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SERIAL RIGHT NOETHERIAN RINGS
SURJEET SINGH

A module M is called a serial module if the family of its submodules is
linearly ordered under inclusion. A ring R is said to be serial if Ry as well
as grR are finite direct sums of serial modules. Nakayama [8] started the
study of artinian serial rings, and he called them generalized uniserial
rings. Murase [S, 6, 7] proved a number of structure theorems on
generalized uniserial rings, and he described most of them in terms of
quasi-matrix rings over division rings. Warfield [12] studied serial both
sided noetherian rings, and showed that any such indecomposable ring is
either artinian or prime. He further showed that a both sided noetherian
prime serial ring is an (R:J)-block upper triangular matrix ring, where R is
a discrete valuation ring with Jacobson radical J. In this paper we
determine the structure of serial right noetherian rings (Theorem 2.11). We
also study right noetherian rings whose proper homomorphic images are
serial; Theorem 3.3 shows that any such semiprime ring is either serial or
prime. Thereby we improve [11, Theorem 6] and its generalization given
by Levy and Smith [4]. Finally in Theorem (4.1) we establish another
characterisation of artinian serial rings.

1. Preliminaries. All rings considered here are with identity 10 and
modules are unital right modules, unless otherwise specified. A ring R is
said to be noetherian (artinian) if it is right as well as left noetherian
(artinian). For definition and basic properties of semiprime Goldie rings
we refer to [2]. Let R be a prime right Goldie ring. The following
properties and concepts about R are well known. R is said to be right
bounded if every essential right ideal of R contains a non-zero ideal. In
this paper any module M over a semi-prime Goldie ring is said to be
torsion (torsion-free) if it is torsion (torsion-free) in the Goldie torsion
theory. If R is right bounded no non-zero torsion injective R-module is
finitely generated. If R is both sided Goldie any two finitely generated
uniform, torsion-free R-modules are embeddable in each other.

For definition and basic properties of hereditary noetherian prime
( (hnp) ) rings, we refer to [1]. By [12, Theorem 5.11] any prime, serial,
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noetherian ring is hereditary. It is clearly both side bounded. As defined
by Warfield [12] a simple module T is called a successor of a simple
module S if Ext (S, T) # 0; under the same conditions, S is called a
predecessor of T. The results collected in the following theorem are all due
to Warfield [12, (5.1), (5.3), (5.6), (5.11)].

THEOREM 1.1. Let R be a serial, right noetherian ring. Then:

(a) Any simple R-module S has at most one successor and one predecessor
up to isomorphism. Further S has a successor unless S is projective.

(b) If there exists an indecomposable projective R-module P such that
N,PJ" # 0, where J is the Jacobson radical of R, then R has a simple
module S with no predecessor.

(¢) Any uniform R-module is serial. In particular an indecomposable
injective R-module is serial.

(d) If R is also left noetherian, then N,J" = 0 and R is the product of an
artinian serial ring and finitely many prime serial rings.

For any ring R, J(R) (or simply J) and N(R) (or simply N) will denote
its Jacobson radical and its nil radical respectively. For any module Mg,
ERr(M) (or simply E(M) ) will denote its injective hull. For any ordinal «,
J% is defined inductively as follows: J° = R. If a is a limit ordinal J* =
Np<a JPandifa = B + 1,J% = JBJ. For any module Mg, anng (M) (or
simply ann (M) ) will denote the annihilator of M in R. The symbol N C’
M will mean that N is an essential submodule of M.

2. Serial right noetherian rings. We start with the following:

LEMMA 2.1. Let R be a serial ring with Jacobson radical J. If NJ" = 0,
then R is noetherian. If for some n, J" = 0, R is artinian.

Proof. Now R = e;R @ ;R @ ... @ ¢,R for some orthogonal
indecomposable idempotents ¢;. Consider x # 0 in ¢;R. As NeJ" = 0, for
some n,

X & eJ"\ eJ" L

Then xR = eJ". This immediately gives that e;R is right noetherian.
Hence Ry is noetherian. Similarly gR is noetherian. The second part is
obvious.

The following is immediate from (1.1) (c¢):

LEMMA 2.2. Any uniform module over a serial right noetherian ring is
either injective or finitely generated.
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THEOREM 2.3. Any semiprime serial right noetherian ring R is left
noetherian, and is a direct sum of prime serial rings.

Proof. Let R be a semiprime serial right noetherian ring. Let R be not
left noetherian. By (2.1) N,J" # 0. So for some indecomposable
idempotent e € R N,eJ” # 0. Consequently by (1.1) (b), R admits a
simple module S having no predecessor. It can be seen that [12, Lemma
(5.5)] is valid for serial, right noetherian rings. Consequently there exists a
projective R-module which is artinian. This yields socle (R) # 0. AsRis a
semiprime right noetherian ring, R = socle (R) @ T, where T is an ideal of
R with soc (T) = 0. Since T is a semiprime serial right noetherian ring
with zero socle, we get T is left noetherian. Consequently R is also left
noetherian, as socle (R) is left artinian. Hence the result follows.

LEMMA (2.4). Let R be a serial right noetherian ring.
(I) Any two non-comparable prime ideals of R are comaximal.

(1) For any indecomposable idempotent e, eR/eN is either simple, or for
a unique non-maximal prime ideal P, eN = eP and eR/eN is a
projective R/ P-module with socle (eR/eN) = 0.

(II1) For any non-maximal prime ideal P, P* = P.

Proof. Since in any (hnp)-ring every non-zero prime ideal is maximal,
the same holds in a prime serial noetherian ring. Using this and (1.1) (d) it
follows that in any serial (both sided) noetherian ring, any two
non-comparable prime ideals are comaximal. Now R/N is semiprime. So
by (2.4), it is also left noetherian. Thus given any two non-comparable
prime ideals P and Q of R, P/N and Q/N are non-comparable prime
ideals of the serial noetherian ring R/N. So that P/N and Q/N are
comaximal. Hence P and Q are comaximal. This proves (I).

By (1.1) (d), R/N is a finite direct sum of prime serial rings, each of
which is either simple artinian, or non-artinian. Now eR/eN is isomorphic
to an indecomposable summand of (R/N)g. So for some unique prime
ideal P, eR/eN is isomorphic to a summand of R/P. Consequently eR/eN
is simple if R/P is artinian; notice that in this situation there is no prime
ideal P’ properly contained in P. If R/P is not artinian, then socle (R/P)
= 0 gives socle (eR/eN) = 0. That eN = eP for some unique prime ideal
P is now immediate. This proves (II).

Let P be a non-maximal prime ideal of R. Let S be a simple
R/P-module. As R = R/P is bounded, Ez(S) is not finitely generated. By
[10, Theorem 2.8] it has an infinite properly ascending chain of
submodules

0=S,<S(=8)<8<8<.......
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such that Eg(S) = U;S;, each S,;/S;_ is simple, and there exists n such
that S;/S;— = S;/S;— if and only if i = j (mod n). This immediately
yields that S has a successor as well as a predecessor. Since simple
modules over R/P? are the same as those over R/P, we get that every
simple R/P*-module admits a predecessor. Consequently by (1.1) (b)

NJX(R/P? = 0.

So by (2.1) R/P? is noetherian. Since it is indecomposable and
non-artinian it must be prime. Hence P> = P.

LEMMA 2.5. Let U be a uniform module over a serial right noetherian ring
R and P be a non-maximal prime ideal of R such that UP = 0. Then Ex(U)
= Eg(U), where R = R/P. Further Ex(U)P = 0.

Proof. Since R is a bounded (hnp)-ring, and is not artinian, Eg(U) is not
finitely generated. So by (2.2) it is an injective R-module. Hence Ex(U) =
Eg(U). The last part is obvious.

LEMMA 2.6. Let R be a serial right noetherian ring, and N = N(R). Let e
and [ be any two indecomposable idempotents in R. Then:
(1) If eR/eN is not simple,

Hompy (eR, fN) = 0 = fNe.
(ii) If eR/eN is not simple and fR/fN is simple,
Hom (eR, fR) = 0 = fRe.

Proof. (i) Let 0 # A:eR — fN be an R-homomorphism. Let 4 = Im A.
Then AN # A, and we get an epimorphism

A:eR/eN — A/AN.
Consider £ = Eg(eR/eN). Then A extends to an R-homomorphism
wE — Er(A/AN).

If P = anng (eR/eN) (2.4) gives that P is a non-maximal prime ideal. By
(2.5)

Er(eR/eN) = Ei(eR/eN),

where R = R/P, and it is not finitely generated. So EP = 0, and by (2.2)
we get that every homomorphic image of E is injective. Consequently p is
onto. As (Im p)P = 0 and fR/AN C ER(A/AN), we get

(fR/AN)P = 0.
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This in turn gives f/N = AN. As A C fN, we get fN = fN? and hence fN =
0. This is a contradiction. Hence

Hom (eR, fN) = 0 = fNe.

(ii) Let A\:eR — fR be a non-zero R-homomorphism. Let Im A ¢ fN.
Then Im A = fR, as fR/fN is simple. Thus eR =~ fR. This is a
contradiction. Consequently Im A C fN. This contradicts part (i). Hence

Hom (eR, fR) = 0 = fRe.

THEOREM 2.7. Let R be a serial right noetherian ring. Then:

(1) NA = N(R) has finite length as a right R-module, and N**' —
NYJ.

(ii) Let P be a non-maximal prime ideal of R, and e, f be two
indecomposable idempotents of R such that eR/eN and fR/fN are
projective R/ P-modules. Then eN = [N, and eN is the largest finite
length submodule of E(eR). If eN # 0, eN/eN* has no predecessor.

Proof. Let g be any indecomposable idempotent of R such that gN* # 0,
for some k = 1. As gN* is serial, there exists an indecomposable
idempotent 4 together with an R-epimorphism

X:hR — gNk.

By (2.6) AR/hN is simple. Thus A induces an isomorphism
hR/hN =~ gNk/gNk"1,

Consequently gN*/gN¥ ! is simple. Since N is nilpotent, we get
gN > gN> > gN* > ... > gN' = 0,

for some /, is a composition series of gN. Consequently Ny also has finite
length, and N**! = NJ.

(ii) By hypothesis eR/eN and fR/fN are torsion-free R/ P-modules. Thus
socle (eR/eN) = 0. As E(eR) is serial we get there exists no finite length
submodule of FE(eR) containing eN properly, since otherwise socle
(eR/eN) # 0. Hence eN is the largest, finite length submodule of E(eR).
Since any two finitely generated uniform, torsion free modules over a
prime noetherian ring are embeddable in each other, eR/eN is embeddable
in fR/fN. Consequently there exists an R-homomorphism

X:eR — fR/fN

with Ker A = eN. The projectivity of eR gives an R-homomorphism
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u:eR — fR such that A = ap, where 7R — fR/fN is the natural
homomorphism. Then

WeN) C fN < p(eR).

Since w(eR)/fN is a torsion-free R/P-module, which is a homomorphic
image of the uniform R/P-module u(eR)/u(eN), we get u(eR)/u(eN) is a
torsion-free R/ P-module. So its socle is zero. Consequently using the fact
that fN has finite length we get p(eN) = fN. Consequently composition
length d(fN) = d(eN). Similarly d(eN) = d(fN). Hence d(eN) = d(fN).
So it follows from p(eN) = fN that eN = fN under p. Since socle (¢eR/eN)
is zero, the last part is obvious.

LEMMA 2.8. Let P and P’ be two distinct non-maximal prime ideals in a
serial right noetherian ring R. Let e and f be two indecomposable idempotents
of R such that eR/eN and [R/fN are projective as R/P-module and
R/ P'-module respectively. Then eRf = 0 = fRe.

Proof. Let eRf # 0. This gives a non-zero homomorphism A:fR — eR.
By (2.6), Im A ¢ eN. Further (2.7) gives A(fN) C eN. Thus we get an
R-epimorphism

X:fR/fN — Im A/eN.
Consequently
[ (Im A)/eN]P" = 0.

This yields P’ € P, as Im A/eN is a torsion free R/ P-module. Hence P’ =
P, as P is not maximal. This is a contradiction. Hence eRf = fRe = 0.

Consider any non-maximal prime ideal P in a serial right noetherian
ring R. Consider any indecomposable idempotent e € R with eR/eN a
projective R/P-module. Let eN # 0. Consider a composition series

eN > eN?> ... >eNTl =0

of eN. Consider the simple modules S; = eN'/eN'*! for i = 1. Because of
(2.7) (i1), the finite sequence of simple modules (S}, S, . . ., S;) is uniquely
determined by P. We call it the successor sequence of P. We extend it
further to a sequence of simple modules

StSy, -, S S -

where each one is followed by its successor. Since by (2.7), S| has no
predecessor, all the members of this sequence are distinct. However R
admits only finitely many simple modules. So the above sequence is finite.
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Thus we get a finite sequence
(S],Sz,...,S,,.,,,Su)

of simple modules, which extends the successor sequence of P, in which
each S; is followed by its successor and S, has no successor. This sequence
is called the extended successor sequence of P, and is uniquely determined
by P. We understand that if eN = 0, the above sequence is an empty
sequence.

LEMMA 2.9. Let P and P’ be two distinct non-maximal prime ideals in a
serial right noetherian ring R. Then the extended successor sequences of P
and P’ are disjoint.

Proof. Let (S1, S2, ..., Su), (Ty, Ty, ..., T,) be the extended successor
sequences of P and P’ respectively. Suppose for some i, j that S; = T}. Leti
be smallest. If i > 1, then S;_ is the predecessor of S;. So 7 has S, as
its predecessor. As T has no predecessor, we getj > 1 and T, = S;—;.
This is a contradiction to the choice of i. So i = 1. Thus as S| has no
predecessor we get j = 1. Consequently the two sequences are the same. In
the notation of (2.8), we have eN/eN> = fN/fN’. This gives an
R-isomorphism

\:E(eR/eN?) — E(fR/fN?).
Using (2.7) (i) and (2.5) we get E(eR/eN*)/eN/eN? is a torsion-free
R/P-module and is isomorphic to E(fR/fN?)/fN/fN*. The latter is a

torsion-free R/P’-module. This gives P = P’ and we get a contradiction.
Hence the result follows.

Since the structure of a prime serial right noetherian (hence noetherian)
ring is known, we are interested to study non-prime, non-artinian serial
rings which are right noetherian, but not left noetherian. It is enough to
study such indecomposable rings.

THEOREM 2.10. Let R be an indecomposable serial right noetherian ring,
which is not left noetherian. Then:
(1) R has only one non-maximal prime ideal P.
(i1) The successor sequence of P is non-empty.
(1i1) There exists a unique simple projective R-module.

Proof. Since R is not artinian it has a non-maximal prime ideal P. If P
= 0, by (2.3) R is left noetherian; this is a contradiction. Hence P # 0.
Write

R=eRO®OeR®...DeR

for some orthogonal indecomposable idempotents e;. Let 4 be the sum of
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those ¢;R for which either e;R/¢;N is a projective R/ P-module or ¢;R/¢e;N is
a simple module occurring in the extended successor sequence of P. Let B
be the sum of other ¢;R’s. Clearly 4 # 0. Let B # 0. Notice that if for a
finite length serial module Ky, some composition factor of Ky is in the
extended successor sequence of P, then all the composition factors of K
are in the sequence. Consider any e¢; € 4, ¢; € B. We want to show that
ejRe; = 0 = eRe;. Let e;Re; # 0. If ¢;R/e;N is simple, then every
composmon factor of ¢;R is in the extended successor sequence of P and in
particular e;R/e;N is in the extended successor sequence of P; this is a

contradiction. So e;R/e;N is not simple and
ann (e;R/e;N) = P.

Then (2.8) gives that either e;Re; C ¢;N or, e;R/e;N and ¢;R/e;N both are

projective R/P-modules; this again leads to a contradlctlon Hence e;Re;

= 0. Let e;Re; # 0. If ¢;R/¢;N is not simple, (2.6) and (2.8) give that
e;R/e;N is not simple and that

ann (e;R/e;N) =

This is a contradiction. Thus e;R/¢;N is simple. Now using (2.9) it follows
that e;Re; = 0. Hence 4 and B are ideals of R and R = 4 © B. This is a
contradiction. Hence B = 0. The construction of 4 and the fact that B =
0, shows that there is no non-maximal prime ideal in R other than P. Let
the successor sequence of P be empty. Then each e;R/e;N is a projective
R/P-module and e¢N = ¢ P = 0. This gives P = 0; which is a
contradiction. Hence the successor sequence of P is non-empty. So let (S,
S», ..., S,) be the extended successor sequence of P; which is non-empty.
For some i,

Su =~ e,-R/e,-N.

As S, has no successor, [12, Lemma (5.3)] yields e,N = 0 and S, becomes
projective. This S, is unique to within isomorphism. This proves the
theorem.

Henceforth let R be an indecomposable serial right noetherian ring,
which is not left noetherian, and let P be its unique non-maximal prime
ideal. As seen in the proof of the above theorem, we can write

= (e ROeRD .. O e RYD(IROL/LRD ... D fR)

for some orthogonal indecomposable idempotents e;, ]; such that e;R/e;N
is a projective right R/P-module, and each f;R/f;N is a simple module
occurring in the extended successor sequence of P. Let e = Xe,, f = Efj.
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(2.6) gives fRe = 0. Further (2.4) yields eN = eP, and by (2.6) eRf = eNf
= ePf = eN. Notice that fP = fR. As each f;R is of finite length, fRf is a
serial artinian ring. Also R/P = eRe/ePe, being a right noetherian prime
serial ring, is also left noetherian. However by (2.6) ePe = eNe = 0.
Hence eRe is a prime serial noetherian ring. Thus we can write

eRe eRf

0 JRf
where eRe is a prime, serial noetherian ring, fRf is a serial, artinian ring.
We are now ready to state and prove the main structure theorem.

R =

THEOREM 2.11. Let R be an indecomposable, non-prime, non-artinian

ring. Then R is a serial right noetherian ring if and only if R = g ]\7{

such that
(a) S is a prime, serial noetherian ring, which is not artinian, and T is an
indecomposable artinian serial ring admitting a simple projective module.
(b) M is an (S, T)-bimodule such that ¢M is a divisible torsion free module
with rank (M) = rank (T/B), B = anny (M) and tB is a summand of
T
TL.
(¢) Myt is a direct sum of finitely many isomorphic serial modules and rank
(M7) = rank (Sy).
Proof. Let R be a serial right noetherian ring. We have shown just before
this theorem that
eRe  eRf
0  JRY
Here eRe is a prime serial noetherian ring, fRf is an artinian serial ring.
Write S = eRe, M = eRf, T = fRf. We can write

f=HAthH+. ...+ /

for some orthogonal indecomposable idempotents such that f;R/f;N(1 = i
= u) constitute the set of all members of the successor sequence of P, and
for somev,u = v = ¢, fiR/fiN(1 =i = v) constitute the set of all members
of the extended successor sequence of P, and f; | R/f;+ N is the successor
of fiR/f;N for i < v.AsfRe = 0, each S; = f;R/f;N is a simple fRf-module,
and we have

ExtT (Si7 Si+1) #= 0 fori <.

By construction, eRf; # 0 for 1 =i = u, eRf; = O foru < j = v and /R,
foR, ..., [,R is a maximal set of non-isomorphic summands of Rz among
fR(1 =i = 1). Thus

R =
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EXIT (S,', Si+l) # 0 fori< v,

proves that T = fRfis indecomposable. Since S, has no successor, f,N =
0 and hence S, is also a projective T-module. Since Rf'is a finite direct sum
of serial left R-modules, eRf is a finite direct sum of serial left
eRe-modules. Since any uniform left S-module (here S = eRe) is either
injective or finitely generated we get

eRf =M =A@ L

where L is a divisible left S-module, and g4 is a finitely generated left
S-module. Clearly L is an ideal of R. Since R/M is left noetherian and
M/L = A is left noetherian, we get R/L is left noetherian. Let 4 # 0, then
S M/L
0

R/L is representable as T ] with S, T indecomposable rings and

M/L a non-zero (S, T)-bimodule. This gives R/L is an indecomposable
noetherian serial ring, which is neither prime nor artinian. This is a
contradiction. Hence 4 = 0 and M = L. We now show that ¢M is torsion
free. Take any indecomposable torsion injective module E over a bounded
(hnp)-ring R’. We know that E is serial and its proper submodules are of
finite lengths (see [10, Theorem 2.8]). But E itself is not of finite length. So
it gives that each proper R’-submodule of E is an Endg (E)-submodule
and E as an Endg (E)-module is not of finite length. Consequently any
injective R’-module F with its torsion submodule non-zero, is not of finite
length as Endg (F)-module. Since N is of finite length by (2.8), M = eNf
is of finite length as a T-module, since T = fRf. Let B = anny (M). As
T/B is embeddable in Endg (M), we get that M is of finite length over
Endg (M). So by what we have shown above, ¢M is torsion free. Now

B:@ﬁgj;.

i=1

Let for some f;, Bf; # 0 and also Mf; # 0. Choose u # 0 in Bf;. Then

0o o] _ [o 0 [0 M/,‘-]
R[o u]_O rul ™o o
are non-comparable left ideals, contained in Rf;; this is a contradiction.
Hence Bf; # 0 implies Bf; = Tf;. Consequently 7B is a summand of 7T.
Thus Mf; # 0 if and only if B N Tf; = 0. Consequently M = @ X M/,

gives that the number of non-zero Mf; is the same as the rank of 7/B.
Hence

rank (¢M) = rank (7/B).
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This proves (b). Since e,N = ¢;N for all i, j by (2.7), (c) also follows.
We now outline the proof of the converse. Let R = [‘g ]\7{ satisfy
the given conditions. Let
S=eS®...0e¢,S
for some orthogonal indecomposable idempotents. Then
Mr =0 é eM.

I=1

As rank (M) = n, each ¢;M is a finite length serial 7-module. As S is
bounded, for any x # 0 in ¢S there exists a non-zero ideal 4 of S such
that e,4 C xS. The divisibility of ¢M yields AM = M. Consequently

[x O] R — xS e,-M]
0 0 0 0

This in turn yields that ‘(")" 8 R is a serial module. Further also T is a

serial ring. We get R is right serial. Now B = anny (M) and by hypothesis
T = B © A for some left ideal 4 of T. So we can write

T=Tg,0.. ©O©Tg ® Tg 1+ ®... 0D Tg,
for some orthogonal indecomposable idempotents g;'s such that
/
B =6 i;} Tg,.
By hypothesis
rank (M) = rank (T/B) = t—1
Thus

t
sM =0 X Mg,
i=l+1

with each Mg; a serial injective torsion free left S-module. Consequently
for any i > /, and any xg; # 0 in Tg;, Mxg; = Mg;; using this we get

R 8 g is serial. For i = [, as Mg; = 0,
1

0 0]_[0 o]_
R[o gl " lo T1gl
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which is a serial left R-module, as Tg; is a serial left 7-module. Further
each

€; o1 € 0
R 0 0] N [ 0 O]
is a serial left R-module. This all shows that R is left serial. Hence R is
serial. This proves the theorem.

3. Proper homomorphic images serial. Singh [11] proved the following;:

THEOREM 3.1. Let R be a prime right bounded, right Goldie ring such that
for each non-zero ideal A of R, R/ A is an artinian serial ring. Then R is right
hereditary.

Recently Levy and Smith [4] have proved the following generalization of
the above theorem.

THEOREM 3.2. Let R be a right noetherian, essentially right bounded
semi-prime ring, all of whose homomorphic images are serial rings, then R is
right hereditary.

In this section we improve on the above theorem, and give an
alternative proof. First of all we prove the following:

THEOREM 3.3. Let R be a right noetherian semiprime ring (not necessarily
essentially right bounded), all of whose proper homomorphic images are
serial rings. Then either R is a serial noetherian ring or a prime ring.

Proof. Let R be not a prime ring. Now
13
0= nl P, for some primes P,.
i=

Clearly + = 2. Take ¢ to be minimal. It is clear from (1.1) (a) that in a
serial, noetherian ring any two non-comparable prime ideals are
comaximal. So if + = 3, P; N P; # 0 gives that R/P; N P; is a serial
noetherian ring. Thus P; + P; = R for i # j. Consequently R = © >
R/ P, a finite direct sum of prime rings. As each R/P; is serial, we get R is
serial, and hence noetherian by (2.3).

Let + = 2. Then Py N P, = 0 gives that P; and P, are the minimal
prime ideals of R. Further each is the annihilator of the other. Write P =
P, Q = P,. Then P ® Q C’ Ry and Py is a complement of Qg etc. We
claim P + Q = R. On the contrary let P + Q # R. Now

(P + Q) Q " (R/Q).
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Take any E C’ Rg, then E N P C’ Py yields
[(ENP)+ Q)/Q C"R/Q.

As R/Q is a bounded ring, there exists a non-zero ideal 4/Q of R/Q
containedin[(E N P) + 0]/0. Then4 = B® Q,where B=E N A =

P N A is a non-zero ideal of R. Similarly there exists a non-zero ideal C of
R contained in E N Q. Then B + C is an ideal of R contained in E and
this ideal is an essential right ideal of R. Now P + Q # R gives that P +
Q C M, some maximal right ideal of R. Then S = R/M is a simple
module such that SP = 0 = SQ. So Eg,p(S) is not finitely generated and
is contained in Ez(S). Consider any x (#0) € E(S). There exists K C" Rg
such that xK C S. As proved above we can find an ideal A C K such that
A C’ Rg. Thus AP # 0, and xR is an R/AP-module. As R/AP is a serial
right noetherian ring, we get xR is serial by (1.1) (c). Since P/AP is a
non-maximal prime ideal, by (2.5) Ex(xR)P = 0, where R = R/AP. This
gives E(S)P = 0. Similarly E(S)Q = 0. However P + Q contains a
regular element of R. So

ES)P + Q) = E(S).

This leads to a contradiction. Hence R = P @ Q. Thus again R is a direct
sum of prime rings and is serial.

THEOREM 3.4. Let R be a prime, right bounded, right noetherian ring such
that for each ideal A # 0, R/ A is serial. Then for each ideal A #+ 0, R/A is
artinian.

Proof. Let P be a non-zero prime ideal of R which is not maximal. Let
Ep be an indecomposable summand of E(R/P). Then Ep is a torsion
uniform right R-module. Consider any finitely generated submodule U of
E. As R is right bounded there exists a non-zero ideal 4 of R such that U4
= 0. Clearly A € P and U is an R/A-module. Since R/A is serial, by (2.5)
Er/4(U) = Eg,/p(U). Hence UP = 0. This gives Ep. P = 0. This is a
contradiction, since Ep is a faithful R-module. Hence R has no non-zero,
non-maximal prime ideal. So given any ideal B # 0 of R, every prime ideal
of R/B is maximal. As R is a right FBN-ring, we get R/B is artinian. This
proves the theorem.

Combining (3.1), (3.3) and (3.4) we get the following:

THEOREM 3.5. Let R be a semiprime right noetherian ring such that for
each ideal A #+ 0, R/ A is serial. Then R is a finite direct sum of prime rings.
If R is not prime, then R is serial. If R is prime and right bounded then R is
right hereditary.
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4. Artinian serial rings. Consider the following two conditions on a
Module My:

(I) Every finitely generated submodule of any homomorphic image of M
is a direct sum of finite length serial modules.

(IT) Given two uniserial submodules U and V of a homomorphic image
of M, for any submodule W of U any homomorphism f:W — V can be
extended to a homomorphism g:U — V provided the composition length
d(U/W) =d(VIf(W)).

The study of modules satisfying (I) and (II) was initiated by Singh [11].
Any module over an artinian serial satisfies these conditions. Here we
prove the following:

THEOREM 4.1. If a ring R is such that Ry satisfies (1) and (11), then R is an
artinian serial ring.

We prove this result through various lemmas. Throughout all the
lemmas Rp satisfies (I) and (II). Without any loss of generality we take R
to be indecomposable. The following is immediate from the given
conditions:

LEMMA 4.2. (1) R is a right artinian right serial ring.
(i1) any uniform cyclic (right) R-module is serial and quasi-injective.
(ii1) Any simple R-module admits at most one successor.

LEMMA 4.3. (i) Any uniform injective R-module is serial.
(ii) Any simple R-module admits at most one predecessor.

Proof. Consider a simple module Sg and E = ER(S). Since R is right
artinian E = soc” (E) for some n. By induction we show that soc’ (E) is
serial. Clearly soc' (E) = S is serial. To apply induction let & > 1 such
that soc* ! (E) is serial and E # soc®" ! (E). Let 4 and B be two
submodules of E of length k£ each. Then

soc" 1 (E)y ¢ 4 n B.

There exist indecomposable idempotents ¢ and f in R such that 4 =
eR/eNk, B =~ fR/fN*. 1f eR = fR, A = B. Let eR % fR. Then e and f can
be chosen to be orthogonal. Then 4 X B is embeddable in

eR/eNK @ fR/fN* < R/NK.

So by condition (II) the identity map of soc* ™! (E) can be extended to an
isomorphism of 4 onto B. Thus in any case there exists an isomorphism o
of A onto B. As A + B C E(S) and by (4.2) 4 is quasi-injective, o(4) C
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A.Hence A = B. This proves that sock (E) is serial. Hence F is serial. Now
(11) is obvious.

Let Sy, S5, ..., S; be a maximal length sequence of non-isomorphic
simple R-modules such that each S; | is the successor of S;. We can find
orthogonal indecomposable idempotents e, ey, . . ., e, in R such that

S,‘ ~ e,-R/e,-N.
Then
S,‘+l ~ e,-N/e,-Nz.

Let S = eR/eN, for some indecomposable idempotent e be such that S #
S; for any i. It is clear from (4.2) and (4.3) that if a composition factor of a
serial R-module K is among S;’s then every composition factor of K is
among S,’s. Thus every composition factor of ¢;R is among S/’s. As S # S,.
it gives eRe; = 0 = ¢;Re. This in turn shows that R is decomposable. This
is a contradiction. Hence ¢|R, e)R, ..., ¢,R constitute a maximal set of
non-isomorphic serial summands of Rg.

LEMMA 4.4. If e,N*> # e,N, then R is serial.

Proof. e,N* # e,N implies that R/N” is a direct sum of serial right
modules each of length 2. In view of (4.3), each of these serial
R/N?-modules is injective. Consequently R/N? is quasi-Frobenius. Thus
as R/N? is right serial, the duality between the right ideals and left ideals
of a quasi-Frobenius ring gives R/N? is also left serial. Hence by [5,
Theorem 10] R is serial.

Proof of (4.1). In view of (4.4) we take e,N = 0. So that s, is a simple
projective R-module. Further in view of [5, Theorem 10] we take N> = 0.
Let 7 be the basic ring of R. Then T also satisfies (I) and (II). Further R is
serial if and only if 7 is serial. Thus without loss of generality we can take
R = T. In that case

R=eR®e RO ... D eR.

Each ¢;R (i < t) being of length 2 is injective, and ¢,R is simple. Every
eiRe; 1s a division ring and e;Re; ;| is a one-dimension right e, Re; 4+ |-
vector space. Using the fact that for i < ¢, ¢;R is injective and that ¢;Re; =
Endg (e;R) we get e;Re; is a one-dimensional left e;Re;-vector space;
hence Ne; ;| = e;Re; 1 is a simple left R-module. So each of Rey, . . ., Re,
is serial. As ejRe; = 0 for j # 1, gives Ney = 0. Consequently Re; is
simple, and R is left serial. This proves the theorem.
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