
JFP 27, e14, 41 pages, 2017. c© Cambridge University Press 2017

doi:10.1017/S0956796817000053

1

The calculus of dependent lambda eliminations�

AARON STUMP

Computer Science, The University of Iowa, Iowa City, IA, USA

(e-mail: astump@acm.org)

Abstract

Modern constructive type theory is based on pure dependently typed lambda calculus,

augmented with user-defined datatypes. This paper presents an alternative called the Calculus

of Dependent Lambda Eliminations, based on pure lambda encodings with no auxiliary

datatype system. New typing constructs are defined that enable induction, as well as large

eliminations with lambda encodings. These constructs are constructor-constrained recursive

types, and a lifting operation to lift simply typed terms to the type level. Using a lattice-

theoretic denotational semantics for types, the language is proved logically consistent. The

power of CDLE is demonstrated through several examples, which have been checked with a

prototype implementation called Cedille.

1 Introduction

Lambda encodings are schemes for representing datatypes and related operations as

pure lambda terms. The Church encoding, where data are encoded as their own fold

functions, is the best known (Church, 1941), and is typable in System F (Fortune

et al., 1983; Böhm & Berarducci, 1985). Lambda encodings were abandoned as

a basis for constructive type theory almost thirty years ago, due to the following

problems, identified some time ago by several authors (Coquand & Paulin, 1988;

Werner, 1992):

1. Accessors (like predecessor for numerals, or head and tail for lists) are provably

asymptotically inefficient with the Church encoding (Parigot, 1989).

2. Induction principles are not derivable for lambda encodings (Geuvers, 2001).

3. Large eliminations, which compute types from data, are not possible with

lambda-encoded data, at least not in normalizing type theories. This is because

such theories distinguish different levels of the language, such as terms, types,

kinds, etc., and one cannot apply a function at one level to compute a term

at a higher level. Also, using impredicative quantification ∀X : � one level

up leads to failure of normalization, and hence logical consistency (Coquand,

1986).

4. Without large eliminations, it is not possible to prove basic negative facts

about lambda-encoded data, like 0 �= 1 (Werner, 1992).

� I gratefully acknowledge NSF support of this project under award 1524519, and DoD support under
award FA9550-16-1-0082 (MURI program).

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

2 A. Stump

On the positive side, there is one powerful benefit of typed lambda encodings, not

available with primitive datatypes:

• Higher order encodings – where datatypes contain embedded functions whose

types have negative occurrences of the datatype symbol – are permitted without

violating normalization. With primitive datatypes as in Coq or Agda, negative

occurrences of the datatype in the datatype definition very easily lead to failure

of normalization.

Parigot (1988) solved the first problem with an alternative lambda encoding, which

is typable in System F plus positive-recursive types, where accessors are computable

in constant time, as expected. By Geuvers’s (2001) result, there is no alternative but

to add something to the core impredicative dependent type theory, to solve even just

the problem of induction. The present paper proposes two new type constructs for

this, called constructor-constrained recursive types and lifting. The former deepens

earlier work by Fu and Stump (2014) on System S, which solves the problem of

induction using a typing construct called self types to allow the type to refer to the

subject of the typing via bound variable x in ιx.T . To prove consistency, they rely

on a dependency-eliminating translation to System Fω plus positive-recursive types.

This method is not applicable to analyze a system with large eliminations, where

dependence of types on terms is fundamental.

In the present paper, a deeper analysis of intrinsically inductive lambda encodings

is undertaken, with a direct lattice-theoretic semantics, which can account for large

eliminations. In the rest of this section, the two new features that enable intrin-

sically inductive lambda-encoding and large eliminations with lambda-encodings,

respectively, are surveyed. Then, we turn to the definition (Sections 2 and 3) and

analysis (Sections 5 and 6) of the new type theory incorporating these features,

called the Calculus of Dependent Lambda Eliminations (CDLE). This system is a

type-assignment system, not suitable for implementation. An algorithmic approach

to CDLE, which has been implemented in a prototype tool called Cedille, is then

considered, together with examples (Sections 7 and 8). A comparison with related

work is in Section 10. We begin by looking in a little more detail at the problems

with lambda encodings in pure type theory.

1.1 The problems, in more detail

Church’s (1941) encoding of natural numbers in untyped lambda calculus defines

each numeral n as follows:

λs.λz. s · · · (s
︸ ︷︷ ︸

n

z)

With this encoding, every function on the natural numbers is to be computed by

iteration, and numbers are identified with iterators. Kleene found a clever way to

compute the predecessor of Church-encoded n in this framework, but the operation

requires O(n) reduction steps, instead of the expected O(1). This limitation has

been stressed many times in the literature as a point against lambda-encodings.

But Parigot (1988) solved this problem some time ago, with an encoding where

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

The calculus of dependent lambda eliminations 3

data are represented not as iterators but as recursors. Every call to the iterated

function is presented with the predecessor number as well as the result of iteration

on that number. So, 2 is encoded as λs.λz. s 1 (s 0 z). While in theory the space

required for normal forms is exponential, in practice closure-based implementations

of lambda calculus compute efficiently with Parigot encodings, as has been found in

several studies (Koopman et al., 2014; Stump & Fu, 2016). And Parigot encodings

can be typed in a normalizing extension of System F with positive-recursive types

(cf. Mendler (1988), Abel & Matthes (2004)). So efficiency of accessors is not a

problem for lambda encodings in total type theory, if one uses the Parigot encoding.

Let us consider then the problem of induction. Based on the Church encoding

in untyped lambda calculus, Fortune et al. (1983) proposed an encoding of natural

number n in the second-order lambda calculus; i.e., System F (Girard et al., 1989):

ΛX.λs : X → X.λz : X. s · · · (s
︸ ︷︷ ︸

n

z)

(Here, we are writing ΛX for abstraction over types.) This idea was extended

to a schematic encoding for a class of inductive datatypes by Böhm and Berar-

ducci (1985). An even more general encoding for inductive datatypes in the Calculus

of Constructions (CC) was proposed by Pfenning and Paulin-Mohring (1989). The

type for natural numbers in these typed encodings is

Nat = ∀X.(X → X) → X → X

The constructors Z (zero) and S (successor) are defined in the following way:

Z = ΛX.λs : X → X.λz : X.z

S = λn : Nat.ΛX.λs : X → X.λz : X.s (n X s z)

The definition of Nat above is second order, but not dependent. So, it is sufficient

for computation – and indeed one can define the basic numeric functions using it –

but it is not adequate for proofs. For example, one can define addition thus

add = λn : Nat.λm : Nat.n Nat S m

And one might then wish to prove a theorem like commutativity of addition

∀n : Nat.∀m : Nat.Eq Nat (add n m) (add m n)

This is standardly proved by induction (with two subsidiary lemmas also proved by

induction). Under the Curry–Howard correspondence widely used in constructive

type theory, a proof of such a theorem is a closed term, which inhabits that dependent

type, using a standard representation of Leibniz equality Eq in type theory. So for

induction, needed for proving such theorems, we are seeking an inhabitant of the

type

∀P : Nat → �.(∀n : Nat.P n → P (S n)) → P Z → ∀n : Nat.P n

Geuvers (2001) proved that this type cannot be inhabited in second-order dependent

type theory, for any choice of Nat : �, S : Nat → Nat, and Z : Nat. This remarkable

result, proved by a model construction, would seem to close the door on lambda

encodings for inductive theorem proving. This is the first main problem.

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

4 A. Stump

Another way to see the difficulty is to consider how to extend the definition of

Nat

Nat = ∀X.(X → X) → X → X

to a dependently typed version. So the goal is to define numbers not as their own

iteration principles, but rather as their own induction principles. We must go from a

type X : � to a predicate P : Nat → �. And instead of step and base case of iteration

of type X → X and X respectively, we need step and base cases of induction. One

could try out something like the following:

Nat = ∀P : Nat → �.(∀x : Nat.P x → P (Sx)) → P Z → P ?

There are several issues here. First, the definition needs to be recursive, if we are to

define Nat in terms of predicates P on Nat. Fortunately, the occurrence of Nat on

the right-hand side of this equation is positive, so we do not violate the positivity

requirement needed to preserve normalization. But then we have some puzzles. The

definition needs to refer to the constructors S and Z for this datatype. But how

could we hope to define those prior to this definition, since they are operations on

the type Nat? Even if somehow some simultaneous definition were possible, we have

the question of what to put for the question mark. An intrinsically inductive natural

number n must prove any given property P for n itself, given proofs of the step

and base cases. It is completely unclear a priori how one could set this up. Indeed,

Geuver’s result implies that there is no way to do this, without an extension to the

type theory. We will how this is solved with CDLE, in Section 1.2.

The second main problem is that of large eliminations, or computing types by

recursion on terms. In System F, with the usual definition of the Nat type, large

eliminations are impossible, since to compute anything recursively from n of type

Nat, we must first instantiate the universally quantified type variable in the definiens

of Nat, to the type which we will compute by recursion on n. In order to compute

a type, this instantiation should be by �, since this is the type for types (and we are

seeking to compute a type). But, it is well known that positing that “type” is a type

(i.e., � : �) leads to failure of normalization for the language (see Coquand (1986)

and Meyer & Reinhold (1986)).

So, there is no way to compute a type by recursion on a Nat in System F; in

other words, large eliminations are not possible. This is bad enough, but there is

another undesirable consequence. The usual proof in type theory that constructors

have disjoint ranges – so for example, 0 �= 1 – relies on large eliminations. Leibniz

equality states that equal expressions satisfy the same predicates, and using large

eliminations we can define a predicate P on natural numbers n, which is True if n

is zero and False otherwise. Here, True can be taken as any inhabited type, such

as ∀X : �.X → X; and False as any uninhabited one, like ∀X : �.X. If 0 equals

1, then P 0 implies P 1. Since P 0 is True and P 1 is False, we can inhabit False

from an assumption that 0 equals 1. Without large eliminations, this proof method

fails, and indeed as Werner (1992) argues, the erasure of the statement of Leibniz

equality of 0 and 1 is just ∀P .P → P , where one erases types of CC by dropping

all term parts of types. So if we could inhabit (Eq Nat 0 1) → ∀X : �.X in CC,

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

The calculus of dependent lambda eliminations 5

we could also inhabit True → False in System Fω (to which one erases CC terms

and types); but this type is not inhabited. So not only does the proof method using

large eliminations fail, the type 0 �= 1 simply cannot be inhabited, or else its erasure

True → False would be, too (and the latter is not).

Traditionally, the solution proposed to these problems has been to add primitive

inductive types to type theory. One way is to follow the methodology of Martin-

Löf (1984) and Constable et al. (1986), and work with open type theories, where

new inductive types can be added as extensions of the theory. This approach has

been proposed also for impredicative type theory, by Coquand and Paulin (1988).

Alternatively, one can define a closed type theory with type and term constructs

for some class of inductive types. This is the approach of the Calculus of Inductive

Constructions developed by Werner (1994), which is the foundation of the Coq

interactive theorem prover (The Coq development team, 2015). One can also find an

interesting intermediate approach in the literature: in Pfenning and Paulin-Mohring’s

(1989) approach, inductive types are lambda-encoded but their induction principles

and associated reduction rules are added as extensions of the theory.

This paper proposes new solutions to the two main problems of induction and

large elimination for lambda-encoded data, in a closed type theory, without primitive

inductive types or primitive induction. Let us take a brief initial look at the two new

typing constructs.

1.2 Constructor-constrained recursive types

To define intrinsically inductive lambda-encodings, we begin with the dependent

intersection types of Kopylov (2003). We will denote these types with prefix notation

ιx : T .T ′ instead of Kopylov’s x : T ∩ T ′. Let S and Z be meta-level abbreviations

for λn.λs.λz.s (n s z) and λs.λz.z, respectively. Also, we will make use of a top type

U, inhabited by all closed λ-abstractions. Now at the meta-level, define a sequence

of types by recursion on meta-level natural number k, with increasing support for

dependent typing as follows:

Nat0 := U
Natk+1 := ιn : Natk.∀P : Natk → �.

(∀n : Natk.P n → P (S n)) → P Z → P n

Natk+1 denotes the subset of Natk for which induction holds, for predicates on Natk .

We use intersection types, because the natural proof that n is inductive may be

identified, in a type assignment system such as we will consider, with n itself. This

striking observation is due to Leivant (1983). We will see this in more detail below

(Section 4).

Now, the goal is to internalize the limit of this sequence of types as a single

type �, using a positive-recursive type. This is not possible with standard forms of

recursive types, due to type dependency. For suppose, we tried to define � as

μNat :�. ι n :Nat.

∀P :Nat → �. (∀ n :Nat. P n → P (S n)) → P Z → P n

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

6 A. Stump

To kind this type, we would have to kind (P Z), which requires showing that λs.λz.z

can be assigned type Nat. To do this, we would unfold the definition of Nat, and

then before we could add local variables s and z to the context, we would be forced

again to kind (P Z), since this would be the type for z. There is a circularity here,

which System S avoided by using an ad-hoc form of mutually recursive types (Fu

& Stump, 2014).

Here, we handle the problem with a closer connection to the semantics for types

we will develop. We introduce the novel type form ν X : κ | Θ. T ′, for what we call

constructor-constrained recursive types. Here κ is a kind, and Θ is a set of typings

that hold for U and are preserved by T ′. We will define � to be

ν Nat :� | S ∈ Nat → Nat, Z ∈ Nat.ι n :Nat.

∀P :Nat → �. (∀ n :Nat. P n → P (S n)) → P Z → P n

Semantically, this will be interpreted as the greatest lower bound of the decreasing

sequence of meanings for Natk , defined above. The key new idea is to include this

set Θ (here, S ∈ Nat → Nat, Z ∈ Nat) of typings, which hold for U and are

preserved as we pass further into the sequence. This is so that we can kind the

body of the ν-type. For the semantic analysis, it will turn out to be critical for Θ

to hold not just for the decreasing sequence of meanings, but also for the greatest

lower bound of that sequence. Without some restriction, this appears not to be

guaranteed. Here, we require that each typing constraint in Θ must be of the form

Πx1 : T1. · · · Πxn : Tn. T , where the ν-bound variable occurs only positively in

T1, . . . , Tn, and only at the head of T (i.e., T is either X or X applied to some

X-free expressions). Nat → Nat meets this requirement, as a simple example, but so

do more complex types.

CDLE’s type system has a rule for folding and unfolding ν-types. There is also

a rule for typing of constructors: Γ 	 t : [N/X]T is derivable for all t ∈ T in the

constructor set Θ, once a ν-type N = ν X :κ | Θ. T ′ has been kinded in context Γ.

1.3 Lifting terms to the type level

The basic idea for supporting large eliminations with lambda encodings is to lift

expressions explicitly from the term level of the language to the type level. While it

is well known that one cannot lift the entire term language to the type level without

losing normalization (Coquand, 1986), there is no problem with lifting simply typed

terms. For example, the term λs.λz.s (s z) representing 2 in the Church encoding can

be lifted to the type level as λs : κ → κ.λz : κ.s (s z), for any particular kind κ (for

example, �, the kind which classifies types). Certainly the ability to do arithmetic

with simply-typed lambda encodings is limited (cf. Leivant (1991)). But typically for

large eliminations, one seeks just to do a single fold over the datatype to compute

a type from the data. For example, for statically typed printf, as proposed by

Augustsson (1998), one wishes to compute the type of the rest of the arguments to

printf from the format string. This requires just a single fold.

CDLE introduces a novel construct ↑L t, representing the type obtained by lifting

a simply-typed term t to the type level. The type L is a lifting type, which serves to

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

The calculus of dependent lambda eliminations 7

constrain the type of t to be simply typed, and also shows how that type should be

lifted to a kind. For example, to lift Church-encoded 2 to the type level, one writes

↑(∗→∗)→∗→∗ 2, where ∗ is a primitive lifting type used to represent the kind �. We

are not lifting 2 at its polymorphic type ∀X : �.(X → X) → X → X, of course, as

this type is not permitted at the kind level. Instead, we are lifting an instantiation

(X → X) → X → X of this type, where ∗ indicates the instantiation points.

One technical issue that must be addressed with this idea is the presence of

variables, which occur free inside a lifting expression. For a simple example, suppose

we have a free variable x of type ∀X : � :X → X. , and consider this type, where x

is being instantiated to ∗:

↑∗→∗ λy.x y

It is tempting always to push lifting across λ-abstractions, but if we do that here,

we will get

λy : �.↑∗ (x y)

The body is not typable, because x (instantiated to have type ∗ → ∗) is being applied

to a type, namely y of type �.

One can imagine several solutions to this problem. Here, we opt not to push

lifting across a series of λ-abstractions unless the body is of the form x t̄, where x

is bound in that series. We will form type-level β-redexes for the arguments t̄, in

case they are not headed by a variable in the series. So, we will lift the successor

λs.λz.s (n s z) of Church-encoded n to

λ s :� → �. λ z :�. s ((↑(∗→∗)→(∗→∗) λs.λz.n s z) s z)

Despite this trick, we will still need some additional conversion principles for lifting,

which we will see below.

Note that in this paper, to avoid further technicalities, we only formalize lifting

pure simple types over ∗. The Cedille implementation, however, also supports the

obvious extension of this mechanism to simple types whose domain types are not

lifting types, like ∗ → Nat → ∗. This example lifts to the kind � → Nat → �.

2 Syntax

Figure 1 gives the syntax of CDLE. We are separating clauses of the grammars

with ||, to avoid confusion with the single vertical bar in the syntax for ν-types.

We use ∀ consistently in the types for functions for which no argument is explicitly

given when the function is called. So these are implicit products, as introduced by

Miquel (2001). Π is used for explicit products, where an argument is required when

applied. We do not use kind-level implicit products, so the bound variable in any

type-level λ-abstraction must be annotated.

The type U is a universal type, inhabited by all closed λ-abstractions. In the

construct νX : κ | Θ.T , the scope of bound variable X is Θ and the body T . We

are using ν instead of μ, because our semantics will make νX : κ | Θ.T the greatest

fixed-point of T . Nevertheless, we will focus here on using this type for inductive

datatypes, not coinductive ones (which are outside the scope of this paper). Several

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

8 A. Stump

Fig. 1. Syntax of CDLE, and typing contexts.

rules related to ν-types will make use of a notation Uκ for a top type at kind κ. We

define this by recursion on κ:

U� = U
UΠ x:T . κ = λ x :T .Uκ

UΠX:κ. κ′ = λX :κ.Uκ′

We usually elide the final “, ·” from constructor sets Θ and typing contexts Γ. We

use other standard notations for typed lambda calculus, in particular T → T ′ for

Π x :T .T ′ when x is not free in T ′. The type ι x :T .T ′ is a dependent intersection

type, as introduced by Kopylov (2003). We use t ∈ T to denote a constraint that

term t has type T , as opposed to a declaration of a variable x to have type T

(written x : T). Here, we see one unusual feature of the type system, which is that

the context may contain hypotheses that a term has a given type (t ∈ T). This

feature comes in with the constructor-constrained recursive types ν X :κ | Θ. T . We

will see how to avoid it when we turn to the Cedille implementation of CDLE

(Section 7). We implicitly assume that Γ does not declare any variable x or X twice,

and that bound variables are renamed to enforce this. If the set Θ is empty, we may

write ν X :κ. T instead of ν X :κ | Θ. T .

3 Type assignment

We consider now the type assignment rules for CDLE. These include a number of

features that would make them unsuitable for direct use in a practical implementa-

tion. By accepting some non-algorithmic features, we can more easily establish, in

CDLE, a firm theoretical foundation for the practical implementation of dependent

typing based on pure lambda encodings. We will see how this works out when we

turn to the Cedille implementation (Section 7).

The typing rules for terms and constructor sets are in Figure 2. We also use

kinding rules for types, in Figure 3. Figure 4 gives kinding rules for constructor sets,

and superkinding rules. (Note that the � in the superkinding judgment is considered

part of the syntax of the judgment, not a separate form of expression.) Figure 6

defines judgements imposing the restriction mentioned above on the form of types in

constructor sets Θ. To express our positivity requirement for kinding ν-types, we use

a judgment X ∈p T for p ∈ {+,−}. The definition is unsurprising, so we relegate it

to the Appendix. Note, however, that a more flexible approach is proposed in Abel

and Matthes (2004), using kind-level variance annotations. Adding these to CDLE

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

The calculus of dependent lambda eliminations 9

Fig. 2. Typing of terms and constructor sets.

Fig. 3. Kinding of types.

should be straightforward future work. We also write FV(T) for the set of free

variables (term and type) in T , and decl(Γ) for the set of variables (term and type)

declared in Γ via x : T or X : κ. We write terms(Θ) for the set of terms t with

constraint t ∈ T listed in Θ for some T .

Our system has a direct-computation typing rule, as in Nuprl (Constable et al.,

1986). This rule uses a relation =β , which is just standard β-equivalence of pure

untyped lambda calculus. Direct computation allows us to use a more general typing

rule for λ-abstractions: In the premise, we apply the λ-abstraction, rather than typing

its body. Note that the rule also implies type preservation under β-reduction; the

soundness of this will be established with our semantics. CDLE has forward and

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

10 A. Stump

Fig. 4. Kinding of constructor sets, and superkinding.

Fig. 5. Computation rules for conversion.

backward conversion rules for typing, using a directed conversion relation 	. The

computation rules (central axioms) for 	 are given in Figure 5. Additional rules

including transitivity, reflexivity, and rules making the relation a congruence are

relegated to the Appendix. Note that the congruence rules augment the context

when relating the bodies of abstractions. Using a directed (non-symmetric) relation

just means that it may be necessary to perform a sequence of forward and backward

conversions; the key point is that the backward conversions require an additional

kinding derivation. One could also consider a conversion rule for kinding, but

simple situations that would require this can be solved by type-level η-expansion,

and including kind-level conversion complicates inversion on kinding. So to avoid

such distractions, this is omitted from CDLE. We will consider the nature of CDLE

conversion further in Section 5.1 below. Several of the rules deal with lifting. We

will see more about how they work below (Section 9.2).

The kinding rule for types ↑L t (in Figure 3), uses a meta-level function lift(−),

defined in Figure 7, which maps lifting types to kinds as follows. The idea is to lift

a type like ∗ → ∗ to the kind � → �. We could also allow a lifting type Π x :T .L

to enable lifting the bodies of abstractions without lifting the classifier for the

bound variable, for quantifications over terms. We omit this here for simplicity, and

because it is not required for our examples. We cannot lift implicit products, because

CDLE does not have these at the type level, and adding them introduces semantic

Fig. 6. Definition of helper judgments for constructor sets.

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

The calculus of dependent lambda eliminations 11

Fig. 7. Meta-level functions related to lifting.

complications. We also use a meta-level function |L|X , also defined in Figure 7, to

turn a lifting type into a type, replacing ∗ with X.

Figure 7 defines a third function lift−,−(−), which attempts to lift a term to a type

(but may be undefined). We use vector notation t̄ for a possibly empty sequence

t1, . . . , tn of terms, where · denotes the empty sequence. We write |̄t| for the length

of the sequence. The notation x t̄ means that x is applied in a left-nested fashion to

the terms t̄. This lift−,−(−) function attempts to push the lifting operator (↑) down

into a λ-abstraction. Roughly speaking, it tries to turn ↑ (λx̄. xi t̄) into λ x̄ : κ̄. xi T̄
′,

where the kinds κ̄ are derived from the lifting type given as the first argument to

lift−,−(−), and the types T̄ ′ are new lifting types derived from the arguments t̄.

In describing these syntactic operations, we use some special notational conven-

tions in Figure 7 with the meta-variable v, which ranges over sequences of bindings

x �→ L (where L is a lifting type). In the first equation for the liftargs−,−(−) helper

function, we write λv.t to mean that all the variables listed in t should be λ-bound

around t, in the order they appear in v. Also, we write v → L to mean that the lifting

types in v should be added as domain types, in order, for an arrow type around

L. And we write t v to mean that the variables in v should be given as arguments,

in order, for an application of t. These notations are used to implement the idea

discussed in Section 1.3, of creating type-level β-redexes when pushing lifting to

arguments.

4 Church-encoded natural numbers

As discussed in Section 1.2, we use the following definition for the type � of the

natural numbers, where S and Z are meta-level abbreviations for λn.λs.λz.s (n s z)

and λs.λz.z:

ν Nat :� | S ∈ Nat → Nat, Z ∈ Nat.

ι n :Nat. ∀P :Nat → �.

(∀ n :Nat. P n → P (S n)) → P Z → P n

These are Church-encoded numbers, because the type for the input s for successor,

namely ∀ n : Nat. P n → P (S n), uses an implicit product (∀). For the Parigot

encoding, one just changes this to an explicit product (Π). We will mostly focus on

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

12 A. Stump

the Church encoding in this paper, since it is somewhat simpler and more familiar

than the asymptotically more time-efficient Parigot encoding.

Let us see now in detail how to kind this type, using the ν-kinding rule as follows:

X ∈+ T

Γ 	 κ : � CtorsX Θ Γ, X : κ 	 Θ : �

Γ 	 [Uκ/X]Θ Γ, X : κ,Θ 	 [T/X]Θ Γ, X : κ,Θ 	 T : κ

Γ 	 ν X :κ | Θ. T : κ

The first premise is obvious, though note that Nat occurs positively but not strictly

positively; the occurrences in the body of the type are in the domain parts of an

even number of abstractions. The second premise is trivial. For the third premise,

we can confirm easily that the constructor set for this example satisfies CtorsNat,

as required. For the fourth premise: with Nat : � in the context, we can kind the

constructor set S ∈ Nat → Nat, Z ∈ Nat. For the fifth, we can assign U → U to S ,

using our direct-computation rule as follows:

Γ, n : U 	 λs.λz.s (n s z) : U S n =β λs.λz.s (n s z)

Γ, n : U 	 S n : U
Γ 	 S : U → U

We can also assign U to Z .

For the sixth premise, we must show that our constructor set is preserved by the

body of the ν-type. So in the context (call it Γ) Nat : �, S ∈ Nat → Nat, Z ∈ Nat,

we must show the following typings, where we write NAT to abbreviate the body of

the ν-type:

• Γ 	 S : NAT → NAT

• Γ 	 Z : NAT

Let us just consider the second (the first also holds). Expanding NAT, we see we

must show

Γ 	 Z : ι n :Nat. ∀P :Nat → �.

(∀ n :Nat. P n → P (λs.λz.s (n s z))) →
P (λs.λz.z) → P n

From our constraints in Γ, we have that Γ 	 Z : Nat. So, we can assign the first

type in the dependent intersection. It remains to assign the second type, where n is

instantiated with Z . For this, we can apply some introduction rules (together with

direct computation) to reduce the problem to the following typing, where types like

P Z are kindable, from the constraints in Γ:

Γ, P : Nat → �, s : ∀n : Nat.P n → P (S n), z : P Z 	 z : P Z

This holds by the variable typing rule.

For the seventh premise, we must be able to assign kind � to the body of the

ν-type, assuming Nat : � and the constructor set have been added to the context.

The interesting observation for this is that the applications of P can be kinded. For

example, to kind P (S n), we use the constraint S ∈ Nat → Nat to assign type Nat

to S n.

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

The calculus of dependent lambda eliminations 13

Fig. 8. Equality type satisfying axioms J and K both.

If we have a term of type �, then by unfolding the ν-type and then taking the

second projection of the dependent intersection, we can use that term for dependently

typed iterations; for example, inductive proofs. Of course, we can also use it for

simply typed iterations as a special case, so we can implement basic terminating

functions like addition, multiplication, predecessor, and so forth, in the usual way

for Church-encoded numbers. We will see this more in our Cedille implementation

below (Section 8).

4.1 A note on equality types

It may be of interest to some readers to know that CDLE validates axiom K for

equality types (Hofmann & Streicher, 1998). K , which is equivalent to uniqueness of

identity proofs, is all one must add to Martin-Löf Type Theory (MLTT) to support

dependent pattern-matching, and thus is desirable for practical programming with

dependent types (Goguen et al., 2006). But K is incompatible with Homotopy

Type Theory (HoTT) (Univalent Foundations Program, 2013), where distinguishing

proofs of the same equality is essential to the approach. So CDLE is not appropriate,

without significant modification, for HoTT.

In more detail, CDLE allows one to define an equality type with both J- and

K-style elimination. The definition is in Figure 8, where we are writing T ∧ T ′ for

ιx : T .T ′ when x �∈ FV(T ′). Note that here, the top type UA→� that is used when

kinding
JK
= is defined (at the meta-level) to be λx : A.U. So we indeed have λx.x

in UA→� a, when checking that the constructor set is satisfied by the top type. We

can easily prove, using similar reasoning as in Section 4 above, that λx.x has type

∀A : �.∀a : A. a
JK
=A a.

Any relation purported to be an equality relation in type theory should be

substitutive, and indeed, given t of type a
JK
=A b, we may use the first part of

its conjunctive type to transform any type containing a into one containing b, as

expected. And, as expected for axiom J , to prove something about such a term t as

a proof of a
JK
=A b, it suffices to reason just about λx.x as a proof of a

JK
=A a. But,

we also have the second conjunct of the type a
JK
=A b, which allows us to prove any

property of u of type a
JK
=A a by proving it for λx.x of that type. This is axiom K .

5 Semantics of types

To define a semantics for types, we need a few preliminary definitions. We will work

with set-theoretic partial functions for the semantics of higher kinded types. An

application of such a function is undefined if the argument is not in the domain

of the partial function. (As standard in set theory, such functions are themselves

sets.) We consider any meta-level expressions, including formulas, which contain

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

14 A. Stump

undefined subexpressions to be undefined themselves. In lemmas and theorems,

if we affirm formulas involving possibly undefined expressions, we are implicitly

affirming all those expressions are defined. We write A → B for the set of meta-level

total functions from set A to set B; that is, total functional subsets of A × B. We

write (x ∈ A �→ b) for the (meta-level) function mapping input x in the set A to b.

For our semantics, we prove results about closed terms only, though for the

semantics of the lifting operation we will have to consider open terms. Let L be the

set of closed lambda abstractions (i.e., terms of the form λx.t with no free variables),

and let N ⊆ L be the set of closed normal-form terms. We will write � for (full)

β-reduction. We also write =cβ for standard β-equivalence restricted to closed terms,

and [t]cβ for the set {t′ | t =cβ t′}. The latter operation is extended to sets S of terms

by writing [S]cβ for {[t]cβ | t ∈ S}. In a few places, we write nf(t) for the (unique)

normal form of term t; this is undefined if t has no normal form. We write Ω for an

arbitrary term without normal form, like (λx.x x) (λx.x x).

Definition 1 (Reducibility candidates)

R := {[S]cβ | S ⊆ L}.

A reducibility candidate (element of R) is a set of β-equivalence classes of λ-

abstractions. We will use this definition to develop as technically light a semantics

as possible, while still being sufficient to show logical consistency (Corollary 14

below). Further adaptation would be necessary to show normalization, but this is

not needed for our consistency proof. One exception is that we will need to reason

about normalization for proving soundness of lifting. Throughout the development,

we will make use of a choicefunction ζ. Given any set E of terms, ζ returns a

λ-abstraction if E contains one, and is undefined otherwise.

Lemma 2

If E = [λx.t]cβ , then [ζ(E)]cβ = E.

Lemma 3 (R is a complete lattice)

The set R ordered by subset forms a complete lattice, with greatest element [L]cβ
and greatest lower bound of a non-empty set of elements given by intersection.

Lemma 4

[N]cβ ∈ R, and ∅ ∈ R.

Figure 9 defines our semantics for types and kinds, by mutual structural recursion.

The semantic functions take arguments σ and ρ, in addition to the type or kind to

interpret. We require that σ maps term variables to terms, and ρ maps type variables

to sets. The interpretations of types and kinds are then also sets. We will get more

precise descriptions of the domains and codomains of the semantic functions later.

The interpretation of ν-types uses the notation Fn(a) for (meta-level) iteration of the

function F n times on a: F(F(. . . F(a))). The operation ∩κ,σ,ρ used in the semantics

of ν-types, and the value ��,σ,ρ used in the semantics of U, are defined in Figure 10.

The meaning of a type can be empty, and so in interpreting ∀ x :T .T ′ we must take

the intersection using ∩�, which returns the top element of R if the interpretation

of T is empty. The meaning of a kind cannot be empty, however, so we do not

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

The calculus of dependent lambda eliminations 15

Fig. 9. Semantics for types and kinds (see also Figures 10 and 11).

need to worry about this situation when interpreting ∀X :κ. T . For the semantics of

Πx : T .κ, if �T �σ,ρ �∈ R, then the meaning of the Π-kind is undefined.

An important principle in the definition of this semantics is that if the meaning

of a type is defined, then it satisfies the semantic counterparts of the conversion

rules in Figure 5. So loosely, if T 	 T ′ and �T � is defined, then �T � = �T ′� just

based on the definition of �T � (not any auxiliary information). This greatly simplifies

the semantic connection between conversion and typing for the proof of semantic

soundness (Theorem 13 below).

Figure 11 defines a semantic lifting function to lift terms to semantic functions

at the (set-theoretic) level where they are in the interpretations of kinds. We do not

need to carry the valuations σ and ρ through the definition, since we have restricted

lifting types to be simple types over ∗. A different kind of valuation θ is used, which

maps term variables to pairs (L, S) where L is a lifting type and S is a set. If we

included types Πx : T .L as lifting types, then we would need to make use of σ and

ρ in the definitions in Figure 11.

5.1 About the conversion relation

Most type theories are defined using a congruence relation on types, which is then

shown to be algorithmic by proving its confluence and normalization. For CDLE

– and, it seems likely, any system combining dependent and recursive types – the

situation is somewhat more complicated, as indicated by the following theorem:

Theorem 5

There is no recursively enumerable convertibility relation between types in context

which is sound and complete with respect to equality of interpretations.

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

16 A. Stump

Fig. 10. Pointwise-extended lattice operations.

Fig. 11. Semantic lifting 〈〈 〉〉.

Proof

We can reduce extensional equivalence of primitive recursive numeric functions

to this problem. That relation is not r.e., since if it were, it would be decidable

(inequivalence is obviously r.e.), and it is known not to be so. Suppose f and g have

type � → �, and consider the following two types, where S denotes successor for

Church-encoded numerals as above:

∀P :� → �. ν X :� → �. λ n :�. P (f n) → X(S n)

∀P :� → �. ν X :� → �. λ n :�. P (g n) → X(S n)

These types have the same interpretation (with empty functions for σ and ρ) iff f

and g return the same values for all inputs n :�. �

So CDLE must be defined using a particular incomplete conversion relation.

Further use of the theory will be required to see if further (semantically justified)

principles need to be added for practical use. Additional analysis of this relation,

such as studying decidability or complete formulations for subrelations, must remain

to future work.

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

The calculus of dependent lambda eliminations 17

5.2 Reasoning about lifting

To prove soundness of the conversion and kinding rules for lift types ↑L t, we

need some intricate and interesting reasoning, summarized in the following lemmas.

Several of these can be viewed as semantic lemmas about simple typing. To justify

the main conversion axiom about lifting, we have the following lemma:

Lemma 6

Suppose liftL,v(t) is defined, and suppose that θ(x) = (S, L) holds for some S ∈
�lift(L)�∅,∅ iff v(x) = L. Suppose also that nf(t) is defined, and FV(t) ⊆ dom(θ). Then,

〈〈t〉〉L∅,∅,θ = �liftL,v(t)�∅,ρ′ , where ρ′(x) = S iff θ(x) = (S, L′) for some L′.

The main lemma needed to justify kinding of lift types is the following, where we

first introduce a definition relating valuations θ used in semantic lifting (Figure 11)

and the valuations σ mapping term variables to terms.

Definition 7 ((θ, R)-constrained)

Suppose θ is a given valuation of the sort used in Figure 11, and R ∈ R is also

given. Then σ is called (θ, R)-constrained iff the following holds: σ(x) ∈ �|L|X�∅,[X �→R]

iff θ(x) = (S, L).

Lemma 8 (Main lifting lemma)

Let t be a possibly open term in normal form, and assume a valuation θ with

dom(θ) ⊇ FV(t), and such that for all x ∈ dom(θ), θ(x) = (S, L) iff S ∈ �lift(L)�∅,∅.

Also, make the following main assumption about t and L: for all non-empty R ∈ R,

for all (θ, R)-constrained σ, we have [σt]cβ ∈ �|L|X�∅,[X �→R]. Then, 〈〈t〉〉Lθ ∈ �lift(L)�∅,∅.

This main lemma uses what turns out to be a powerful semantic idea: since

the kinding rule for ↑L t has premise Γ, X : � 	 t : |L|X , we know that we have

σt ∈ �|L|X�∅,[X �→R], for any R ∈ R. This additional quantification over R is crucial for

getting the proof to go through, and leads to other interesting consequences. First,

we get normalization, because we can instantiate R with [N]cβ (the set of closed

normalizing terms).

Lemma 9

Suppose that for all R ∈ R, we have [t]cβ ∈ �|L|X�∅,[X �→R]. Then t is normalizing.

Next we have to note two lemmas, easily proved by induction on the lifting type

L in question.

Lemma 10

Let ρ = [X �→ R], where R ∈ R is non-empty. Then �|L|X�∅,ρ is non-empty.

Lemma 11

Suppose [t1]cβ �∈ �|L1|X�∅,ρ, where ρ = [X �→ R] for some non-empty R ∈ R. Then

for any L2 there exists a term of the form λy.t2 such that [λy.t2]cβ ∈ �|L1 → L2|�∅,ρ
but [[t1/y]t2] �∈ �|L2|�∅,ρ.

With these, we can derive the following strong property about inclusion of

interpretations, which is needed for Lemma 8. The proof is interesting enough

that it is given here in full.

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

18 A. Stump

Fig. 12. Semantics of typing contexts Γ.

Lemma 12 (Trivial semantic subtyping for simple types)

Suppose that for all non-empty R ∈ R, �|L|X�∅,[X �→R] ⊆ �|L′|X�∅,[X �→R]. Then, L = L′.

Proof

The proof is by induction on the structure of L′, considering several cases. We will

refer to the assumption of the theorem as our semantic subtyping assumption. Let L̄

and L̄′ be sequences of lifting types with |L̄| = |L̄′| = n, for some n.

Case: Suppose L is L̄ → ∗ and L′ is L̄′ → La → Lb for some La and Lb. Then, we

can easily violate our semantic subtyping by instantiating R with [N]cβ and taking

[λx̄.λy.Ω]cβ as an element in �|L|X�∅,[X �→[N]cβ] but not in �|L′|X�∅,[X �→[N]cβ].

Case: Suppose L is L̄ → L̄′′ → �, for some non-empty L̄′′, and L′ is L̄′ → �.

Instantiate R in our semantic subtyping assumption with {[λx.x]cβ}. Now, we will

have λx̄.λx̄′′.λx.x ∈ �|L̄′ → L̄′′ → �|X�∅,[X �→{[λx.x]cβ}], where |x̄′′| = |L̄′′|. But this term

is not in �|L̄′ → �|X�∅,[X �→{[λx.x]cβ}] (using the fact that the quantifications imposed by

the semantics of function types are not vacuous, by Lemma 10).

Case: So, we are left with the case where L is L̄ → � and L′ is L̄′ → � (and

|L̄| = |L̄′|). Suppose some Li differs from L′
i, and suppose that i is the greatest

position at which this occurs. Now let La be Li+1 → · · · → Ln → �. We can prove

that L′
i must be a semantic subtype of Li, by the following argument. Assume this is

not the case. Then, there is some non-empty R ∈ R such that E ∈ �|L′
i|X�∅,[X �→R] but

E �∈ �|Li|X�∅,[X �→R]. But then by Lemma 11 there is a term λy.t′ such that [λy.t′]cβ ∈
�|Li → La|�∅,[X �→R] but [[ζ(E)/y]t′]cβ �∈ �|La|X�∅,[X �→R]. Consider the term λx̄.λy.t′. We

have [λx̄.λy.t′]cβ in �|L̄ → �|�∅,[X �→R], by a simple application of the semantics of

function types. But we do not have [λx̄.λy.t′]cβ ∈ �|L̄′ → �|�∅,[X �→R]. This follows

(using also Lemma 10 to instantiate the variables x̄) because E ∈ �|L′
i|X�∅,[X �→R], but

we deduced [[ζ(E)/y]t′]cβ �∈ �|La|X�∅,[X �→R]. So, we have L′
i as a semantic subtype of

Li, and we may then apply the IH to conclude that L′
i = Li. This contradicts the

assumption we made that those types are different. �

6 Soundness for typing

Figure 12 defines a semantics for typing contexts, for purposes of the following main

theorem. In that definition, we write σ� [x �→ t] to mean σ[x �→ t] where x �∈ dom(σ)

(and similarly for ρ � [X �→ S]). Figure 13 defines �κ |X Θ�σ,ρ to be the set of those

elements of �κ�σ,ρ, which satisfy the constraints given by Θ for type variable X.

These two helper notions are used in stating the main theorem below.

Theorem 13 (Soundness of typing and kinding)

If (σ, ρ) ∈ �Γ�, then

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

The calculus of dependent lambda eliminations 19

Fig. 13. Definition of �κ |X Θ�σ,ρ, and semantics of constructor sets Θ.

1. If Γ 	 κ : �, then �κ�σ,ρ is defined.

2. If Γ 	 T : κ, then �T �σ,ρ ∈ �κ�σ,ρ.

3. If Γ 	 t : T , then [σt]cβ ∈ �T �σ,ρ and �T �σ,ρ ∈ R.

4. If Γ 	 Θ : � and Θ = t1 ∈ T1, . . . , tn ∈ Tn, then �T1�σ,ρ ∈ R, . . . , �Tn�σ,ρ ∈ R.

5. If Γ 	 Θ, then �Θ�σ,ρ.

6. If Γ 	 T 	 T ′ and �T �σ,ρ ∈ �κ�σ,ρ for some kind κ, then �T �σ,ρ = �T ′�σ,ρ.

7. Suppose (X : κ) ∈ Γ, and let σ = σ1 � σ2 and ρ = ρ1 � ρ2[X �→ S]. Suppose

also that S ⊆κ,σ1 ,ρ1
S ′ and A ⊆ �κ�σ1 ,ρ1

, with A �= ∅.

a. If Γ 	 T : κ′, �κ′�σ1 ,ρ1
is defined, and X ∈+ T , then

i. �T �σ,ρ[X �→S] ⊆κ′ ,σ1 ,ρ1
�T �σ,ρ[X �→S ′]

ii. ∩κ′ ,σ1 ,ρ1
{�T �σ,ρ[X �→S] | S ∈ A} ⊆κ′ ,σ1 ,ρ1

�T �σ,ρ[X �→∩κ,σ1 ,ρ1
A]

b. If Γ 	 T : κ′ and X ∈− T , then �T �σ,ρ[X �→S ′] ⊆κ′ ,σ1 ,ρ1
�T �σ,ρ[X �→S].

c. If Γ 	 κ′ : �, �κ′�σ1 ,ρ1
is defined, and X ∈+ κ′, then

i. �κ′�σ,ρ ⊆ �κ′�σ,ρ[X �→S ′]

ii. ∩{�κ′�σ,ρ[X �→S] | S ∈ A} ⊆ �κ′�σ,ρ[X �→∩κ,σ1 ,ρ1
A]

d. If Γ 	 κ′ : � and X ∈− κ′, then �κ′�σ,ρ[X �→S ′] ⊆ �κ′�σ,ρ.

8. If �κ�σ,ρ is defined, Γ, X : κ 	 Θ : �, �Θ�σ,ρ[X �→�κ], and CtorsX Θ, then

(�κ |X Θ�σ,ρ,⊆κ,σ,ρ,∩κ,σ,ρ) is a complete lattice.

These parts must be proved by mutual induction on the structure of the assumed

derivation in each part. Parts (1), (2), and (3) of Theorem 13 are statements that the

main judgements of CDLE – superkinding, kinding, and typing, respectively – are

sound with respect to our semantics. Parts (4) and (5) express soundness of two helper

judgements dealing with constructor sets Θ. Parts (5) and (6) express soundness of

directed conversion. Parts (7) and (8) are critical for reasoning about ν-types. Parts

(7ai) and (7ci) express monotonicity of the semantics for type variables occurring

only positively, and parts (7b) and (7d) express antimonotonicity for type variables

occurring only negatively. Parts (7aii) and (7cii) are expressing one part of continuity,

which is used in establishing that the meaning of a ν-type is indeed a fixed-point

of the interpretation of its body; the other ends up following from monotonicity.

Part (8) embodies one of the central insights of constructor-constrained recursive

types: if a constructor set Θ satisfies CtorsX Θ, then it is preserved not just through

the chain of iterates of the interpretation of the body, but also in the limit of that

sequence, its greatest lower bound. Without preservation of Θ in the limit, we cannot

show that the meaning of a ν-type is the appropriate fixed point.

Corollary 14 (Logical consistency)

There is no derivation of · 	 t : ∀X : �.X, for any term t.

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

20 A. Stump

Proof

By Theorem 13 part (3) and the semantics of ∀-types, if · 	 t : ∀X : �.X is derivable,

then t ∈ ∩R. But ∩R is empty since ∅ ∈ R. �

7 Cedille: an implementation of CDLE

I have implemented a system called Cedille based on CDLE. At first glance, this may

seem difficult, because of typing rules like direct computation and the introduction

rule for dependent intersections, which do not fit well into usual approaches to

algorithmic typing. But one insight emerges that helps us resolve these difficulties.

These troublesome features of CDLE are needed solely for kinding recursive types.

Once recursive types are kinded, then it is a relatively simple matter to unfold them

when their inhabitants are eliminated (i.e., applied to arguments). We need never

introduce them, if we are content to use the constructors of the type (from the

constructor sets) as the sole means of constructing inhabitants of recursive types.

This rules out defining alternative versions of operations on lambda-encoded data,

such as Rosser’s alternative definitions of multiplication and exponentiation (though

supporting these would require additional rules in CDLE, to allow typing of non-

constructor terms with recursive types). But this is an acceptable loss to gain the

power of higher order encodings. A final issue is the need to add typings t ∈ T to

contexts, due to the fact that constructor sets contain typings of arbitrary terms.

This issue is resolved in Cedille by introducing names for the constructors, which are

used in place of those arbitrary terms. Note that while the type-checking algorithm

for annotated terms implemented by Cedille is based closely on the definition of

CDLE above, formally defining this algorithm and proving the appropriate relation

to CDLE must remain to future work.

Cedille supports top-level definition of recursive types with the following syntax:

rec X params : indices | ctors = T with defs

Here, params and indices are telescopes of bindings, the first for parameters fixed

for the whole type definition, and the second for indices, which are inputs to the

type constructor X, which may change in the body T of the definition. The ctors

are declarations of constructors; this component of the definition is just like Θ,

except that constraints are of the form x : T , where x is a constructor name, rather

than t ∈ T . The definitions of the constructors named in ctors, using whichever

lambda encoding is being applied, are given in the defs. For example, Figure 14

gives definitions of three standard datatypes: Nat is for Church-encoded natural

numbers, List is for Parigot-encoded lists, and Vector is for Parigot-encoded

vectors (lists indexed by their length). Cedille uses the notation −t for an implicit

(erased) argument, and Λ as a term-level binder for implicit inputs. Applications

of terms or types to types are written with the · operator for parsing reasons. In

datatype definitions only, the special variable self may be used as an implicitly

ι-abstracted variable referring to the subject of the typing.

Let us consider how Cedille kinds the definition of Nat (Figure 14), for a

representative example. Cedille uses Unicode, so Cedille code largely matches the

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

The calculus of dependent lambda eliminations 21

Fig. 14. Cedille definitions of three standard datatypes.

mathematical syntax we have already considered. The constructor sets must first be

typed, assuming the kinding Nat : �. Next, the body is kinded, assuming that self

has the recursive type (applied to any indices). So in this case, self is assumed

to have type Nat when kinding the body. Finally, each constructor definition (the

equations following the with keyword) must be typed. Cedille types a definition

c = t by checking that t has type T under the assumption that the recursively

defined type is equal to its body, with the self variable explicitly ι-abstracted.

There a variety of other small checks to perform as well (the conditions imposed by

CtorsX , the starting condition for kinding using the top type Uκ, and a few others).

Cedille implements local type inference to cut down on the number of annotations

required in terms (Pierce & Turner, 2000). We are either checking a term against

a type or a type against a kind, or else trying to synthesize a type for a term

or a kind for a type. Cedille seeks to instantiate ι-types introduced by recursive

definitions either when checking against an introduction form (an implicit or explicit

λ-abstraction), or when a type is synthesized for the head of an application. The

former is intended just for typing constructor definitions, while the latter is for

use there as well as when terms of recursive type are eliminated. This simple

scheme appears sufficient so far to avoid any explicit reasoning about dependent

intersections on the part of the user.

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

22 A. Stump

Fig. 15. Leibniz equality.

Cedille implements an algorithmic conversion relation based on normalizing term

and type expressions. While this is not strictly speaking justified by Theorem 13

above, I conjecture that the proof may, with some effort, be adapted to show not just

consistency but normalization. I have not invested this effort so far, for the following

reason. Consistency is the crucial property for a type theory, as it tells us that we may

safely avoid reducing some terms, and still know that they would reduce to canonical

values. Normalization is nice in theory, but in practice the enormous computational

complexity of functions, which can be written in type theory means that there are

terms which will cause type checking to run so long as to be practically indistin-

guishable from non-termination. So any type theory that truly requires a bound on

the time required to check terms will have to do more than just prove normalization

(and such theories have, of course, been developed; e.g., Hofmann (2000)).

Cedille itself is coded in Agda. Agda is a dependently typed programming

language under development (in its Agda 2 form) for around a decade. The main

implementation was done by Ulf Norell, with subsequent additions from other

researchers (Norell, 2007). Cedille makes use of the Iowa Agda Library, an alternative

standard library I am developing, currently at a little under 5,000 lines of code. This

library is the basis for my book on Agda (Stump, 2016). While I have not verified

deep properties of the implementation using Agda’s theorem-proving capabilities, I

have expressed a number of simple program invariants using dependent types, and

used type-level computation to simplify and condense some of the code.

8 Basic examples

Now, let us consider some examples demonstrating the features of CDLE, as

implemented in Cedille.

8.1 Inductive reasoning about Church-encoded numbers

First, let us show that we can indeed perform dependent eliminations with Church-

encoded numbers, by proving a basic inductive fact about addition. We can define

Leibniz equality in the usual way, as shown in Figure 15. The statements shown in

the figure are of the form x ⇐ e = e′, for checking expression e′ against classifier

(type or kind) e, and then adding a definition of x to equal e′ to the global context.

So here we define the type Eq for Leibniz equality in a standard way, and then give

an inhabitant refl for reflexive equalities. As noted above, more complex forms of

equality can also be defined using constructor-constrained recursive types, but this

is sufficient here.

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

The calculus of dependent lambda eliminations 23

Fig. 16. Booleans, and true and false types.

Fig. 17. Proof that boolean true is not equal to boolean false.

If we define addition in the standard way, we can then write the following very

basic inductive proof about it, showing that x + 0 = x for all x:

add ⇐ Nat → Nat → Nat =

λ n . λ m . n · (λ n : Nat. Nat) (λ n . S) m .

addZ ⇐ Π x : Nat . Eq · Nat (add x Z) x =

λ x . x · (λ n : Nat . Eq · Nat (add n Z) n)

(λ n . λ u . Λ P . λ v . u · (λ x : Nat . P (S x)) v)

(refl · Nat -Z) .

As is well known, this theorem does not hold simply by reducing add x Z, because

add iterates on x. The term we have given as the definition for addZ has an induction

on x matching this iteration. The induction is carried out by a dependent elimination,

where x is applied, in the second line, to the predicate to be proved. The third line of

the code gives the step case, where u is the proof of P (add n Z), for an arbitrary

predicate P postulated by Leibniz equality, and the return value is then the proof

of P n. The fourth line gives the base case, which follows trivially using conversion.

8.2 True not equal to false

Figure 16 defines the Bool datatype using a constructor-constrained recursive type

to support dependent eliminations on booleans. The figure also gives standard

impredicative definitions for the types True and False.

Using these definitions, we may then write the proof in Figure 17 deriving a

contradiction from an assumption that tt (boolean true) equals ff, where the

notion of equality is again Leibniz equality. Note that this fact is not provable for

Church-encoded booleans in Coq, for instance (Werner, 1992). Here, we instantiate

the variable P from the Leibniz equality with a predicate which uses lifting (the ↑
expression) to compute the type False from boolean ff and True from tt. This

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

24 A. Stump

Fig. 18. Higher order encoding of System F types, and its interpretation.

allows us to cast triv from type True to type False. Using large eliminations is

the standard way to prove this fact with primitive datatypes, but large eliminations

are not available for lambda encodings in other theories. Lifting in CDLE makes

this possible. In the Cedille implementation, we must explicitly introduce the type

variable X (immediately following the ↑ sign), which the term being lifted will use to

indicate the positions in the type which are to be lifted to the kind �.

8.3 Higher order encoding of System F types

Let us see how CDLE allows large eliminations with higher order encodings of

datatypes. We would like to represent the types of System F (constructed by

universal quantification and function-space formation from type variables), using a

higherorder encoding. So we do not want to encode the universally bound variables

as de Bruijn indices, for example. Rather, we will use CDLE’s variables to represent

these System F type variables.

Figure 18 declares the type tp, of kind � to represent System F types. The type

says that for all types X, a tp can take in a function of type X → X → X and also

one of type (X → X) → X, and return a value of type X. The first function is the

one to use if the tp is representing an arrow type (and then the values computed

for the domain and range types will be supplied as the two arguments of type X).

The second function takes in a X → X function and returns a value of type X. Here,

we see the higher order aspect of the encoding. Due to the negative occurrence of

X in the domain type X → X of this type, this would not be allowed as part of an

inductive datatype definition in Coq or Agda, though it could be defined in the pure

λ-calculus fragment of Coq.

But Coq does not have anything like the lifting operation of CDLE, and so one

could not write the type-level function interp-tp of Figure 18, which interprets a

tp as the corresponding actual type of CDLE. This definition lifts the tp t to the

type level, and then applies it to functions, which compute either the arrow type or

the universally quantified type. In the latter case, the higher order encoding presents

us with F of type � → �, which maps any input type to the interpretation of the

encoded body of the universal type. So, we just introduce a universally quantified C

and apply F to that, to compute the interpretation.

For example, we may define the type of polymorphic identify functions as an

inhabitant of tp:

polyid-t ⇐ tp = Λ X . λ arrow . λ forall .

forall (λ x . arrow x x) .

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

The calculus of dependent lambda eliminations 25

If we interpret this value using our interp function, Cedille tells us we get

∀ C : � . (C → C)

To demonstrate the point that we can eliminate data at multiple levels of the type

theory, let us also define a function to compute the size (as a natural number) of a

tp:

size ⇐ tp → Nat =

λ T : tp .

T · Nat

(λ m . λ n . S (add n m))

(λ s . S (s one)) .

Cedille reports that normalizing size polyid-t results in Church-encoded four:

λ s . λ z . (s (s (s (s z))))

It is important to note that in this example, we are using lifting only. Constructor-

constrained recursive types require positivity, which would not hold here. Even

though we do not get a dependent elimination principle for a datatype like tp, we

still gain extra expressive power in CDLE over other impredicative type theories

like that of Coq, due to CDLE’s lifting operation.

8.4 Strong Σ-types

Strong Σ-types can be defined in CDLE, using constructor-constrained recursive

types as shown in Figure 19. As above, we define the type as its own induction

principle. Defining first and second projections is then straightforward. For fst, we

instantiate the predicate variable P with a trivial predicate that always returns A

for any input. But for snd, we use a non-trivial predicate, so that the type which

λ a . λ b . b must inhabit is

Π a : A . Π b : (B a) . (B (fst (mksigma a b)))

This type is convertible with just

Π a : A . Π b : (B a) . (B a)

which is inhabited, as required, by λ a . λ b . b. This is a nice example of how

type refinement, as implemented in languages with dependent pattern matching (Co-

quand, 1992), is also available in CDLE.

One might be concerned that despite the claimed Theorem 13 above, definability

of strong Σ-types could somehow put CDLE afoul of Coquand’s result that the

Calculus of Constructions with strong Σ-types is inconsistent (Coquand, 1986). But

the system considered by Coquand allows the formation of large Σ-types ΣX : κ.κ′,

which are crucially used in the proof of inconsistency. In contrast, the Σ-types

defined in Figure 19 are small, so Coquand’s result does not apply.

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

26 A. Stump

Fig. 19. Strong Σ-types.

Fig. 20. Typed higher order abstract syntax for STLC terms.

8.5 Statically typed higher order abstract syntax

The higher order encoding of System F types in Section 8.3 may leave some readers

wondering if typed abstract syntax can be represented in a similar way. For System

F types have only a trivial kinding structure, which the encoding of Section 8.3

thus did not have to take into account. Figure 20 gives a higher order encoding

of the typed syntax for simply typed lambda calculus. The figure first defines tp,

representing the simple types with a single base type. Constructors arrow and base

for this type are then defined. Then trm is defined, of kind tp → �. Then, trm T

is the type for representations of simply typed terms t with type represented by T.

The definition of trm first takes in the type T for this family of terms, and then a

type X indexed by tp. The cases for application and λ-abstraction come next. Note

that the λ-abstraction case is higher order: Given a function from X T1 to X T2, the

function supplied for this case must deliver a value of type X (arrow T1 T2).

Figure 21 defines example terms id and test, of type trm abb and trm test-tp,

respectively, where abb and test-tp represent b → b and (b → b) → (b → b),

respectively. The trm id represents λx.x, and test represents λs.λz.s (id (s z)).

Because Cedille’s type inference is currently just basic local type inference, quite a

few erased arguments must be supplied. Improving this situation is future work.

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

The calculus of dependent lambda eliminations 27

Fig. 21. Example terms and types in the encoding.

Fig. 22. Interpreting encoded types and terms.

The erasure of test, however, is the following, which does encode the test term as

expected:

λ a . λ l . (l (λ s . (l (λ z . (a s (a (id a l) (a s z)))))))

Finally, Figure 22 defines a very simple interpreter for trm. This is interp-trm.

To express its type, we first define interp-tp using lifting. This is a simpler version

of the interp-tp function we saw in Figure 18 for System F types. The definition of

interp-trm uses interp-tp (of Figure 22) and dependent types to express the idea

that the interpretation of a trm T is a CDLE term of CDLE type interp-tp T.

The interpretation is then completely direct: (typed) application is interpreted as

application, and λ-abstraction is interpreted as λ-abstraction. Interpreting test

results in λ s . λ z . (s (s z)), which as expected, has evaluated the term as

part of interpreting it (cf. normalization by evaluation (Berger & Schwichtenberg,

1991)).

9 Formatted printing with local definitions

Let us now consider a more complex case of large eliminations with higher order

encodings: adding local definitions to format specifiers for formatted printing as

with printf. Typing printf is now a standard and quite appealing example of

dependently typed programming, introduced by Augustsson (1998). Here, we will

allow format specifiers – for which we will use a dedicated datatype, not a format

string – to contain two types of let-declarations. flet x y will specify that the

arguments required by x should be input to the call to format, and then the

resulting string which is computed for x will be substituted into y. More dynamic is

fletd x y, which just substitutes x into y, and thus could duplicate requirements

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

28 A. Stump

Fig. 23. Datatype definitions for format with local definitions, in Agda.

for arguments (leading to additional arguments to the call to format). We will print

lists of booleans rather than lists of characters, to avoid dependence on a primitive

type of characters.

9.1 Agda implementation

Figures 23 and 24 give Agda code for this example (based on the Iowa Agda

Library). The approach used here is not the one which would typically be adopted

in Agda, because it requires that we disable Agda’s positivity checker to use a

higher order encoding, thus sacrificing the termination property which Agda seeks

to guarantee. The first point of showing this solution is explanatory: Hopefully,

it will orient readers familiar with Agda or Haskell, for the subsequent Cedille

implementation (Section 9.2). Second, though, it is meant to highlight that this

implementation technique – which results in a reasonable solution for this novel

problem – is not available in Agda without compromising termination. Of course,

the example itself could be implemented using other methods, such as de Bruijn

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

The calculus of dependent lambda eliminations 29

Fig. 24. Formatted printing with local definitions, in Agda.

indices for representing bound variables. But with Cedille, the possibility of a higher

order solution to this problem is available, without compromising logical soundness.

To turn to the code of Figure 23, we have a datatype formatti which will

describe the argument requirements of format specifiers. A format specifier can

require an argument (iarg), no argument (inone), or appended requirements (iapp),

or requirements governed by a dynamic let (ilet). The type formati is the type

for the actual format specifiers. The interesting cases are for flet and fletd, where

we use higher order encoding. In the static case (flet), we have a function from

inputs with argument requirement inone to outputs with requirement b, and in the

dynamic case, the requirement goes from a to b a. The types of the inputs to these

constructors use the formati in negative positions, and hence would be disallowed

by Agda without the initial pragma disabling the positivity check.

The function format-t (Figure 24) computes the type for format from an

argument requirement (of type formatti), while format itself (or rather, the helper

function formath) is defined by recursion on the format specifier (of type formati).

The formath function uses a continuation so that interpretation of the format

directive can take place before any input arguments are required (by an farg format

specifier).

For a test case, we can define

testi : formatti

testi = ilet (iapp iarg (iapp inone inone))

(λ x → iapp x (iapp inone x))

test : formati testi

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

30 A. Stump

test = fletd (flet farg (λ j → fapp j j))

(λ i → fapp i (fapp (flit tt) i))

The format specifier test says that we want to print a string consisting of i

followed by a boolean literal tt (flit tt), and then i again, where i is dynamically

defined to be the static definition flet farg (λ j → fapp j j). This requests one

argument to be named j, and then produces j appended to j. Agda’s normalizer

reports that as expected, format test normalizes to

λ x x1 → x :: x :: tt :: x1 :: x1 :: []

9.2 Cedille implementation

Let us now implement this example in Cedille. It is worth emphasizing that no

modification to CDLE is required (whereas we had to disable positivity checking

for the example to type check in Agda). We should also note that similarly to the

example of representing the types of System F (Section 8.3), we will use higher

order encodings that prevent us from using constructor-constrained recursive types.

Lifting, however, is still available, and is sufficient for this example. First, we must

declare the type formatti for argument requirements. We break this into two parts:

a type-level function formatto, and then the universal type formatti:

formatto ⇐ � → � =

λ X : � . X → X → (X → X → X) → (X → (X → X) → X) → X .

formatti ⇐ � = ∀ X : � . formatto · X .

We can define abbreviations for the constructors of this type, the last of which is

the most interesting, since it is there that higher order encoding shows up

iarg ⇐ formatti = Λ X . λ a . λ n . λ p . λ l . a .

inone ⇐ formatti = Λ X . λ a . λ n . λ p . λ l . n .

iapp ⇐ formatti → formatti → formatti =

λ x . λ y .

Λ X . λ a . λ n . λ p . λ l .

p (x · X a n p l) (y · X a n p l).

ilet ⇐ formatti → (∀ X : � . X → formatto · X) → formatti =

λ u . λ f .

Λ X . λ a . λ n . λ p . λ l .

l (u · X a n p l) (λ x . f · X x a n p l) .

The argument f to ilet takes in an X and returns a formatto · X, for any type X.

This can be viewed as saying that f is a member of an extension of the datatype

formatti with a new constructor (since f requires a value of type X for this

constructor).

We elide a few easy definitions (Church-encoded booleans, an append operation

on lists, and the bsingleton function for creating a singleton list from boolean

input). Next comes the type formati for format specifiers. Again, we break it into

two parts, shown in Figure 25.

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

The calculus of dependent lambda eliminations 31

Fig. 25. The type formati for format strings.

Fig. 26. Definition of the helper function computing the type for a call to format from a

format string.

The type for the dynamic let (beginning on the eighth line in the figure) is the

trickiest, since the argument requirement for the body of the let depends on the

argument requirement x for the let’s definiens. But our definition of ilet requires

a F that can be extended with the value for a variable, which enables expression

of this dependence. For space reasons, we must omit the definitions of constructors

for this type, and turn to the definition of format-th. To make reasoning about

this definition more manageable, we pre-define the type-level functions that will be

used for the different cases of a formati term. The code is shown in Figure 26. The

crucial point, of course, is to use lifting to define the type by higher order iteration

on the input of type formatti.

It is convenient to break out the return type for formath as a separate definition

(formathr), and then we have the code for formath itself, shown in Figure 27.

Instead of recursive calls, the higher order iteration on a of type formati presents

us with results r of recursive calls, in each case. As we are computing a higher order

function (of type formathr), these results are themselves functions, which we call

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

32 A. Stump

Fig. 27. Definition of the helper function for |format—.

Fig. 28. The definition of the format function and its return type.

with a continuation to obtain the printing function for the part of the format string

from which the result was iteratively computed.

The final definition of the format function and its return type is then the following,

where for the outermost continuation we use a function CList which converts

Parigot-encoded to Church-encoded lists. This just makes the output produced by

Cedille’s interpreter more readable in this case. The code is in Figure 28. We can use

Cedille’s normalizer with the same test as we used for the Agda version, to obtain

(λ b’ . λ b’’ .

λ c . λ e .

(c b’ (c b’ (c (λ a’ . λ b’’’ . a’) (c b’’ (c b’’ e))))))

This is indeed a Church-encoded version of the answer we computed with the Agda

implementation (at the end of Section 9.1).

In typing the formath term of Figure 27, several conversions dealing with lifting

are required. These are the last two conversions shown in Figure 5 above. Let us see

briefly how these arise. In typing the cases for fapp and flet, Cedille must check

that the type format-th (iapp a b) · A is convertible with

formath-th a · (format-th b · A)

The latter type arises from the terms r · (format-th b · A) in both cases, while

the former type is the one required by the elimination of the format specifier x. Since

lifting introduces new lifting redexes for arguments to a head variable, normalizing

the first type would, without the η-contraction lifting conversion of Figure 5 (the first

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

The calculus of dependent lambda eliminations 33

Fig. 29. A lifting type arising in the flet case.

conversion in the last row of the figure), produce what is essentially an η-expanded

version of a to be lifted.

The last conversion of Figure 5 is needed for the fletd case, where Cedille

must check that format-th (ilet x F) · A is convertible with the type shown in

Figure 29. Again, due to the way lifting produces new lifting redexes, normalization

of the first type would result in a lifting of F being applied to a lifting of x. Those

two uses of the lifting operation need to be consolidated at the top level of the

term, in order to match the type of Figure 29. This is what the final conversion of

Figure 5 does.

10 Related work

We compare the approach of CDLE with some recent works. In “The Gentle Art of

Levitation” (Levitation), Chapman et al. (2010) present a closed type theory where

inductive datatypes are implemented using a universe of datatype descriptions, which,

cleverly, is itself given a datatype description. CDLE does not include a universe,

although as a closed type theory it would make sense to consider extending it

with one. Levitation is concerned with encoding universes of datatypes as datatypes

themselves, but not with foundations of induction. Indeed, least fixed points of

functors (polynomial, then strictly positive), and associated induction principles, are

included as primitives of the theory. Some primitive datatypes are included as part of

the type theory; indeed, Levitation affirms “We cannot dispose of data altogether!”

(Section 4.1). In contrast, CDLE defines data as their own induction principles, and

hence reduces induction to the underlying impredicative type theory; CDLE does not

include any induction principle as primitive, nor any datatypes. One could imagine

attempting to replace the primitive induction principle used in Levitation, with

induction as derived in CDLE. But Levitation ’s self-describing universe construction

crucially relies on a predicative universe hierarchy, which we have omitted here in

CDLE. Levitation also affirms, citing (Geuvers, 2001): “An impredicative Church-

style encoding of datatypes is not adequate for dependently typed programming, as

although such encodings present data as non-dependent eliminators, they do not

support dependent induction.” CDLE overturns the received wisdom that Geuvers’s

Theorem implies the inadequacy of lambda encodings for dependent type theory.

The theorem only shows this for second-order dependent type theory, leaving open

the possibility that extensions to that theory could be adequate – as we have seen

with CDLE.

It is worth noting at this point that while universe polymorphism might appear

to allow data to be eliminated across levels – thus solving the same problem as

CDLE’s proposed lifting operator – such quantifications are predicative (Harper

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

34 A. Stump

& Pollack, 1989). Indeed, a universe-polymorphic type cannot itself be in any of

the universes whose levels it quantifies over, and in Agda is considered to be at

ordinal level ω. The computational power of predicative polymorphism is quite

limited compared with impredicative polymorphism, as analyzed by Leivant (1991).

In contrast, CDLE avoids adding a hierarchy of universes by using a novel

lifting operator to move expressions from the term level to the type level of the

language.

Altenkirch et al. (2010) pursue a related goal to Levitation ’s in “PiSigma:

Dependent Types without the Sugar” (PiSigma): show how to define datatypes

(inductive and co-inductive, indexed) and other central constructs of type theory in

a minimalistic core language. Special care is paid to the control of reduction during

type checking, for recursively defined types and terms, using lifted types, inhabited

by suspended terms. These are different from CDLE’s lifting types, which actually

raise terms to the type level. PiSigma includes the � : � principle, and so levels

cannot be distinguished. Furthermore, general recursion is allowed, and questions

both of termination and meta-theory in general are deferred to later work. This is in

contrast with CDLE, which is proved logically sound, and in which a sound notion

of induction is defined.

Let us consider several works more focused on semantics and induction. In “In-

ternalizing Relational Parametricity in the Extensional Calculus of Constructions”

(Internalizing), Krishnaswami and Dreyer (2013) develop a version of the Calculus

of Constructions with a built-in equality type that enjoys equality reflection: if an

equality is provable then it can be used definitionally – the central idea of extensional

Martin-Löf type theory (Martin-Löf, 1984). They devise a relationally parametric

realizability model, and show how this model validates various extensions of their

syntactic theory, includes strong sum types. But these are true extensions: the type

theory proposed by Internalizing does not actually allow typing strong sum types,

for example. In contrast, we saw above (Section 8.4) that strong sigma types can be

defined within CDLE (without any extensions). The same is true for natural-number

induction, which again in Internalizing is shown consistent with their proposed

syntactic theory, but has to be added as an extension to the theory. On the other

hand, Internalizing gives examples of (semantically) relating extensionally equal

terms, which the semantics for CDLE given in Section 5 above would distinguish

(cf. Section 5.4 of Internalizing). Developing extensional models of CDLE, perhaps

along the lines of Internalizing or perhaps following the “extensional collapse”

approach of Tannen and Coquand (1988), remains to future work. A similar goal

with some stronger results – notably that every indexed functor has an initial algebra

– was achieved by Atkey et al. (2014).

The paper “Fibrational Induction Rules for Initial Algebras” of Ghani et al.

(2010) proposes a general induction rule for arbitrary functors with initial algebras.

The development is categorical, using the idea of a fibration to generalize the

logical notion of predicate. The paper is focused on categorical semantics, and

explicitly avoids impredicativity. In contrast, the present work on CDLE develops

a new impredicative type theory, with a concrete realizability semantics. The deeper

insights into the nature of induction arising from categorical study could provide

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

The calculus of dependent lambda eliminations 35

more refined analysis of the forms of induction possible in CDLE, but this must

remain to future work.

The lifting types of CDLE and its realizability semantics may put one in mind of

“Realizability and Parametricity in Pure Type Systems” (Realizability), by Bernardy

and Lasson (2011). In this elegant paper, the authors seek to shed light on the

relationship between realizability and parametricity, by formally defining both as

relations on terms in a first-level Pure Type System (PTS), using a second-level

PTS viewed as a logic for the first one. Terms in the first-level PTS are lifted

to the second-level PTS, which may then express statements about them. But in

Realizability, lifting, like realizability and parametricity, are expressed as meta-level

operations on PTS terms. In contrast, CDLE’s lifting types are part of the type

theory, which enables computation of types from terms, within the theory. For the

PTS corresponding to CC, for example, this is not possible. The ideas of Realizability

may, however, shed further light on CDLE’s lifting types, as well as on the best

approach to formalizing CDLE’s meta-theory. Note, finally that while PTSs are

expressed using a unified syntax for expressions (instead of syntactically different

classes for terms, types, and kinds as in CDLE), some form of lifting is still required

to lift a typing judgment. In Realizability this is at the meta-level, while with CDLE

it is in the theory.

Next, let us compare the present approach to the works, already mentioned in

Section 1.1, based on adding primitive inductive types to existing type theories (i.e.,

Coquand & Paulin (1988), Pfenning & Paulin-Mohring (1989), Werner (1994)). With

primitive inductive types, one should determine some set of inductive types, which

will be accepted by the type theory, if one wishes to be able to prove any general

results about the addition (for an open theory) or declaration (for a closed one)

of a new inductive type. For example, CIC restricts attention to inductive types

generated by strictly positive functors (see Werner (1994), Definition 2.7). In CDLE,

there are more options: if one needs induction and uses constructor-constrained

recursive types, then we require only positivity. If induction is not needed, then there

are no restrictions at all on the functors one may use, for Church-encoded datatypes

(for the Parigot-encoding, of course, positive recursive types are needed). Describing

a class of inductive datatypes is not a simple matter. Indeed, Levitation proposes

an intricate solution to the problem. In Werner’s dissertation, one finds quite long

typing rules with lots of vector notation, to handle the variable-arity nature of

both the inductive types and their constructors (and constructors’ types). None of

this is needed in CDLE. Finally, with primitive inductive types, one must augment

the reduction relation, necessitating a new proof of confluence for reduction. With

CDLE, the reduction relation is just standard β-reduction on untyped terms, so

there is no new confluence theorem to prove.

Finally, let us compare with a few works on advanced representations of syntax,

such as typed or higher order abstract syntax. The idea of using higher order

representations in typed lambda calculus can be traced back to Church’s Simple

Theory of Types, where universal quantification, for example, is defined to be the

application of a function Πo(oa) (expressing universality of a propositional function)

to a lambda abstraction (Church, 1940). The term “higher order abstract syntax”

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

36 A. Stump

was coined by Pfenning and Elliott (1988) for the idea of representing the syntax

of various object languages using typed λ-abstractions. Many works have explored

the idea of shallowly embedding object-language syntax into meta-language syntax.

For one example, Mogensen (1992) proposed a shallow embedding of the syntax

of pure lambda calculus in itself. For another, Carette et al. (2009) in “Finally

tagless, partially evaluated: Tagless staged interpreters for simpler typed languages”

show how to define various meta-programs (interpreters, compilers, and more) by

semantically embedding the syntactic structure of an object language into a meta-

language. This gives a typed (shallowly embedded) syntax similar to the example of

Section 8.5. As Chlipala (2008) points out, though, directly mapping object-language

types to meta-language-language types makes it more complex to perform type-level

operations. In the cited paper, Chlipala proposes parametric higher order abstract

syntax (PHOAS) for achieving some of the benefits of higher order encodings in Coq

(which due to positivity restrictions on datatypes cannot support HOAS directly).

Fegaras and Sheard (1996) proposed a method for programming with higher

order representations in functional programming languages with primitive inductive

datatypes. In contrast to these works, CDLE supports impredicatively typed higher

order syntactic representations.

There are many works proposing two-layer schemes, where object-language ex-

pressions are represented in a typed lambda calculus with a relatively weak function

space, while meta-programs are written in a more powerful lambda calculus with

pattern matching on higher order representations (Schürmann et al., 2001; Pientka,

2008; Poswolsky & Schürmann, 2009). In CDLE, in contrast, there is just a single

(typed) language for higher order representations and programs over these. One

might be concerned that the stronger function space of CDLE will spoil adequacy

of encodings. For developments, where it is critical to capture exactly the object-

language syntax instead of over-approximate it, one could use techniques such as pro-

posed by Crary (2010) for representing linear logic proof terms in a non-linear meta-

language (see also Polakow (2015)), namely Twelf (Pfenning & Schürmann, 1999).

11 Conclusion and future work

This paper has demonstrated that lambda encodings can be the basis for a dependent

type theory supporting both induction and large eliminations, via the system CDLE

and its implementation Cedille. Induction is enabled by the novel constructor-

constrained recursive types ν X :κ | Θ. T , where Θ is a set of typing constraints on

pure lambda terms that must be shown to hold for a top type Uκ and then be

preserved by the body T . Under some light restrictions on the use of X in the

types in Θ, these typings hold not just for the elements of the infinite sequence

of increasing dependent types one can associate with the ν-type, but also for

the limit of that sequence, which our semantics defines the meaning of the type

to be. Large eliminations are enabled by a lifting construct ↑L t, which lifts simply

typed lambda terms to the type level. We gave a rather simple semantics for types

in terms of complete lattices, and proved the typing rules of CDLE sound with

respect to this semantics. Logical consistency of the system is then a corollary.

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

The calculus of dependent lambda eliminations 37

CDLE does not use a datatype system, and hence one could hope would be less

cumbersome for formal meta-theoretic analysis. The most exciting application of

CDLE is for dependently typed programming with higher order encodings. We

gave several examples, including the non-trivial one of formatted printing with local

definitions.

Programming with higher order lambda-encodings is a delicate matter (cf. Wash-

burn & Weirich (2003) for one illuminating example). Much more exploration of this

area is required. It would be interesting, for example, to see how much formalized

meta-theory one could do using higher order encodings in Cedille. CDLE has shown

that one can have dependent typing for higher order encodings, via lifting. Induction

for such encodings, however, is prevented currently by the positivity requirement

for constructor-constrained recursive types. Thus, devising inductive higher order

encodings is the most important next direction for future work.

Acknowledgments

I deeply thank Madeliene Stump for her support while I was writing this paper.

AMDG.

References

Abel, A. & Matthes, R. (2004) Fixed points of type constructors and primitive recursion. In

Proceedings of 18th International Workshop Computer Science Logic (CSL), Marcinkowski,

Jerzy, & Tarlecki, Andrzej (eds), Lecture Notes in Computer Science, vol. 3210. Springer,

pp. 190–204.

Altenkirch, T., Danielsson, N. A., Löh, A. & Oury, N. (2010) PiSigma: Dependent types

without the sugar. In Proceedings of 10th International Symposium (Flops) Functional and

Logic Programming, Blume, M., Kobayashi, N. & Vidal, G. (eds), Lecture Notes in Computer

Science, vol. 6009. Springer, Berlin, Heidelberg, pp. 40–55.

Atkey, R., Ghani, N. & Johann, P. (2014) A relationally parametric model of dependent type

theory. Sigplan Not. 49(1), 503–515.

Augustsson, L. (1998) Cayenne – a language with dependent types. In Proceedings of the 3rd

ACM SIGPLAN International Conference on Functional Programming (ICFP), Felleisen,

M., Hudak, P., & Queinnec, C. (eds). ACM, pp. 239–250.

Berger, U. & Schwichtenberg, H. (1991) An inverse of the evaluation functional for typed

lambda-calculus. In Proceedings of the 6th Annual Symposium on Logic in Computer Science

(LICS). IEEE Computer Society, pp. 203–211.

Bernardy, J.-P. & Lasson, M. (2011) Realizability and parametricity in pure type systems.

In Proceedings of 14th International Conference Foundations of Software Science and

Computational Structures, Lecture Notes in Computer Science, vol. 6604. Springer, Berlin,

Heidelberg, pp. 108–122.

Böhm, C. & Berarducci, A. (1985) Automatic synthesis of typed lambda-programs on term

algebras. Theor. Comput. Sci. 39, 135–154.

Carette, J., Kiselyov, O. & Shan, C.-C. (2009) Finally tagless, partially evaluated: Tagless

staged interpreters for simpler typed languages. J. Funct. Program. 19(5), 509–543.

Chapman, J., Dagand, P.-É., McBride, C. & Morris, P. (2010) The gentle art of levitation. In

Proceeding of the 15th ACM SIGPLAN International Conference on Functional Programming

(ICFP), Hudak, P. & Weirich, S. (eds), pp. 3–14. ACM.

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

38 A. Stump

Chlipala, A. (2008) Parametric higher-order abstract syntax for mechanized semantics.

In Proceedings of the 13th ACM SIGPLAN International Conference on Functional

Programming (ICFP), Hook, J. & Thiemann, P. (eds), pp. 143–156. ACM.

Church, A. (1940) A formulation of the simple theory of types. J. Symb. Log. 5(2), 56–68.

Church, A. (1941) The Calculi of Lambda Conversion, Annals of Mathematics Studies, vol. 6.

Princeton University Press.

Constable, R. L., Allen, S. F., Bromley, M., Cleaveland, R., Cremer, J. F., Harper, R. W.,

Howe, D. J., Knoblock, T. B., Mendler, N. P., Panangaden, P., Sasaki, J. T. & Smith, S. F.

(1986) Implementing Mathematics with the Nuprl Proof Development System. Prentice Hall.

Coquand, T. (1986) An analysis of Girard’s paradox. In Proceedings, Symposium on Logic in

Computer Science (LICS), IEEE Computer Society, pp. 227–236.

Coquand, T. (1992) Pattern matching with dependent types. Electronic Proceedings of the 3rd

Annual Bra workshop on Logical Frameworks, Nordström, B., Petersson, K. & Plotkin, G.

(eds). Available from Coquand’s home page.

Coquand, T. & Paulin, C. (1988) Inductively defined types. In Colog-88, International

Conference on Computer Logic, Martin-Löf, P. & Mints, G. (eds), Lecture Notes in Computer

Science, vol. 417. Springer, pp. 50–66.

Crary, K. (2010) Higher-order representation of substructural logics. In Proceeding of the 15th

ACM SIGPLAN International Conference on Functional Programming (ICFP), Hudak, P.

& Weirich, S. (eds). ACM, pp. 131–142.

Fegaras, L. & Sheard, T. (1996) Revisiting catamorphisms over datatypes with embedded

functions (or, programs from outer space). In Proceedings of 23rd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL), Boehm, H.-J. & Steele, Jr.,

G. L. (eds). ACM , pp. 284–294.

Fortune, S., Leivant, D. & O’Donnell, M. (1983) The expressiveness of simple and second-order

type structures. J. ACM 30(1), 151–185.

Fu, P. & Stump, A. (2014) Self types for dependently typed lambda encodings. In Proceedings

of 25th International Conference on Rewriting Techniques and Applications (RTA) joint

with the 12th International Conference on Typed Lambda Calculi and Applications (TLCA),

Dowek, G. (ed), Lecture Notes in Computer Science, vol. 8560. Springer, pp. 224–239.

Geuvers, H. (2001) Induction is not derivable in second order dependent type theory. In Typed

Lambda Calculi and Applications (TLCA), Abramsky, S. (ed), Lecture Notes in Computer

Science, vol 2044. Springer, pp. 166–181.

Ghani, N., Johann, P. & Fumex, C. (2010) Fibrational induction rules for initial algebras. In

Computer Science Logic, 24th International Workshop (CSL), Dawar, A. & Veith, H. (eds),

Lecture Notes in Computer Science, vol. 6247. Springer, pp. 336–350.

Girard, J.-Y., Taylor, P. & Lafont, Y. (1989) Proofs and Types. New York, USA: Cambridge

University Press.

Goguen, H., McBride, C. & McKinna, J. (2006) Eliminating dependent pattern matching. In

Algebra, Meaning, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion

of his 65th Birthday, Futatsugi, K., Jouannaud, J.-P. & Meseguer, J. (eds), pp. 521–540.

Harper, R. & Pollack, R. (1989) Type checking, universe polymorphism, and typical ambiguity

in the calculus of constructions (draft). In Tapsoft’89: Proceedings of the International Joint

Conference on Theory and Practice of Software Development, Barcelona, Spain, March 13–17,

1989, Volume 2: Advanced Seminar on Foundations of Innovative Software Development II

and Colloquium on Current Issues in Programming Languages (CCIPL), Dı́az, J. & Orejas,

F. (eds), Lecture Notes in Computer Science, vol. 352. Springer, pp. 241–256.

Hofmann, M. (2000) Safe recursion with higher types and bck-algebra. Ann. Pure Appl. Log.

104(1–3), 113–166.

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

The calculus of dependent lambda eliminations 39

Hofmann, M. & Streicher, T. (1998) The groupoid interpretation of type theory. In Twenty-

Five Years of Constructive Type Theory. Oxford Logic Guides, vol. 36. Oxford University

Press, pp. 83–111.

Koopman, P., Plasmeijer, R. & Jansen, J. M. (2014) Church encoding of data types considered

harmful for implementations. In Proceedings of 26th Symposium on Implementation and

Application of Functional Languages (IFL), Plasmeijer, R. & Tobin-Hochstadt, S. (eds).

ACM, pp. 4:1–4:12.

Kopylov, A. (2003) Dependent intersection: A new way of defining records in type theory. In

Proceedings of 18th IEEE Symp. Log. Comput. Sci. (LICS), pp. 86–95.

Krishnaswami, N. R. & Dreyer, D. (2013) Internalizing relational parametricity in the

extensional calculus of constructions. In Computer Science Logic 2013 (CSL), Rocca,

S. R. D. (ed), LIPIcs, vol. 23. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, pp.

432–451.

Leivant, D. (1983) Reasoning about functional programs and complexity classes associated

with type disciplines. In Proceedings of 24th Annual Symposium on Foundations of Computer

Science, 1983. IEEE Computer Society, pp. 460–469.

Leivant, D. (1991) Finitely stratified polymorphism. Inf. Comput. 93(1), 93–113.

Martin-Löf, P. (1984) Intuitionistic Type Theory. Napoli: Bibliopolis.

Mendler, N. (1988) Inductive Definition in Type Theory. PhD Thesis, Cornell University.

Meyer, A. R. & Reinhold, M. B. (1986) “Type” is not a type. In Proceedings of the 13th

ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL).

New York, USA: ACM, pp. 287–295.

Miquel, A. (2001) The implicit calculus of constructions extending pure type systems with

an intersection type binder and subtyping. In Typed Lambda Calculi and Applications,

Abramsky, S. (ed), Lecture Notes in Computer Science, vol. 2044. Springer, pp. 344–359.

Mogensen, T. Æ. (1992) Efficient self-interpretations in lambda calculus. J. Funct. Program.

2(3), 345–363.

Norell, U. (2007) Towards a Practical Programming Language Based on Dependent Type

Theory. PhD Thesis, Department of Computer Science and Engineering, Chalmers

University of Technology, SE-412 96 Göteborg, Sweden.

Parigot, M. (1988) Programming with proofs: A second order type theory. In European

Symposium On Programming (ESOP), Ganzinger, H. (ed), Lecture Notes in Computer

Science, vol. 300. Springer, pp. 145–159.

Parigot, M. (1989) On the representation of data in lambda-calculus. In Computer Science

Logic (CSL), Börger, E., Büning, HansKleine & Richter, M. (eds), Lecture Notes in

Computer Science, vol. 440. Springer, pp. 309–321.

Pfenning, F. & Elliott, C. (1988) Higher-order abstract syntax. Proceedings of the ACM

SIGPLAN’88 Conference on Programming Language Design and Implementation (PLDI),

Wexelblat, R. L. (ed). ACM, pp. 199–208.

Pfenning, F. & Paulin-Mohring, C. (1989) Inductively defined types in the calculus of

constructions. InProceedings of 5th International Conference Mathematical Foundations of

Programming Semantics, Main, M. G., Melton, A., Mislove, M. W., & Schmidt, D. A. (eds),

Lecture Notes in Computer Science, vol 442. Springer, pp. 209–228.

Pfenning, F. & Schürmann, C. (1999) System description: Twelf - a meta-logical framework for

deductive systems. In Proceedings of 16th International Conference on Automated Deduction

Automated Deduction - Cade-16, Ganzinger, H. (ed), Lecture Notes in Computer Science,

vol. 1632. Springer, pp. 202–206.

Pientka, B. (2008) A type-theoretic foundation for programming with higher-order abstract

syntax and first-class substitutions. InProceedings of the 35th ACM SIGPLAN-SIGACT

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

40 A. Stump

Symposium on Principles of Programming Languages (POPL), Necula, G. C. & Wadler, P.

(eds). ACM, pp. 371–382.

Pierce, B. C. & Turner, D. N. (2000) Local type inference. ACM Trans. Program. Lang. Syst.

22(1), 1–44.

Polakow, J. (2015) Embedding a full linear lambda calculus in Haskell. In Proceedings of the

2015 ACM SIGPLAN Symposium on Haskell, pp. 177–188. ACM.

Poswolsky, A & Schürmann, C. (2009) System description: Delphin – a functional

programming language for deductive systems. Electr. Notes Theor. Comput. Sci. 228, 113–

120.

Schürmann, C., Despeyroux, J. & Pfenning, F. (2001) Primitive recursion for higher-order

abstract syntax. Theor. Comput. Sci. 266(1–2), 1–57.

Stump, A. (2016) Verified Functional Programming in Agda. ACM Books.

Stump, A. & Fu, P. (2016) Efficiency of lambda-encodings in total type theory. J. Funct.

Program. 26(003).

Tannen, V. & Coquand, T. (1988) Extensional models for polymorphism. Theor. Comput. Sci.

59, 85–114.

The Coq development team (2015) The Coq Proof Assistant Reference Manual. LogiCal

Project. Version 8.4.

Univalent Foundations Program (2013) Homotopy Type Theory: Univalent Foundations of

Mathematics. Institute for Advanced Study: http://homotopytypetheory.org/book. Last

accessed April 21, 2017.

Washburn, G. & Weirich, S. (2003) Boxes go bananas: Encoding higher-order abstract syntax

with parametric polymorphism. In Proceedings of the 8th ACM SIGPLAN International

Conference on Functional Programming (ICFP). ACM, pp. 249–262.

Werner, B. (1992) A normalization proof for an impredicative type system with

large elimination over integers. In Proceedings of the 1992 Workshop on Types

for Proofs and Programs. Available from http://www.cse.chalmers.se/research/

group/logic/Types/previousevents.html, last access April 23, 2017. pp. 341–357.

Werner, B. (1994) Une Théorie des Constructions Inductives. PhD Thesis. Paris VII: Université

Paris-Diderot.

Appendix: Omitted rules

In this section are listed some straightforward rules omitted from the definition of

CDLE in the main text.

A.1 Rules defining judgement X ∈p T

Rules defining judgement X ∈p T are in Figure A1. We write p̂ for the other polarity

besides p.

B.2 Additional rules for directed conversion

Figure A2 gives additional rules for directed conversion. Computation rules were

given in Figure 5. The additional rules include reflexivity, transitivity, and then

congruence rules equating expressions where the corresponding subexpressions are

equal. Passing under a binder extends the context, and passing into the body of a

ν-type adds the constructor set to the context (just like the kinding rule for ν-types).

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

The calculus of dependent lambda eliminations 41

Fig. A1. Polarity of occurrences of type variables in types, constructor sets, and kinds.

Fig. A2. Additional rules for conversion.

https://doi.org/10.1017/S0956796817000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000053

