inductively define a
decreasing sequence (s, )<+ such that
(a) so:=sands, | k =5 | k for every a,
(b) forevery x € T N M, there exists y > x in T N M, such that

Sq IF y is above some element of A.

Sq and Moo :=,_;+ Ms. We show that

a<i

Finally let be 5o, := U

a<At

Seo IF every element of A can be extended to an element of 7N M

this will complete the proof as 7N M, belongs to V'® where T is A*-Suslin. Assume
Soo IF X € A, we take s < 5o and x € T such that s |- x = x. By elementarity we
can assume without loss of generality that x € M. Let a be the least ordinal such
that x € M. By (b) there exists y > x in T' N M, such that

Sq IF y is above some element of A.

In particular, so forces the same. By maximality of 4 we have s I y is above x
that completes the proof of the lemma. -

We are now ready to prove Theorem 6.4. From now on, we will essentially follow
the arguments of [5] with minor adjustments.

Let Gg be an R-generic filter over V, let Gy be a T-generic filter over V'[Ggr] and
let G, be an S,-generic filter over V. In V[Gg] welet p € P, 4. S and u < A be
such that the S-part of p isin G, and

p Ik A is an algebra on A* with u operations and S C A" is a stationary set.

Let / < w be such that u < k;, we can assume without loss of generality that
the length of p is n > [ and p forces that every ordinal in S has cofinality < ;.
In any P-generic extension V' [Gr][Gp] we can observe that for every § in S there
is a condition gz € Gp such that g IF S € S. Since there are less than 4* many
possible stems of g, there is a stationary subset E of S such that for every f € E
the stem of ¢y is fixed. We can assume without loss of generality that the stem of p
extends this fixed stem, hence p forces that

E = {B < 2" 3¢ < pin Gp such that stem(q) = stem(p) andq IF f € S}

is stationary in A™.
In the rest of the proof we will work in V[Gg * Gr][G,]. recall that &, is still
supercompact in this model. We define P} to be the set of all conditions g € P of
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length > n such that the S,-part of ¢ belongs to G,,. We let
E*:={a < i"; 3¢ < p in P} with the same stem of p such that ¢ IF a € E}.

LemMA 6.7. V[GRr][GrlG.] E E* is a stationary subset of 2.

Proor. Notethat V[Gr][G7][G,] = V[Gr][G,][G1]- Assume for a contradiction
that we can find in V[Gr][G,][Gr] a club C C A" which is disjoint from E*. By
Lemma 6.5, T is A*-c.c.. so there exists a club D C C that lies in V[Gr][G,]. thus
we can assume without loss of generality that C isin V[Gr][G,]. We work in V[GR].
As we did for Sy in the previous section, we define an equivalence relation ~ on
S, by

(gi)n—1<i ~ (hi)n—1<i <= forlarge enoughi. g; = h;.

For a condition r € S,, we denote by [r] its equivalence class. Let H, := {[r]; r €
G, }, then we have
VIGr] € VIGrI[HA] € V[Gr][G.]-

The same arguments for the proof of Proposition 4.5 show that S, /~ is A"-c.c.
Therefore, we can assume that C lies in V[Ggr][H,]. We fix a generic Gp for P
over V[Gg] and we let E be the interpretation of E in this model. We observe that
V [Gr][Gp] is obtained by forcing with P} over V[Gr][G7][G,]. By the definition of
E*wehave E C E*. By Lemma 4.4 we have V[GRr][H,] C V[Gr][Gp]. in particular
C belongs to V[Ggr][Gp]. but C is disjoint from E*, hence from E. That contradicts

the fact that E is stationary in V[Gr][Gp]. -
Now we define in V[Ggr][G7][G:] a forcing notion C, whose conditions are
sequences (&, g0 f0s---» Q—1,8n—1, f n—1. ) such that

(1) {ap,....a,_1)is the a-part of p:

(2) (fo.---. fa_1) belongs to [],_, Coll(a; "2, k;);
(3) (go.....gn—1) belongs to [,_, Coll(x; "2, < ay):
(4) s € Coll(k, ", < Kp).

The ordering is:

(0. 80. [0 s Q1. 8n—1> fr—1.8) < 0. 80s [ oo+ Qut1.Zp_1: fh_1:8")

ifand only if forall i, f; < f]. g; < g/ and s < s'. Let G¢, be any generic filter for
C, that contains the stem of p. In V[Gr][G7][G,][Gc,] we define P;* C P> as the
set of all conditions ¢ of length # such that the stem of ¢ is in the generic G¢, for
C,. Every two elements of P>* are compatible. Moreover, by the closure of S, x C,
we have that P}* is o-closed. Both P and P;* satisfy the property that for every
statement ¢ in the forcing language of [P there exists » € P}, respectively r € Pr*,
such that r < p and r decides ¢ (see [5. Lemmas 6 and §]).

We are going to define an algebra A* in V[Gr][G7][G,][Gc,] that will represent
a version of the algebra 4. Without loss of generality we can assume that the order
type of A, namely the sequence of the cardinals specifying for each # how many
n-ary operations are in A, is in V'[R]. The algebra 4* will be generated by finite
sequences of ordinals less than A*. We must specify for each two terms, whether
they denote the same element of the algebra, thus the elements of 4* are actually
the equivalence classes of terms. Suppose that 4 can be written as (1*, (0i)icu)-
We can assume without loss of generality that one of the operations of A4 is the
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identity on the terms of the algebra. Given p,# < u and given two sequences of
ordinals E and 7 in A1, we let p(ﬁ) =* n(7) if some condition ¢ in P}* forces that
0, (B) = 0,(7) (in the sense of the forcing language for P). The elements of A* are
the equivalence classes under the relation =* . Note that 4* is well defined because
any two conditions of P}* are compatible.

We define an ordering on A4* by letting p(ﬁ ) <* 5(7) if some condition of P;*
forces that o‘p([;” ) < 0,(7) as ordinals.

LemMA 6.8 ([5, Lemmas 9, 10, 11]). A4* is well ordered by <* in order type J.*.

Now we work in V[Gr][GT][G1] where we let A* be a C,-term for the algebra 4*.
Let U* be the interpretation of £, in this model (recall that F,, was an (R* 7) x S,-
name for a normal ultrafilter on P, (A7) and U, is the projection of such an
ultrafilter). We let j be the supercompact elementary embedding corresponding to
U*. We consider 0 a regular cardinal much larger than any cardinal under discussion
and we let Hy := (Hp, AT, E*,IP%. p, CH,A*>. We define

B:={MnNi": M=<H,,

M| <k, M2 e [ W}
weU*NnM

Since j[A*] € j(B), we have B € U*. We let

B*:= {X € P, (A"): X Nk, is inaccessible, 0.t.(X) = (X N x,) T,
E* N X is stationary in sup(X)},

then B* also belongs to U*.

LEMMA 6.9. Let X € BN B* suchthat X Nk, € AL andlet M < Hg be witnessing
the fact that X € B. There exists a condition q € P} of length n + 1 such that
= X Nk, and q extends every extension of p in Pk N M with the same stem as p.

ProoF. The proof is just as in [5, Lemma 13] we include it for the sake of
completeness. Let a, := X N k,. We use the closure of S, to define ¢ as

<0‘0=g0=f0 ----- Q1. 8n—1. fn—1. . &n. f An+1 gn+l F >
where

()aOgO fO SOy —1.8n— lfn lanegnarelikeinp;

(2) for j > n, A =Nwev,on W:

(3) for ] > n, g} is the union of the j-th components of G, N M

4) fr: U{F(an) F e M [Fly, € K, }:

(5) for/>n Fi ()= {F(): F € M. [Flu, € K, }.

Every A7 belongs to U; because the cardinality of M is less than k, < k;
(moreover, U *M M belongs to V by the closure of (R*T') x S,,. so we are intersecting
a family of setsin V).

We show that £ is in Coll(a;“*2, < k,): we assumed that X belongs to every
W e Uy N M. hence, since U, is the projection of U, we have X Nk, = a, € W
for W e Uy, "N M. If EF' € M and [Fly,.[F']lu, € K, then the set P := {ff <
kn: F () and F*(f) are compatible} belongs to U, and we have P € U, N M, so
a, € P. Tt follows that /¥ is the union of | M| many mutually compatible conditions
of Coll(a;f*2, < k,) and by the closure of S, this union is in V'[Gg]. We have

https://doi.org/10.1017/js1.2016.13 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2016.13

290 LAURA FONTANELLA AND MENACHEM MAGIDOR

M| = |X| = o,/ hence [} is in Coll(e;” "2, < k,). The same argument show
that the ' are well defined. -

We resume the proof of the theorem. Take X € B N B* and let M witness the
fact that X isin B. Let« = X Nk, = M Nk, and let ¢ be as in Lemma 6.9.

CLam 6.10. ¢ forces that the subalgebra of A generated by X has the same order
type as X and X is cofinal in it.

PrOOF. We sketch the proof, for more details see [5, p. 804]. Let B* be the
subalgebra of A* generated by X. It is not difficult to see that B* has order type
|X| and X is cofinal in it. B* is defined in V[Gr][G7][G4][Gc,]. nevertheless by
the x,-c.c. of C,, we can see that B* exists in the smaller model V[Gr][GT][G:][/].
where J is the generic object added by G, for the set of all conditions in C, that have
as last coordinate a condition in Coll(k,_1.< o) (instead of Coll (k,_1.< Kn)).
By the closure of (R * T') x S,, we have B* € V[Gg][J]. Now, let Gp C P be a
generic filter for P containing the condition ¢. Since the stem of ¢ is in J, we have
V[Gr]lJ] C V[Gr][Gp]. Thus B* is in V[Gr][Gp]. Let A := (A".(0,),<,) be the
interpretation of A by Gp and let B be the subalgebra of A generated by X. To
prove the claim, it suffices to show that 5 is isomorphic to B* via an isomorphism
that is the identity on X. The isomorphism associates to o,,( E ) the equivalence class
of p(f). denoted [p(f)]. To show that this is an isomorphism, consider [p(f5)] and
[7(7)] two terms of B* and suppose that [p()] = [7(7)] (resp. [p(F)] < [7(7)]) in
the sense of B*. This means that there exists r < p with the same stem as p and there
exists # € J such that, if * is a condition like » except that the stem is ¢, then r* forces
that o',,([)_") = 0,(7) (resp. o',,([)_") < 0,(7)). By elementarity of M, we can assume
that r € M, hence ¢ < r, so r € Gp. By definition of J, we have r* € Gp, therefore
0, (B) = 0, (7) (resp. op([;”) < 0, (7)). That completes the proof of the claim. -

In conclusion, ¢ forces that the order type of X is a regular cardinal. Since
aj = X N k,. the order type of X is (X N k,) " = (a)™*! and no cardinal are
collapsed between a, and a;7 2. We also note that for # € E* N X, some extension
of p in P} with the same stem forces f € E, but by elementarity such an extension
is in M, so ¢ extends it, hence ¢ forces f € E. Since X € B*, we have X N E* is
stationary in the sup(X), so we get that ¢ forces that the subalgebra generated by
X is a witness to Ay , x_, . The other direction is analogous. so that completes the
proof of Theorem 6.4 and consequently of Theorem 1.3.
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