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REFLECTION OF STATIONARY SETS AND THE TREE PROPERTY AT
THE SUCCESSOR OF A SINGULAR CARDINAL

LAURA FONTANELLAANDMENACHEMMAGIDOR

Abstract. We show that from infinitely many supercompact cardinals one can force a model of ZFC
where both the tree property and the stationary reflection hold at ℵ

�2+1.

§1. Introduction. One of the most fruitful research areas in set theory concerns
the investigation of models of set theory where properties of large cardinals hold
at small cardinals. The results presented in this paper focus on two properties of
weakly compact cardinals that, under large cardinal assumptions, can be forced
at small cardinals, the tree property and the reflection of stationary sets. To get
a model of the tree property at the double successor of a regular cardinal it is
enough to assume the consistency of a weakly compact cardinal and force with a
classical poset due to Mitchell (see [6]). Forcing the tree property at the successor
of a singular cardinal is harder and requires much stronger assumptions. The first
model of the tree property at the successor of a singular cardinal, was defined by
Magidor and Shelah in [4] who proved from large cardinals the consistency of
the tree property at ℵ�+1. The hypotheses used in such result have the consistency
strength of a large cardinal between a huge cardinal and a 2-huge cardinal; this was
later improved by Sinapova [10] whowas able to force the tree property atℵ�+1 from
weaker large cardinal assumptions, namely assuming the consistency of infinitely
many supercompact cardinals. Another paper by Neeman [7] shows that, assuming
the consistency of infinitely many supercompact cardinals, one can force a model
where the tree property holds simultaneously at ℵ�+1 and at every ℵn with n ≥ 2.
All these constructions can be adapted to force the tree property at the successor
of any singular cardinal κ of countable cofinality, however in all these models the
reflection of stationary sets fails at κ+. In the case ofℵ�+1, for instance, these forcing
constructions all add a bad scale. So it is natural to ask whether the tree property
and the reflection of stationary sets are incompatible at the successor of a singular
cardinal. In this paper we answer this question for a particular cardinal, namely
ℵ�2+1. We show that, assuming the consistency of infinitely many supercompact
cardinals, one can force a model where both the tree property and the stationary
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REFLECTION OF STATIONARY SETS AND THE TREE PROPERTY 273

set reflection hold at ℵ�2+1.Whether the same can be proven for ℵ�+1 remains an
open problem.
We will use a forcing construction due to Magidor and Shelah [5] that was
introduced to define a model where ℵ�2+1 satisfies a strong reflection principle,
denoted Δℵ

�2 ,ℵ�2+1 . The principle is defined as follows.

Definition 1.1. Given two cardinals κ < �, Δκ,� is the statement that for every
cardinal � < κ, for every stationary set S ⊆ E�<κ := {α < �; cof(α) < κ} and for
every algebra A on � with � operations, there exists a subalgebra A′ of order type a
regular cardinal � < κ such that S ∩ A′ is stationary in sup(A′).

Let us denote by Δ<�,� the principle ∀κ < �Δκ,�.Under this principle it is possible
to prove several ‘compactness’ results, namely theorems where, given a structure of
size �, properties of substructures of size ≤ κ imply a global property for the whole
structure. For instance, assuming Δ<�,� one can prove that every almost free Abelian
group of size � is free (where ‘almost free’ means that every subgroup of smaller size
is free).Magidor and Shelah proved in [5] that assuming the consistency of infinitely
many supercompact cardinals, there exists a model of ZFC+GCHwhere Δℵ

�2 ,ℵ�2+1
holds. The results presented in [5] combined with other previous results (see [1], [8],
[9]) showed also that ℵ�2+1 is the smallest regular cardinal � that can consistently
satisfy Δ<�,�. In this paper we prove that in the Magidor–Shelah’s model, ℵ�2+1
satisfies even the tree property.

Theorem 1.2. Assuming the consistency of infinitely many supercompact cardinals,
there exists a model of ZFC where bothΔℵ

�2 ,ℵ�2+1 and the tree property at ℵ�2+1 hold.
The principle Δκ,� expresses a strong formof reflection, in particular Δ<�,� implies
the reflection of stationary subsets of �. It follows from Theorem 1.2 that, assuming
the consistency of infinitely many supercompact cardinals, ℵ�2+1 can consistently
satisfy both the tree property and Δℵ

�2 ,ℵ�2+1 , hence the stationary set reflection.
In the second part of this paper we show that Δℵ

�2 ,ℵ�2+1 does not imply the tree
property at ℵ�2+1.More precisely, we prove the following theorem.
Theorem 1.3. Assuming the consistency of infinitely many supercompact cardinals,
we can force a model of ZFC where Δℵ

�2 ,ℵ�2+1 holds while the tree property fails atℵ�2+1.
The paper is organized as follows. In Section 2 we recall some classical results that
will be used repeatedly in the proofs of Theorems 1.2 and 1.3. In Sections 3 and 4 we
present Magidor–Shelah’s forcing construction for building a model of Δℵ

�2 ,ℵ�2+1 .
In Section 5 we prove that in the Magidor–Shelah’s model the tree property holds
at ℵ�2+1, so we prove Theorem 1.2. Finally, Section 6 is devoted to the proof of
Theorem 1.3.

§2. Preliminaries. In this section we list some classical results about forcing that
preserve Aronszajn trees. We recall that a κ-Aronszajn tree is a κ-tree with no
cofinal branches. To simplify the notation, we will always assume that our κ+-trees
are subsets of κ+ × κ, and that for every α < κ+ the α-th level of the tree Levα(T )
is a subset of {α} × κ.
A simple argument shows that if T is a κ-Aronszajn tree and P is a κ-Knaster
forcing notion, then T remains Aronszajn after forcing with P : otherwise, if ḃ is a
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name for a cofinal branch on T, then we can pick for every α < κ a condition pα
deciding the value of ḃ ∩ α. By the Knaster property there exists a cofinal subset
I ⊆ κ such that the conditions in the sequence 〈pα ; α ∈ I 〉 are pairwise compatible.
Say that pα � ḃ ∩ α = tα for each α, then {tα ; α ∈ I } is a cofinal branch for T,
contradicting T is κ-Aronszajn. The following lemma by Unger show that for a
forcing P to preserve κ-Aronszajn trees it is enough that P × P has the κ-chain
condition.

Lemma 2.1 (Unger [11]). Let P be a forcing notion such that P× P is κ-c.c. Then
P has the κ-approximation property, i.e., given a set of ordinals A in a P-generic
extension V [G ], if A ∩ x ∈ V for every x ∈ V of size < κ, then A ∈ V. In
particular, if T is a κ-tree and P× P is κ-c.c., then forcing with P does not add cofinal
branches to T.

Proof. Suppose for a contradiction that for some ordinal � there exists a P-name
Ȧ such that

�P Ȧ ⊆ �, ∀x ∈ [�]<κ(Ȧ ∩ x ∈ V ) and Ȧ /∈ V.
We inductively define conditions 〈p0i , p1i 〉i<κ in P×P, sets 〈d 0i , d 1i 〉i<κ in [�]<κ and
a ⊆-strictly increasing sequence 〈xi〉i<κ in [�]<κ such that
(1) for ε ∈ {0, 1}, pεi � Ȧ ∩ xi = dεi ;
(2) d 0i �= d 1i and d 0i ∩ (

⋃
j<i xj) = d

1
i ∩ (

⋃
j<i xj).

Suppose we have constructed 〈p0i , p1i 〉i<j , 〈d 0i , d 1i 〉i<j and 〈xi〉i<j successfully. Let
x :=

⋃
i<j xi and let p be any condition in P deciding the value of Ȧ ∩ x to be

d ∈ [�]<κ. As Ȧ does not belong to V, we can find p0j , p1j ≤ p, distinct d 0j , d 1j and
xj ⊃ x such that pεj � Ȧ ∩ xj = dεj for ε ∈ {0, 1}. Then pεj � d = Ȧ ∩ x = dεj ∩ x
hence d 0j ∩ x = d = d 1j ∩ x.
Nowwe claim that 〈p0i , p1i 〉i<κ is an antichain, contradicting theκ-chain condition
at P × P. Suppose that for some i < j, the conditions (p0i , p

1
i ) and (p

0
j , p

1
j) are

compatible. Then d 0j ∩xi = d 0i and d 1j ∩xi = d 1i . By construction d 0j ∩ (
⋃
l<j xl ) =

d 1j ∩ (
⋃
l<j xl ), in particular d

0
j ∩ xi = d 1j ∩ xi , contradicting d 0i �= d 1i . 


The following results by Magidor and Shelah shows that forcings with 
-closure
preserveAronszajn trees over successors of singular cardinals of countable cofinality.

Lemma 2.2 (Magidor and Shelah [4, Theorem 5.2]). Let � be a singular cardinal
of countable cofinality and let T be a �+-tree. Assume that P is a 
-closed poset, then
forcing with P does not add cofinal branches to T.

Proof. Let ḃ be a P-name for a cofinal branch of T, and suppose for a contra-
diction that such a branch is not in V. We can inductively define for every n < �,
conditions 〈ps ; s ∈ n�〉 and ordinals 〈αs ; s ∈ n�〉 in �+ such that
(1) s � t implies pt ≤ ps,
(2) ps�0 and ps�1 force contradictory information about ḃ ∩ Levαs (T ).
Then, we let α be the limit of all αs and, for each f ∈ ��, we let pf be a lower
bound for the sequence 〈pf�n; n < �〉 that decides the value of ḃ ∩Levα(T ) as xf.
By construction the xf ’s are pairwise distinct. This implies that Levα(T ) has size
��, a contradiction. 
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When we work with a κ+-tree Ṫ in a generic extension by some forcing notion P,
it is often useful to consider the following relations<p on κ+ × κ where p ∈ P : for
(α, �), (�, �) ∈ κ+ × κ, we let (α, �) <p (�, �) when p � (α, �) <T (�, �). This
lead us to the notion of system introduced by Magidor and Shelah in [5].

Definition 2.3 (Magidor and Shelah [5]). Let D be a set of ordinals and � a
cardinal. A system overD×� is a collection of transitive, reflexive relations {Ri}i∈I
on D × � such that:
(1) if (α, �) Ri (�, �) and (α, �) �= (�, �), then α < � ;
(2) if (α0, �0) and (α1, �1) are both below (�, �) in Ri , then (α0, �0) and (α1, �1)
are comparable in Ri (by condition (1) this implies that (α0, �0)Ri (α1, �1) if
α0 < α1, (α1, �1) Ri (α0, �0) if α1 < α0, and �0 = �1 if α0 = α1);

(3) for everyα < � both inD, there is i ∈ I and �, � ∈ � such that (α, �)Ri (�, �).
If R := {Ri}i∈I is a system over D × �, then every element of D × � is a node
ofR. For every α ∈ D, the α-th level of R, denoted Levα(R), is the set {α} × κ.
Definition 2.4 (Sinapova [10]). Let {Ri}i∈I be a system on D × �. A branch
through some Ri is a partial function from b : D → � such that for any � ∈
dom(b) and any α < � in D, α ∈ dom(b) if and only if there exists � such that
(α, �) Ri (�, b(�)) and b(α) is equal to the unique � witnessing this (� is unique
by condition (2) of the definition of system). We say that b is a cofinal if dom(b) is
cofinal in D.

Sinapova proved a useful preserving theorem for systems.

Theorem 2.5 (Sinapova [10]). Suppose that 
 is a singular cardinal of count-
able cofinality and R = {Ri}i∈I is a system on D × � with D cofinal in 
+
andmax(|I |, �) < 
. Suppose thatP is a �-closed forcing notion with � > max(�, |I |)+
and G is a generic filter for P over V. Suppose that in V [G ] there are (not necessarily
all cofinal ) branches 〈bi,� ; i ∈ I, � < �〉 such that
(1) every bi,� is an Ri -branch, and for some (i, �), bi,� is cofinal;
(2) for all α ∈ D, there is (i, �) such that Levα(R) ∩ bi,� is non empty.
Then R has a cofinal branch in V.

§3. The Main forcing. In this section we present Magidor–Shelah’s forcing con-
struction for building models of Δℵ

�2 ,ℵ�2+1 .We assume that 〈κn〉n<� is an increasing
sequence of supercompact cardinals which are indestructible by directed closed forc-
ings (i.e., if P is a κn-directed closed forcing notion, then κn is still supercompact in
V P, see Laver [3]). We let � := limn<� κn and we assume that, for every n < �, we
have 2κn = κ+n . For every n < �, we let

Sn :=
∏
m≥n
Coll(κ+2m ,< κm+1).

Since every Sn is κn-directed closed, κn remains supercompact in V Sn so we can
fix, for every n < �, an Sn-term Ḟn for a normal ultrafilter on Pκn (�+) in V Sn .
Ḟn has a natural projection to a normal ultrafilter Un on κn. The poset Sn is
actually κ+2n -closed and we assumed 2

κn = κ+n , therefore forcing with Sn does not
introduce new sets which are hereditarily of size ≤ κ+n , hence we have Un ∈ V.
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We let �n : V → Nn be the elementary embedding corresponding to Un. Consider
CollNn (κ+�+2n ,< �n(κn)), this forcing has the �n(κn)-chain condition in Nn and
�(κn) is inaccessible. Therefore, there are �n(κn) many dense subsets of this forcing
which are inNn.On the other hand |�n(κn)| = κ+n and the forcing is κ+n -closed inNn.
Therefore, one can inductively define in V a generic filter Kn for CollNn(κ+�+2n ,
< �n(κn)) over Nn by meeting each dense set in Nn.We define the main forcing P.

Definition 3.1. Conditions of P are sequences of the form

p = 〈α0, g0, f0, . . . , αn−1, gn−1, fn−1, An, gn, Fn, . . . 〉
such that:
(1) every αi is an inaccessible cardinal between κi−1 and κi (with κ−1 := �);
(2) g0 ∈ Coll(�,α+�0 ) and for 0 < i < n, gi ∈ Coll(κ++i−1, < αi);
(3) fi ∈ Coll(α+�+2i , < κi);
(4) Aj ∈ Uj and every element of Aj is an inaccessible cardinals;
(5) for j ≥ n, gj ∈ Coll(κ++j−1, < α) for the least α in Aj (hence for every
α ∈ Aj);

(6) Fj is a function with domain Aj such that Fj(α) ∈ Coll(α+�+2, < κj) for
every α ∈ Aj, and such that [Fj ]Uj ∈ Kj ([Fj ]Uj is the equivalence class of
Fj as a member of the ultrapower Ult(V,Uj)).

Given two conditions

p = 〈αp0 , gp0 , fp0 , . . . , αpn−1, gpn−1, fpn−1, Apn , gpn , F pn , . . . 〉
q = 〈αq0 , gq0 , fq0 , . . . , αqm−1, gqm−1, fqm−1, Aqm, gqm, F qm, . . . 〉

we say that p ≤ q if and only if, the following hold
(1) m ≤ n and for i < m, αpi = αqi and fpi ≤ fqi ;
(2) for every i < �, gpi ≤ gqi ;
(3) for m ≤ j < n, αpj ∈ Aqi and fpi ≤ F qi (αpj );
(4) for j ≥ n, Apj ⊆ Aqj and F pj (α) ≤ F qj (α) for all α ∈ Apj .
The only difference with the forcing defined in [5] is in the definition of the g0
coordinates. Magidor and Shelah showed that forcing with P determines a model
of Δℵ

�2 ,ℵ�2+1 , so in order to prove Theorem 1.2 we just need to show that there exists
a generic extension by P where the tree property holds at ℵ�2+1.
Given a condition

p = 〈α0, g0, f0, . . . , αn−1, gn−1, fn−1, An, gn, Fn, . . . 〉
we say that
(1) n is the length of p, and we denote it lg(p);
(2) the subsequence 〈α0, g0, f0, . . . , αn−1, gn−1, fn−1〉 is called the lower part of
p or the stem of p, denoted stem(p);

(3) 〈α0, . . . , αn−1〉 is the α-part of p;
(4) 〈g0, . . . , gn−1〉 is the g-part of p;
(5) 〈f0, . . . , fn−1〉 is the f-part of p;
(6) 〈Aj : j ≥ n〉 is the A-part of p;
(7) 〈gj : j ≥ n〉 is the S-part of p and for k ≥ n, 〈gj : j ≥ k〉 is the Sk-part of p;
(8) 〈Fj : j ≥ n〉 is the F -part of p;
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Given two conditions p and q, we write p ≤k q when p ≤ q, lg(p) = lg(q),
p � k = q � k and gpk = g

q
k .

§4. Basic properties of P. We list some basic properties of P.
Proposition 4.1 (Magidor Shelah [5, Lemmas 2 and 3]). The following hold
for P:
(1) every ≤n-decreasing sequence 〈p� : � < �〉 of less than κn-many conditions
each of length n has a lower bound;

(2) every ≤k-decreasing sequence 〈p� : � < �〉 of at most αp0k -many conditions
each of length n > k has a lower bound;

(3) P satisfies the Prikry property in the following version: given a formula ϕ and
a condition p ∈ P of length n and given k ≤ n, there exists a condition q such
that q ≤k p and q decides ϕ modulo k, that is if r ≤ q decides ϕ and q′ is the
condition obtained from q by replacing q � k with r � k, then q′ decides ϕ the
same way r does.

(4) P preserves �+;
(5) forcing with P turns �+ into ℵ�2+1.
We fix a generic filter G for S0 over V. In V [G ], we define

P∗ := {p ∈ P; the S-part of p is in G}
ordered as a subposet of P.We should point out that if the length of p ∈ P is k > 1,
then its S-part formally does not belong to S0 but to Sk+1; however Sk+1 naturally
embeds into S0 in such a way that G naturally induces an Sk+1-generic filter.
Lemma 4.2 (Magidor and Shelah [5, Lemma 6]). V P ⊆ V S0∗P∗

.

We will perform the proof of Theorem 1.2 in V S0 where we will work with
conditions ofP∗.The nice feature ofV S0 is that in this model κ0 is still supercompact
and, for every n < �, we can easily get a generic supercompact embedding with
critical point κn. Moreover, working with conditions of P∗ allow us to use the
following nice property.

Remark 4.3. Every two conditions of P∗ with the same stem are compatible.

It is convenient to introduce a notation for the S-part of a condition p in P∗, say
Spart(p). For a condition p ∈ P∗ and for j ≥ lg(p) we denote by Spart(p)(j) the
j-th coordinate of the sequence Spart(p).
A stem h and a condition r ∈ S0 determine a unique condition p ∈ P that
we call the closure of h with r and we denote it cl(h, r). This is the condition
p = 〈α0, g0, f0, . . . , αn−1, gn−1, fn−1, An, gn, Fn, . . . 〉 whose stem is h and such that
for all j above n, gj = r(j), A

p
j = κj and F

p
j is the function that associate to every

α ∈ Apj = κj the maximal condition of Coll(α+�+2, < κj).
Assume 〈gn〉n<� and 〈hn〉n<� are two conditions in S0, we let

〈gn〉n<� ∼ 〈hn〉n<� :⇐⇒ for large enough i, gi = hi .

For g ∈ S0, we denote by [g] its equivalence class. Define S0/∼ := {[g]; g ∈ S0},
with the ordering [g] ≤ [h] if and only if for large enough i, gi ≤ hi . Let G∗ :=
{[g]; g ∈ G}, then V [G ] is a generic extension of V [G∗] via the forcing S0/G∗.
Lemma 4.4 (Magidor and Shelah [5]). If H is a generic filter for P∗ over V [G∗],
then V [G∗][H ] = V [H ].
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Proof. It is enough to show that G∗ can be defined in V [H ].We prove that

G∗ = {[r] ∈ S0/∼ ; ∃p ∈ H ([Spart(p)] ≤ [r])}.
If p ∈ H, then by definition of P∗ we have Spart(p) ∈ G, hence [Spart(p)] ∈ G∗.
Conversely, if [r] ∈ G∗, then an easy density argument shows that there existsp ∈ H
such that [Spart(p)] ≤ [r]. Indeed, if q ∈ P∗, then [Spart(q)] is in G∗ and it is
therefore compatible with [r]; then, one can easily extend q to a condition p ∈ P∗

such that [Spart(p)] ≤ [r]. 

We now define in V [G∗] the poset

P∗∗ := {p ∈ P; [Spart(p)] ∈ G∗}.
Proposition 4.5. In V [G∗], the product P∗∗ × S0/G

∗ × S0/G
∗ has the �+-chain

condition.
Proof. Assume that for some r ∈ S0,

[r] � Ȧ ⊆ P∗∗ × S0/G
∗ × S0/G

∗ is a maximal antichain.

For every m < �, we define two sets Qm andHm as follows:

• Qm :=
∏
i<m Coll(κ

+2
i , < κi+1).

• Hm is the set of all sequences of the form
(α0, g0, f0, . . . , αk−1, gk−1, fk−1, gk, . . . , gm−1),

where k ≤ m and there is p ∈ P of length k with stem

(α0, g0, f0, . . . , αk−1, gk−1, fk−1)

such that gi = g
p
i for k ≤ i < m.

For a condition p ∈ P of length k ≤ m, we denote by hm(p) the sequence
(αp0 , g

p
0 , f

p
0 , . . . , α

p
k−1, g

p
k−1, f

p
k−1, g

p
k , . . . , g

p
m−1).

Note that hm(p) belongs toHm.
As every Hm × Qm × Qm has size κm, the union

⋃
m<� Hm × Qm × Qm has �-

many elements and we can enumerate this poset as {(h�, s0� , s1�); � < �}, where
for κi < � < κi+1, (h�, s0� , s

1
�) belongs to Hi+1 × Qi+1 × Qi+1. For q ∈ S0 and

p ∈ Qm, we denote by q ∗ p the unique condition u ∈ S0 such that u � m = p
and u(i) = q(i), for every i ≥ m. We inductively define a decreasing sequence
〈r� ; � < �〉 of conditions in S0, such that for all �, � between κi and κi+1, we have
r� � i + 1 = r� � i + 1.
We let r0 := r. For � limit, r� is defined by r�(i) :=

⋃
�<� r�(i), for every i (the

inductive hypothesis and the closure of Coll(κ+2i , < κi+1), for κi > �, guarantee
that r� is a condition in S0).
Suppose that r� has been defined, we want to define r�+1. Let m be the least such
that � < κm, and let ϕ� be the following statement:
“There exists (p, q0, q1) ∈ Ȧ such that
(1) hm(p) = h� (hence p is a condition of length m),
(2) q0 � m = s0� and q1 � m = s1� ,
(3) for j ≥ m the conditions q0(j), q1(j), r�(j) and gpj (the j-th coordinate of
the S-part of p) are pairwise compatible”.
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There exists a condition r�+1 such that [r�+1] ≤ [r� ] and [r�+1] decides the
statementϕ�.Wecan assumewithout loss of generality that r�+1 � m+1 = r� � m+1
orwe replace r�+1 by an equivalent condition. So the inductive hypothesis is satisfied.
If [r�+1] � ϕ�, then let (p�, q0� , q1�) witness it. The condition [r�+1] forces that
[q0� ], [q

1
� ], [r� ] and the class of the S-part of p� are in G

∗, hence [r�+1] must be
stronger than all of them. It follows that for all j above some k, we have

r�+1(j) ≤ q0�(j), q1� (j), r� (j), gp�j .
If m < k, then for j between m and k the conditions q0�(j), q

1
�(j), r�(j), and

g
p�
j are compatible by item 3, hence q

0
�(j) ∪ q1�(j) ∪ r�(j) ∪ g

p�
j is a condition

in Coll(κ++i , < κi+1). Since we can replace r�+1 by an equivalent condition, we
can assume without loss of generality that for all j between m and k, we have
r�+1(j) = q0�(j) ∪ q1�(j) ∪ r�(j) ∪ g

p�
j . It follows that

(1) r�+1 ∗ s0� ≤ q0� ,
(2) r�+1 ∗ s1� ≤ q1� ,
(3) for all j ≥ m, r�+1(j) ≤ gp�j .
Now, we let r∞ ∈ S0 be defined by r∞(i) :=

⋃
�<� r� (i).We define

E := {(p�, q0� , q1�); � < �, [r�+1] � ϕ�}.
We show that [r∞] forces that every element of Ȧ is compatible with an element
of E. Since E has size �, this will prove that the size of the antichain is at most �.
Assume that for some s ∈ S0 and for some (p, q0, q1) we have [s] ≤ [r∞] and [s]
forces that (p, q0, q1) ∈ Ȧ.Without loss of generality s ≤ r∞. Also [s] forces that
[q0], [q1] and the class of the S-part of p are in G∗, hence [s] is stronger than all
those conditions. For some m, we have s(i) ⊇ q0(i) ∪ q1(i) ∪ gpi for every i ≥ m.
The triple (hm(p), q0 � m, q1 � m) appears in our enumeration as (h�, s0� , s1�) for
some � < κm. Clearly (p, q0, q1) witnesses the truth of ϕ� thus [s] � ϕ� because
[s] ≤ [r�+1]. So [s] forces that both (p, q0, q1) and (p�, q0� , q1�) are in the antichain.
We prove that they are compatible, hence they are equal. The conditions p and p�
have the same stem, let i be their common length. We claim that gpi and g

p�
i are

compatible. For i < m this is true because s(i) extends both gpi and g
p�
i . Similarly

q0 and q1 are compatible with q0� and q
1
� respectively. This completes the proof. 


Corollary 4.6. �P∗∗ S0/G
∗ × S0/G

∗ is �+-c.c.
Proof. Suppose for a contradiction that for some p ∈ P∗∗, we have

p � Ȧ is an antichain of size �+.
For every α < �+, we fix a condition pα ≤ p that decides the value of the α-th
element of Ȧ as a pair (s0α, s

1
α) ∈ S0/G

∗ × S0/G
∗. For α < � < �+, if (q, t0, t1) ≤

(pα, s0α, s
1
α), (p� , s

0
� , s

1
�), then

q � (s0α, s1α), (s0� , s1�) ∈ Ȧ and (t0, t1) ≤ (s0α, s1α), (s0� , s1�)
contradicting the fact that Ȧ is an antichain. It follows that {(pα, s0α, s1α); α < �+}
is an antichain of P∗ × S0/G

∗ × S0/G
∗. By Proposition 4.5 this product has the

�+-chain condition, so we have a contradiction. 
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§5. Forcing the tree property at ℵ�2+1 with P. In this section, we prove that
there exists a P-generic extension of V in which ℵ�2+1 has the tree property, thus
we demonstrate Theorem 1.2. In the proof we will use a technique described in
Sinapova’s paper [10] for getting the tree property at the successor of a singular
from a diagonal Prikry-type forcing. However, Sinapova’s approach is based on a
typical property of diagonal Prikry-type forcings, namely that any two conditions
with the same stem are compatible; this is not true for the forcing P. The forcing P∗

on the contrary does satisfy this property, so we will work with P∗ over V [G ] and
make the relevant changes to apply Sinapova’s technique to our case.
Suppose for a contradiction that no P-generic extension of V forces the tree
property at �+, then we can find a P-name Ṫ such that

∅ �P Ṫ is a �+-Aronszajn tree.

We can assume that Ṫ is a name for a subset of �+ × �.
We are going to prove that in V [G ] there exists a sequence of pairwise compatible
conditions 〈p� ; � ∈ J 〉 in P∗ and a sequence of elements 〈u� ; � ∈ J 〉 in �+ × �,
where J is a cofinal subset of �+, such that for all � < � ′ in J the weakest common
extension of p� and p�′ forces u� <Ṫ u�′ . Once those sequences are defined, we get
a contradiction with the following argument. We claim that there exists a generic
filterH for P∗ over V [G ] such that {� ; p� ∈ H} is cofinal in �+. Indeed, if no such
filter exists, then we would have ∅ �P∗ {� ; p� ∈ Ġ} is bounded. As P∗ is �+-c.c.
there would be � < �+ such that ∅ �P∗ {� ; p� ∈ Ġ} ⊆ �. Let �′ ∈ J above �,
then p�′ � p�′ /∈ Ġ, a contradiction. It follows that B := {u� ; p� ∈ H} is a cofinal
branch for the tree inV [G ][H ].We recall thatH wasP∗-generic overV [G ], it is also
P∗∗-generic over V [G∗]. We have V [G ][H ] = V [G∗][H ][G/G∗] = V [H ][G/G∗],
namely V [G ][H ] can be seen as a generic extension of V [H ] via the forcing S0/G∗.
By Corollary 4.6, we know that S0/G∗ × S0/G

∗ is �+-c.c. in V [H ]. Since B is
approximated, we can apply Lemma 2.1, thus B exists in V [H ]. So we found a
cofinal branch for Ṫ in a P-generic extension of V, contradicting the assumption
∅ �P Ṫ is Aronszajn.
The first step is to prove the following.

Lemma 5.1. In V [G ] there are n,m < � and a cofinal set I ⊆ �+ such that for
all α < � in I, one can find �, � < κm and a condition q ∈ P∗ of length n such that
q � (α, �) <Ṫ (�, �).

Proof. We let j : V [G ] → M be the elementary embedding corresponding to
Ḟ G0 . So the critical point of j is κ0, j(κ0) > �

+ and M is closed by sequences
of length �+. We fix H̄ a generic filter for j(P∗) over V [G ] such that the first
element of the α-sequence added by H̄ is κ0. This implies that �+ is not collapsed,
because �+ = κ+�+10 and, by definition of our forcing, H̄ does not collapse any
cardinal between κ+�0 and κ+�+20 . Fix any ordinal � between sup j′′�+ and j(�+).
Let T ∗ := j(Ṫ )H̄ . T ∗ is a j(�+)-tree, so we can fix a node u of T ∗ on level �. For
every � < �+, there are m� < �, �� < j(κm� ) and a condition p� ∈ H̄ such that

p� �j(P∗) (j(�), �� ) <j(Ṫ ) u.
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For some n,m < � and for a cofinal I ∗ ⊆ �+, we have lg(p�) = n andm� = m, for
every � ∈ I ∗.We can write each condition p� with � ∈ I ∗ as

p� = 〈κ0, g�0 , f�0 , . . . , α�n−1, g�n−1, f�n−1, A�n , g�n , F �n , . . .〉.
As the p� ’s are pairwise compatible conditions, they satisfy the following
properties:

(1) the p� ’s have the same α-part 〈α0, . . . , αn−1〉;
(2) we can assume that for some g0 ∈ Coll(�, κ+�0 ), we have g�0 = g0 for all �∗
(we can shrink I ∗ if necessary);

(3) for every 0 < i < n, the sequence 〈g�i 〉�∈I has a lower bound gi (indeed
Coll(j(κi−1), < αi) has closure > �+);

(4) for i < n, the sequence 〈f�i 〉�∈I has a lower bound fi (these are conditions
in Coll(α+�+2i , j(κi )) which has closure > κ+�+10 = �+).

So we defined a stem

s := 〈κ0, g0, f0, . . . , αn−1, gn−1, fn−1〉
such that for all � ∈ I ∗, there exists a condition p ∈ j(P∗) with stem s forcing
(j(�), �� ) <T∗ u. By letting

I := {� < �+; ∃p ∈ j(P∗)(stem(p) = s ∧ ∃� < j(κm)(p � (j(�), �) < u))}
we get a cofinal subset of �+ which is in V [G ] and has the desired property. Indeed,
if � < � ′ are in I, then there are p, p′ ∈ j(P∗) with stem s and �, � < j(κm) such
that

(1) p � (j(�), �) <j(Ṫ ) u,
(2) p′ � (j(� ′), �) <j(Ṫ ) u.
As they have the same stem, the two conditions are compatible, so there exists a
condition q∗ ≤ p, p′ forcing (j(�), �) <j(Ṫ ) u and (j(� ′), �) <j(Ṫ ) u.
It follows that q∗ � (j(�), �) <j(Ṫ ) (j(� ′), �). By elementarily, we can find
a condition q ∈ P∗ of length n and two ordinals �, � < κm such that q �V [G ]

P∗

(�, �) <Ṫ (�
′, �). That completes the proof of the lemma. 


We fix n,m, and I as in the conclusion of the above lemma, without loss of
generality n ≤ m. In V [G ] we say that a stem s ‘forces’ a statement ϕ and we write
s � ϕ, when there is a condition p ∈ P∗ with stem s such that p � ϕ.We prove the
following.

Lemma 5.2. In V [G ], there exists a cofinal J ⊆ I, a stem h of P∗ length n and a
sequence 〈u� ; � ∈ J 〉 with u� ∈ {�} × κm for � ∈ J, such that for every � < � ′ in J,
we have h � u� <Ṫ u�′ .
Proof. Let l = m + 2. If Vl is the Sl -generic extension determined by G, then
κl is supercompact in Vl and there is a �+-supercompact elementary embedding
j : Vl →Ml with critical point κl .LetGC be the generic filter for Coll(κ+20 , < κ1)×
· · · × Coll(κ+2l−1, < κl ) determined by G, then by forcing with CTail := Coll(κ+2l−1,
< j(κl ) \ κl ) over V [G ] we get a generic object H ∗ such that j[G ] ⊆ GC ∗ H ∗,
hence we can lift j to an embedding j∗ : V [G ]→Ml [GC ][H ∗] that we rename j.
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Let � ∈ j(I ) be above sup j′′�+. For every � ∈ I, we fix �� , �� < κm and a
condition p� ∈ j(P∗) of length n with stem h� such that

p� � (j(�), �� ) <j(Ṫ ) (�, ��).

In V [G ] we define a system {Rh ; h is a stem } over �+ × κm by letting
Rh := {〈u, v〉; ∃p ∈ P, stem(p) = h, p � u <Ṫ v}.

Every Rh is transitive, because in V [G ] two conditions of P with the same stem are
compatible. We also define for every stem h and for every � < κm a set

bh,� := {(�, �) ∈ �+ × κm; ∃p ∈ j(P)(stem(p) = h ∧ p � (j(�), �) <j(Ṫ ) (�, �)}.
Note that every bh,� is an Rh-branch. Moreover, in V [G ] �+ is regular and the
stems of j(P) of length n are < κn. The forcing CTail is κ+2l−1-closed, hence it doesn’t
add< κn-sequences. So we can find inV [G ][H ∗] a cofinal J ⊆ I, a stem h∗ and two
ordinals �∗, �∗ such that for � in J, we have h� = h∗, �� = �∗ and �� = �∗. Thus
bh∗,�∗ is a cofinalRh∗ -branch and we can apply Theorem 2.5.We get that the system
has a cofinal branch in V [G ], i.e., for some stem h, there exists a cofinal J ⊆ I, and
a sequence 〈
� ; � ∈ J 〉 such that for � < � ′ in J, h � (�, 
� ) <Ṫ (� ′, 
�′). Set
u� := (�, 
� ) for � ∈ J, then J and 〈u� ; � ∈ J 〉 are as required. 

Let h, J , and α �→ uα be as in the conclusion of the above lemma. By shrinking
J, we may assume that for some � < κm, we have uα = (α, �) for each α ∈ J.
Lemma 5.3. Suppose that s is a stem of length k, L ⊆ �+ is unbounded and
for all α < � with α, � ∈ L, s � uα <Ṫ u� . Then, there are � < �

+ and sets
〈Aα, gα, F α〉α∈L\� in V [G ] such that:
(1) Aα is in Uk, gα is in the generic filter for Coll(κ++k−1, < min(A

α)) induced
by G, F α is a function of domain Aα such that for every x ∈ Aα, F α(x) ∈
Coll(κ+�+2x ,< κk) and [F α ]Uk ∈ Kk ;

(2) for every α < � in L \ �, for all x ∈ Aα ∩ A�,
s � 〈x, gα ∪ g� , F α(x) ∪ F �(x)〉 � uα <Ṫ u� .

Proof. Let l be k + 3. If Vl is the Sl -generic extension determined by G, then
κl is supercompact in Vl and there is a �+-supercompact elementary embedding
j : Vl → Ml with critical point κl . Let GC be the generic filter for Coll(κ+20 , <
κ1)×· · ·×Coll(κ+2l−1, < κl ) determined byG, then forcingwithCtail := Coll(κ+2l−1, <
j(κl ) \ κl ) over V [G ] we get a generic object H ∗ such that j[G ] ⊆ GC ∗H ∗, hence
we can lift j to an embedding j∗ : V [G ] → Ml [GC ][H ∗] that we rename j. Note
that the forcing Ctail is κl−1-closed, that is κk+2-closed. Choose � ∈ j(L) above
j[�+]. By elementarily, we can pick for all α ∈ L a condition pα ∈ j(P∗) with stem
s such that

pα � (j(α), �) <j(Ṫ ) (�, �).
Every pα is of the form s � (Aαk , gαk , F αk , . . .) where Aαk ∈ j(Uk) = Uk ⊆ P(κk),
gαk is in the generic filter for Coll(κ

++
k−1, < min(A

α
k )) induced by G, and F

α
k is a

function with domain Aαk such that for every � ∈ Aαk , F αk (�) is a condition in
Coll(�+�+2, < κk) and [F αk ]Uk ∈ Kk There are |P(κk)| = κk+1-many possible
triples (A, g, F ) in the range of the function α �→ (Aαk , gαk , F αk ). Since �+ is regular
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in V [G ][H ∗] and Ctail adds no sequences of length less than κk+2, the function
α �→ (Aαk , gαk , F αk ) must be constant on an unbounded subset L′ of L. So there is
(A∗, g∗, F ∗) such that (A∗, g∗, F ∗) = (Aαk , g

α
k , F

α
k ) for every α ∈ L′.

Nowwe step back toV [G ] where we defineE as the set of all triples (A, g, F ) such
thatA ∈ Uk, g is in the generic filter forColl(κ++k−1, < min(A)) derived byG, andF is
a function with domain A such that [F ]Uk ∈ Kk and F (x) ∈ Coll(x+�+2, < κk) for
all x ∈ A. For every (A, g, F ) ∈ E, we define a relationRA,g,F onL×{�}, by letting
a RA,g,F b when there exists a condition p such that p � k + 1 = s � (A, g, F ) and
p � a <Ṫ b. Then {RA,g,F }(A,g,F )∈E is a system, because for every two conditions
p, p′ ∈ P∗ extending s � (A, g, F ) and forcing a statement ϕ, we can find a third
condition q ≤ p, p′ extending s � (A, g, F ) and forcing the same statement ϕ.
Now in V [G ][H ∗] we can define a system of branches for {RA,g,F }(A,g,F )∈E as
follows. We let bA,g,F be the set of all pairs (α, �) such that there is a condition p in
j(P) such that p � k +1 = s � (A, g, F ) and p � (j(α), �) <j(Ṫ ) (�, �)) The triple
(A∗, g∗, F ∗) defined above determines a cofinal branch bA∗,g∗,F ∗ . By Theorem 2.5
(applied to Ctail which is κk+2-closed), a cofinal branch for the system exists also
in V [G ]. So there exists L∗ ⊆ L and (A, g, F ) such that for all α < � in L∗, there
exists a condition p ∈ P∗ extending s � (A, g, F ) that forces uα <Ṫ u� .
Let � be the least element of L∗ and, for every α ∈ (L \ �) \ L∗, let α∗ be the
least element ofL∗ above α. For α ∈ (L\�)\L∗ there exists (Āα, ḡα, F̄ α) such that
some condition extending s � (Āα, ḡα, F̄ α) forces uα <Ṫ uα∗ . So given α ∈ L \ �,
we define (Aα, gα, F α) as follows. If α ∈ L∗, then we let (Aα, gα, F α) be (A, g, F ).
If α /∈ L∗, then we let Aα be a subset of A ∩ Āα such that for every x ∈ Aα,
F̄ α(x) and F (x) are compatible; we let gα be a condition in the generic filter for
Coll(κ++k−1, < min(A ∩ Āα)) induced by G, and we let F α(x) = F̄ α(x) ∪ F (x). The
sequence 〈Aα, gα, F α〉α∈L\� is as required. 

We are now ready for the final step.

Lemma 5.4. In V [G ] there exists a sequence of pairwise compatible conditions
〈p� ; � ∈ J \ �〉 in P∗ with stem h where � < �+ and for all � < � ′ in J the weakest
common extension of p� and p�′ forces in P∗ that u� <Ṫ u�′ .

Proof. By induction on k < �, we define 〈�k ; k ≥ n〉, and 〈Aαk , gαk , F αk ; k ≥ n,
α ∈ J \ �k〉 such that:
(1) for all α ∈ J \�k,we haveAαk ∈ Uk, gk is in the generic filter for Coll(κ++k−1, <
min(Aαk )) induced by G, and F

α
k is a function with domain A

α
k with [F

α
k ]Uk ∈

Kk such that F αk (�) ∈ Coll(�+�+2, < κk) for every � ∈ Aαk ;
(2) for all � < � ′ in J \ �k, if s is a stem of the form

h � 〈αn, gn, fn, . . . , αk, gk, fk〉

such that for n ≤ i ≤ k, αi ∈ A�i ∩ A�′i , gi is in the generic filter for
Coll(κ++i−1, αi) derived fromG, andfi ≤ F �i (αi)∪F �

′
i (αi), there is a condition

of P∗ with stem s that forces u� <Ṫ u�′

�n and 〈Aαn , gαn , F αn ; α ∈ J\�n〉 are given by the above lemmaapplied to h.Assume
that we have defined �k, and 〈Aαk , gαk , F αk ; α ∈ J \ �k〉, we want to define �k+1,
and 〈Aαk+1, gαk+1, F αk+1; α ∈ J \ �k+1〉. For a stem s = 〈α0, g0, f0, . . . , αk, gk , fk〉
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extending h we let

J s := {α ∈ J \ �k ; ∀i ≤ k, αi ∈ Aαi , gi ≤ gαi and fi ≤ F αi (αi)}.
We define �s as follows: if J s is bounded in �+, then �s is a bound; otherwise we let
�s and 〈As,α, gs,α, F s,α ; α ∈ J s \ �s 〉 be given by the above lemma applied to s and
J s . Let

�k+1 := sup{�s ; s is a stem of length k + 1 extending h}.
For each α ∈ J \ �n+1, let
Hα(k + 1) := {s ; s is a stem of length k + 1 such that h � s and α ∈ J s}.

Note that the set Aαk+1 :=
⋂
s∈Hα(k+1)A

s,α is in Uk+1 and [F α]Uk+1 :=⋃{[F s,α]Uk+1 ; s ∈ Hα(k + 1)} is in Kk+1. By shrinking Aαk+1 we can assume
that for all x ∈ Aαk+1, F α(x) =

⋃{F s,α(x); x > αk}. We let gα be the con-
dition

⋃
s∈Hα(k+1) g

s,α. We check that (1) and (2) hold for k + 1. Condition (1)
holds by construction. For condition (2), consider α < � both in J \ �k+1 and
suppose that s = h � 〈An, gn, Fn, . . . , Ak+1, gk+1, Fk+1〉 is a stem of length k + 2
such that α, � ∈ J s . As both α and � are in J s and �k+1 < α, �, we have that
J s is unbounded and �s was obtained by applying the previous lemma. There-
fore s ∈ Hα(k + 1) ∩ H� (k + 1), αk+1 ∈ As,α ∩ As,� , gk+1 ≤ gs,α, gs,� and
fk+1 ≤ F s,α(αk+1) ∪ F s,�(αk+1). So by construction of As,α, As,� , F s,α, F s,� we
have s � uα <Ṫ u� .
This completes the definition. Finally, we let � := supn<� �n and for every α ∈
J \ �, we let pα be the condition h � 〈Aαn , gαn , F αn , . . . , Aαj , gαj , F αj , . . .〉. Then
〈pα ; α ∈ J \ �〉 is as desired. Indeed, if α < � are in J \�, then pα and p� are com-
patible in P∗ and if q ≤ pα, p� is in P∗, then by construction stem(q) � uα <Ṫ u� ,
i.e., there is a condition of P∗ with the same stem as q that forces uα <Ṫ u� .Two con-
ditions of P∗ with the same stem are compatible, hence q �� uα �<Ṫ u�. It follows
that the weakest common extension of pα and p� forces uα <Ṫ u� . 

That completes the proof of Theorem 1.2.

§6. Stationary set reflection and the failure of the tree property at ℵ�2+1. In this
section we show that the stationary set reflection at ℵ�2+1 does not imply the tree
property.We force from large cardinals amodel of Δℵ

�2 ,ℵ�2+1 where the tree property
at ℵ�2+1 fails, thus we demonstrate Theorem 1.3. The proof combines Magidor
and Shelah’s technique for getting Δℵ

�2 ,ℵ�2+1 with some ideas from Kunen’s paper
(see [2]).
We start by assuming the existence of infinitely many supercompact cardinals

〈κn〉n<� ; as usual we assume that the sequence is increasing and that the super-
compactness of each κn is indestructible by κn-directed closed forcings. We let
� := limn<� κn and we assume that 2κn = κ+n for every n < �. We consider the
following forcing notion R: a condition t of R is either the one-point tree {0} or an
homogeneous tree t ⊆ �+2 of successor height such that 〈0〉 and 〈1〉 are in t. R is
partially ordered by end-extension. It is proven in Kunen’s paper that forcing with
R adds a Suslin tree, let T be such a tree. Kunen observed that the iterated forcing
R ∗ T is equivalent to a �+-closed forcing

Q := {(r, t); r ∈ R, t ∈ r, ht(r) = dom(t) + 1, and r � t ∈ Ṫ}.
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We observe that Q is even �+-directed closed: if 〈rα, tα〉α<� is a directed sequence
of conditions in Q, then r :=

⋃
α<� rα is an homogeneous tree of height � :=

supα<� ht(rα) and t :=
⋃
� tα is a path through r.Wecan extend r to an homogeneous

tree of height � + 1 by adding at level � all sequences s � (t \ α) such that s ∈ r,
where t \α denotes the unique s ′ such that t � α � s ′ = t. This provides a common
extension for the sequence 〈rα, tα〉α<�.
Since we assumed that the supercompactness of each κn is indestructible by
directed closed forcing, κn remains supercompact in V R∗T as well as in the model
V (R∗T )×Sn (Sn denotes the same poset as in the previous sections). We use this fact
to define in V a variation of the forcing P discussed in the previous sections: each
Ḟn is replaced by an (R ∗ T ) × Sn-name for a normal ultrafilter on Pκn(�+), and
Un denotes now the projection of such ultrafilter to a normal utrafilter on κn. Since
2κn = κ+n and forcing with (R ∗ T )× Sn does not add sets which are hereditarily of
size ≤ κ+n , once again we have Un ∈ V. The generic filters Ki are defined as before.
We want to prove that forcing with R ∗ P we obtain the desired model. Let be

S := Coll(�,< κ0)× S0, and let GS0 be a generic filter for S0 over V. As before, we
denote by P∗ the poset whose conditions are the conditions p of P such that the
S-part of p is in GS0 .
We will need the following lemma.
Lemma 6.1. T is �+-strategically closed in V R.

Proof. T is �+-strategically closed if Even has a winning strategy in the game
G�+(T )where twoplayersOddandEven take turns to play conditions t� for �+many
moveswithOddplaying at odd stages andEvenplaying at even and limit stages.Even
must play the maximal condition of T at move zero and, at move �, the condition
t� must be stronger than any condition played until then. Even wins the game if
he can respond at any move. We describe the strategy as follows. At each move �,
Even chooses a condition r� ∈ R in addition to t� ∈ T in such a way that t� ∈ r�
and ht(r�) = dom(t� ) + 1. It follows that for every � even or limit, the pair (r� , t� )
belongs toQ. The closure of Q ensures that Even can chose (r� , t� ) at each stage. 

Theorem 6.2. The tree property at ℵ�2+1 fails in V R∗P.
Proof. T is �+-Suslin in V R, we prove that forcing with S ∗ P∗ over V R does
not add a cofinal branch to T ; in particular T remains Aronszajn in V R∗P which is
a submodel of V R∗S∗P∗

. The forcing S is a product of a forcing of size κ0, namely
Coll(�,< κ0), with a 
-closed forcing, namely S0. S0 is 
-closed, hence by Lemma
2.2 it cannot add cofinal branches to T over V R. The poset Coll(�,< κ0) is �+-
Knaster in V R∗S0 , therefore it cannot add cofinal branches to T over V R∗S0 . It
follows that T remains Aronszajn in V R∗S.
Claim 6.3. P∗ is �+-Knaster in V R∗S.
Proof. Given a sequence 〈p� ; � < �+〉 of conditions in P∗, there exists n < �
and a stationary set S∗ ⊆ �+ such that p� has length n for every � ∈ S∗. The
possible stems of P∗ length n are ≤ κn+1 < �+ hence there exists s and a stationary
subset S ⊆ S∗ such that stem(p�) = s for every � ∈ S. Two conditions of P∗ with
the same stem are compatible, hence the conditions in the subsequence 〈p� ; � ∈ S〉
are pariwise compatible. 

It follows that P∗ cannot add cofinal branches to T, hence T remains Aronszajn
in V R∗S∗P∗

. 
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Theorem 6.4. V R∗P |= Δℵ
�2 ,ℵ�2+1 .

To prove the theoremwewant to use the old argument fromMagidor and Shelah’s
paper, the main difficulty is to deal with the presence of the generic Suslin tree T.
For the argument to work, we need T to be �+-c.c. in V R∗Sn ; this motivates the
following lemma.

Lemma 6.5. For every n < �, the tree T remains �+-Suslin in V R∗Sn .

Proof. We work in V R. Let be s ∈ Sn and Ȧ such that

s � Ȧ is a maximal antichain in T.

We let � be some regular cardinal much larger than any cardinal under discussion
and let H� be some expansion of 〈H�,∈〉 by at most countably many constants,
functions and relations including s, T, Sn and everything relevant to this proof.
We fix a �+-approximating sequence, namely a continuous increasing sequence
〈Mα〉α∈�+ of elementary substructures of H� of size < �+ such that for all α,
�+ ∈Mα, 〈M� ; � ≤ α〉 ∈Mα+1 andMα ∩ �+ is an ordinal of �+.
By Lemma 6.1 T is �+-strategically closed, we assume that every Mα contains
the corresponding strategy �.

Claim 6.6. Given a model M in the approximating sequence, for every k ≥ n,
q ∈ Sn and x ∈ T ∩M, there exists t∗ > x in T ∩M and a condition q∗ ≤ q with
q∗ � k = q � k such that q∗ � t∗ is above some element of Ȧ.
Proof. Let {p� ; � < κk} enumerate all the sequences q̄ � k for q̄ ≤ q. We
inductively define a decreasing sequence of conditions 〈qα〉α∈κk in Sn ∩M and an
increasing sequence of nodes 〈tα〉α∈κk in T ∩M such that
(1) q0 := q and t0 := x,
(2) qα � k = q � k for every α
moreover, we make sure that the nodes are chosen according to the strategy �. For
α limit ordinal, we let qα be the union of all q� where � < α, and tα is the node
given by the strategy � applied to 〈t� 〉�<α. Suppose that qα and tα are defined, we
define qα+1 and tα+1 as follows. We denote by qα ∗ pα the unique condition r ∈ Sn
such that r � k = pα and r(i) = qα(i) for all i ≥ k. Let ϕα be the statement:
“There is a condition q̄ compatible with qα ∗ pα and there is a node t > tα such

that q̄ � t is above some element of Ȧ.”
If the statement is true, then we let tα+1 > t be the node given by the strategy � and
we let qα+1 be given by

qα+1(i) :=
{
qα(i) if i < k,
qα(i) ∪ q̄(i) otherwise.

If the statement is false, we let qα+1 be qα and we let tα+1 be tα.
Using the closure of Sk, let q∗ be a lower bound for 〈qα ; α ∈ κk〉 (such a lower
bound exists because the conditions in the sequence have the same k-lower part).
We also let t∗ be the node given by the strategy � applied to 〈tα ; α ∈ κk〉. By
elementarity ofM we can assume that both q∗ and t∗ belong toM . We show that

q∗ � t∗ is above some element of Ȧ.
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Suppose otherwise, we will reach a contradiction. q∗ forces that Ȧ is a maximal
antichain, so we have

q∗ � t∗ is compatible with some element of Ȧ.
Let be t∗∗ and q∗∗ be such that t∗∗ is compatible with t∗, q∗∗ ≤ q∗ and q∗∗ forces
that t∗∗ is in Ȧ. The sequence q∗∗ � k appears in the enumeration as pα for some
α, so by construction q∗∗ is compatible with qα ∗ pα and t∗∗ is compatible with tα.
It follows that the statement ϕα is true, hence tα+1 and qα+1 were defined so that
tα+1 > tα and

qα+1 � tα+1 is above some element of Ȧ.
This prove that q∗∗ and t∗∗ are as required. 

We resume the proof of the lemma. Using the claim, we can inductively define a
decreasing sequence 〈sα〉α<�+ such that
(a) s0 := s and sα � k = s � k for every α,
(b) for every x ∈ T ∩Mα there exists y > x in T ∩Mα such that

sα � y is above some element of Ȧ.
Finally let be s∞ :=

⋃
α<�+ sα andM∞ :=

⋃
α<�+Mα.We show that

s∞ � every element of Ȧ can be extended to an element of T ∩M∞;

this will complete the proof asT ∩M∞ belongs toV R whereT is �+-Suslin. Assume
s∞ � ẋ ∈ Ȧ, we take s ≤ s∞ and x ∈ T such that s � ẋ = x. By elementarity we
can assume without loss of generality that x ∈M∞. Let α be the least ordinal such
that x ∈Mα. By (b) there exists y > x in T ∩Mα such that

sα � y is above some element of Ȧ.
In particular, s∞ forces the same. By maximality of Ȧ we have s∞ � y is above ẋ
that completes the proof of the lemma. 

We are now ready to prove Theorem 6.4. From now on, we will essentially follow
the arguments of [5] with minor adjustments.
Let GR be an R-generic filter over V, let GT be a T -generic filter over V [GR] and
let Gn be an Sn-generic filter over V. In V [GR] we let p ∈ P, Ȧ, Ṡ and � < � be
such that the S-part of p is in Gn and

p � Ȧ is an algebra on �+ with � operations and Ṡ ⊆ �+ is a stationary set.
Let l < � be such that � < κl , we can assume without loss of generality that
the length of p is n > l and p forces that every ordinal in Ṡ has cofinality < κl .
In any P-generic extension V [GR][GP] we can observe that for every � in Ṡ there
is a condition q� ∈ GP such that q� � � ∈ Ṡ. Since there are less than �+ many
possible stems of q� , there is a stationary subset Ė of Ṡ such that for every � ∈ Ė
the stem of q� is fixed. We can assume without loss of generality that the stem of p
extends this fixed stem, hence p forces that

Ė = {� < �+; ∃q ≤ p in GP such that stem(q) = stem(p) and q � � ∈ Ṡ}
is stationary in �+.
In the rest of the proof we will work in V [GR ∗ GT ][Gn], recall that κn is still
supercompact in this model. We define P∗

n to be the set of all conditions q ∈ P of
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length ≥ n such that the Sn-part of q belongs to Gn.We let
E∗ := {α < �+; ∃q ≤ p in P∗

n with the same stem of p such that q � α ∈ Ė}.
Lemma 6.7. V [GR][GT ][Gn] |= E∗ is a stationary subset of �+.
Proof. Note thatV [GR][GT ][Gn] = V [GR][Gn][GT ].Assume for a contradiction
that we can find in V [GR][Gn][GT ] a club C ⊆ �+ which is disjoint from E∗. By
Lemma 6.5, T is �+-c.c., so there exists a club D ⊆ C that lies in V [GR][Gn], thus
we can assumewithout loss of generality thatC is inV [GR][Gn].Wework inV [GR].
As we did for S0 in the previous section, we define an equivalence relation ∼ on
Sn by

〈gi 〉n−1<i ∼ 〈hi〉n−1<i ⇐⇒ for large enough i, gi = hi .

For a condition r ∈ Sn, we denote by [r] its equivalence class. Let Hn := {[r]; r ∈
Gn}, then we have

V [GR] ⊆ V [GR][Hn] ⊆ V [GR][Gn].

The same arguments for the proof of Proposition 4.5 show that Sn/∼ is �+-c.c.
Therefore, we can assume that C lies in V [GR][Hn]. We fix a generic GP for P
over V [GR] and we let E be the interpretation of Ė in this model. We observe that
V [GR][GP] is obtained by forcing with P∗

n over V [GR][GT ][Gn]. By the definition of
E∗ we haveE ⊆ E∗.By Lemma 4.4 we haveV [GR][Hn] ⊆ V [GR][GP], in particular
C belongs toV [GR][GP], butC is disjoint fromE∗, hence fromE. That contradicts
the fact that E is stationary in V [GR][GP]. 

Now we define in V [GR][GT ][Gn] a forcing notion Cn whose conditions are
sequences 〈α0, g0, f0, . . . , αn−1, gn−1, fn−1, s〉 such that
(1) 〈α0, . . . , αn−1〉 is the α-part of p;
(2) 〈f0, . . . , fn−1〉 belongs to

∏
i<n Coll(α

+�+2
i , κi );

(3) 〈g0, . . . , gn−1〉 belongs to
∏
i<n Coll(κ

+�+2
i−1 , < αi);

(4) s ∈ Coll(κ++n ,< κn).
The ordering is:

〈α0, g0, f0, . . . , αn−1, gn−1, fn−1, s〉 ≤ 〈α0, g ′0, f′
0, . . . , αn−1, g

′
n−1, f

′
n−1, s

′〉
if and only if for all i, fi ≤ f′

i , gi ≤ g ′i and s ≤ s ′. Let GCn be any generic filter for
Cn that contains the stem of p. In V [GR][GT ][Gn][GCn ] we define P

∗∗
n ⊆ P∗

n as the
set of all conditions q of length n such that the stem of q is in the generic GCn for
Cn. Every two elements of P∗∗

n are compatible. Moreover, by the closure of Sn ×Cn
we have that P∗∗

n is 
-closed. Both P∗
n and P∗∗

n satisfy the property that for every
statement ϕ in the forcing language of P there exists r ∈ P∗

n, respectively r ∈ P∗∗
n ,

such that r ≤ p and r decides ϕ (see [5, Lemmas 6 and 8]).
We are going to define an algebra A∗ in V [GR][GT ][Gn][GCn ] that will represent
a version of the algebra Ȧ.Without loss of generality we can assume that the order
type of Ȧ, namely the sequence of the cardinals specifying for each n how many
n-ary operations are in Ȧ, is in V [R]. The algebra A∗ will be generated by finite
sequences of ordinals less than �+. We must specify for each two terms, whether
they denote the same element of the algebra, thus the elements of A∗ are actually
the equivalence classes of terms. Suppose that Ȧ can be written as 〈�+, 〈ȯi〉i<�〉.
We can assume without loss of generality that one of the operations of Ȧ is the
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identity on the terms of the algebra. Given �, � < � and given two sequences of
ordinals �� and �� in �+, we let �(��) =∗ �(��) if some condition q in P∗∗

n forces that
ȯ�(��) = ȯ�(��) (in the sense of the forcing language for P). The elements of A∗ are
the equivalence classes under the relation =∗ .Note that A∗ is well defined because
any two conditions of P∗∗

n are compatible.
We define an ordering on A∗ by letting �(��) <∗ �(��) if some condition of P∗∗

n

forces that ȯ�(��) < ȯ�(��) as ordinals.

Lemma 6.8 ([5, Lemmas 9, 10, 11]). A∗ is well ordered by <∗ in order type �+.

Nowwe work inV [GR][GT ][Gn] where we let Ȧ∗ be aCn-term for the algebraA∗.
Let U ∗ be the interpretation of Ḟn in this model (recall that Ḟn was an (R ∗T )×Sn-
name for a normal ultrafilter on Pκn(�+) and Un is the projection of such an
ultrafilter). We let j be the supercompact elementary embedding corresponding to
U ∗.We consider � a regular cardinalmuch larger than any cardinal under discussion
and we let H� := 〈H�, �+, E∗,P∗

n, p,Cn, Ȧ
∗〉.We define

B := {M ∩ �+; M ≺ H� , |M | < κn, M ∩ �+ ∈
⋂

W∈U∗∩M
W }.

Since j[�+] ∈ j(B), we have B ∈ U ∗.We let

B∗ := {X ∈ Pκn (�+); X ∩ κn is inaccessible, o.t.(X ) = (X ∩ κn)+�+1,
E∗ ∩X is stationary in sup(X )},

then B∗ also belongs to U ∗.

Lemma 6.9. LetX ∈ B∩B∗ such thatX ∩κn ∈ Apn and letM ≺ H� be witnessing
the fact that X ∈ B. There exists a condition q ∈ P∗

n of length n + 1 such that
αqn = X ∩ κn and q extends every extension of p in P∗

n ∩M with the same stem as p.
Proof. The proof is just as in [5, Lemma 13] we include it for the sake of
completeness. Let αn := X ∩ κn.We use the closure of Sn to define q as

〈α0, g0, f0, . . . , αn−1, gn−1, fn−1, αn, gn, f∗
n , A

∗
n+1, g

∗
n+1, F

∗
n+1, . . .〉

where

(1) α0, g0, f0, . . . , αn−1, gn−1, fn−1, αn, gn are like in p;
(2) for j > n, A∗

j :=
⋂
W∈Uj∩M W ;

(3) for j > n, g∗j is the union of the j-th components of Gn ∩M ;
(4) f∗

n :=
⋃{F (αn); F ∈M, [F ]Un ∈ Kn};

(5) for j > n, F ∗
j (�) :=

⋃{F (�); F ∈M, [F ]Uj ∈ Kj}.
Every A∗

j belongs to Uj because the cardinality of M is less than κn < κj
(moreover,U ∗∩M belongs toV by the closure of (R∗T )×Sn, sowe are intersecting
a family of sets in V ).
We show that f∗

n is in Coll(α
+�+2
n ,< κn): we assumed that X belongs to every

W ∈ U ∗
n ∩M, hence, since Un is the projection of U ∗

n , we have X ∩ κn = αn ∈ W
for W ∈ Un ∩M. If F, F ′ ∈ M and [F ]Un , [F ′]Un ∈ Kn, then the set P := {� <
κn;F (�) and F ∗(�) are compatible} belongs to Un and we have P ∈ Un ∩M, so
αn ∈ P. It follows thatf∗

n is the union of |M |many mutually compatible conditions
of Coll(α+�+2n ,< κn) and by the closure of Sn this union is in V [GR]. We have
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|M | = |X | = α+�+1n , hence f∗
n is in Coll(α

+�+2
n ,< κn). The same argument show

that the F ∗
j are well defined. 


We resume the proof of the theorem. Take X ∈ B ∩ B∗ and let M witness the
fact that X is in B. Let α = X ∩ κn =M ∩ κn and let q be as in Lemma 6.9.
Claim 6.10. q forces that the subalgebra of Ȧ generated by X has the same order
type as X and X is cofinal in it.

Proof. We sketch the proof, for more details see [5, p. 804]. Let B∗ be the
subalgebra of A∗ generated by X. It is not difficult to see that B∗ has order type
|X | and X is cofinal in it. B∗ is defined in V [GR][GT ][Gn][GCn ], nevertheless by
the κn-c.c. of Cn we can see that B∗ exists in the smaller model V [GR][GT ][Gn][J ],
where J is the generic object added byGn for the set of all conditions inCn that have
as last coordinate a condition in Coll(κn−1, < α

q
n ) (instead of Coll(κn−1, < κn)).

By the closure of (R ∗ T ) × Sn, we have B∗ ∈ V [GR][J ]. Now, let GP ⊆ P be a
generic filter for P containing the condition q. Since the stem of q is in J, we have
V [GR][J ] ⊆ V [GR][GP]. Thus B∗ is in V [GR][GP]. Let A := (�+, 〈o�〉�<�) be the
interpretation of Ȧ by GP and let B be the subalgebra of A generated by X. To
prove the claim, it suffices to show that B is isomorphic to B∗ via an isomorphism
that is the identity on X. The isomorphism associates to o�(��) the equivalence class
of �(��), denoted [�(��)]. To show that this is an isomorphism, consider [�(��)] and
[�(��)] two terms of B∗ and suppose that [�(��)] = [�(��)] (resp. [�(��)] < [�(��)]) in
the sense ofB∗.This means that there exists r ≤ p with the same stem asp and there
exists t ∈ J such that, if r∗ is a condition like r except that the stem is t, then r∗ forces
that ȯ�(��) = ȯ�(��) (resp. ȯ�(��) < ȯ�(��)). By elementarity of M, we can assume
that r ∈ M, hence q ≤ r, so r ∈ GP. By definition of J, we have r∗ ∈ GP, therefore
o�(��) = o�(��) (resp. o�(��) < o�(��)). That completes the proof of the claim. 

In conclusion, q forces that the order type of X is a regular cardinal. Since
αqn = X ∩ κn, the order type of X is (X ∩ κn)+�+1 = (αqn)+�+1 and no cardinal are
collapsed between αn and α+�+2n .We also note that for � ∈ E∗ ∩X, some extension
of p in P∗

n with the same stem forces � ∈ E, but by elementarity such an extension
is in M, so q extends it, hence q forces � ∈ E. Since X ∈ B∗, we have X ∩ E∗ is
stationary in the sup(X ), so we get that q forces that the subalgebra generated by
X is a witness to Δℵ

�2 ,ℵ�2+1 . The other direction is analogous, so that completes the
proof of Theorem 6.4 and consequently of Theorem 1.3.
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