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ON C*-DIAGONALS 

ALEXANDER KUMJIAN 

Preface. The impetus for this study arose from the belief that the 
structure of a C*-algebra is illuminated by an understanding of the man­
ner in which abelian subalgebras embed in it. Posed in its full generality, 
the question concerning abelian subalgebras would seem impossible to 
answer. A notion of diagonal subalgebra is, however, proposed which has 
the virtue that one can associate a "topological" invariant to the pair 
consisting of the diagonal and the ambient algebra, from which these 
algebras may be retrieved. 

In the setting of von Neumann algebras, the analogous question was 
addressed in the seminal work of Feldman and Moore [13]. Their 
definition of Cartan subalgebra permits the abstraction of a complete 
invariant consisting of a Borel equivalence relation together with a certain 
cohomology class on the relation from which the Cartan pair may be 
recovered. Our development parallels theirs in spirit; differences in 
substance derive from the topological flavor of C*-theory. 

The invariant associated to a diagonal pair is called a twist. A twist is 
properly viewed as a groupoid extension of a topological equivalence 
relation by the unit circle (which in some cases arises from a two-cocycle 
on the relation). 

Renault has applied the techniques of topological groupoids to the 
study of C*-algebras with great success (see [34] ) and, consequently, his 
work has had considerable influence on the development of our ideas. A 
notion of Cartan subalgebra appears there (ibid. def. II.4.13), that 
anticipates the notion of diagonal given here. 

A sketch of this work appeared a year ago in the Tubingen 
Semesterbericht (see [22] ). Since then Renault has shown that given a 
diagonal pair the twist may be constructed using the dual groupoid of the 
ambient algebra (the spectrum of the diagonal is identified with a nice 
transversal; see [36] ). Further, the present work is informed by an 
understanding of diagonals in continuous trace algebras (see [23] ) 
acquired by reading a preprint of Raeburn and Taylor [32]. 

The treatment of Morita equivalence of diagonal pairs appearing in 
Section 5 below is based on related notions in [20], the necessary changes 
being made to reflect the twisting of the relation. In the last section, we 
consider a class of unital diagonal pairs for which it is possible, in 
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principle, to compute invariants. These pairs are characterized by the 
existence of an ascending chain of continuous trace algebras containing 
the diagonal whose union is dense in the ambient algebra. 

It gives me great pleasure to record here my debt of gratitude to my 
colleagues at the University of New South Wales, in particular to Iain 
Raeburn and Colin Sutherland, for their support and interest in this 
undertaking. Thanks are also due to the Universities of Copenhagen and 
Tubingen where preliminary versions of this work were prepared (I wish to 
acknowledge the support of Alexander-von-Humboldt Stiftung during this 
period). I am indebted to Jean Renault for many stimulating conversa­
tions on the subject at hand and for his hospitality during a visit at 
Université Paris VI last year. 

1. First notions. In the following it is tacitly assumed that C*- algebras 
are separable and that topological spaces are second countable, locally 
compact, and Hausdorff (hence paracompact). If A is a C*-algebra, let A 
denote the C*-algebra obtained by adjoining a unit. 

1° Definition. Suppose that B is a C*-subalgebra of a C*-algebra A. An 
element a e A is said to normalize B if 

i: a*Ba c B 

ii: aBa* c B. 

The collection of all such normalizers is denoted N(B). Evidently 
B c N(B); further, N(B) is closed under multiplication and taking 
adjoints. A normalizer, a G N(B), is said to be free if a2 = 0. The 
collection of free normalizers is denoted NAB). 

2° Example. Let A = Mn(C), the algebra of complex n X n matrices. 
Choose a set of matrix units, {e-:\ ^ i9j ^ n} (one has eik = e^e^ and 
e* = ejj), and let B denote the diagonal subalgebra (viz. B is spanned by 
the eiï

9s). Then a = 2 X-e^ normalizes B if and only if for each i, \j ¥* 0 
for at most one j , and for eachy, Xtj ¥= 0 for at most one i (i.e., at most 
one entry is non-zero in each row or column). If i ¥- y, et: e NAB). Let 
P.A —» B be given by: 

P(a) = 2 e^ae^. 

This defines a faithful conditional expectation for which: 

ker P = span Nf(B). 

We introduce the notion of diagonal in the setting of C*-algebras by 
abstracting the essential ingredients from the example above. A closely 
related notion appears in [34] (cf. def. II.4.13) under the name Cartan 
subalgebra (the definition is modelled on the analogous notion for von 
Neumann algebras found in [13] ). 
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3° Definition. Let B be an abelian subalgebra of a C*-algebra A. If A is 
unital, then B is said to be diagonal in A if 1 e B and 

i: there is a faithful conditional expectation P:A -> B 
ii: k e r P = (span JVy(5) ) " . 

If A is non-unital, B is said to be diagonal in 4̂ if 2? is diagonal in A. We 
shall refer to (A, B) as a diagonal pair. 

For the remainder of this section we assume that A is unital; the loss of 
generality is only apparent. If B is diagonal in A, we show below that B 
has the extension property relative to A (the extension property was 
introduced in [2] and studied in [3], [4] ), that is, each pure state of B 
extends uniquely to a (necessarily pure) state of A. 

4° PROPOSITION. If B is diagonal in A, then B has the extension property 
relative to A and B is consequently maximal abelian. 

Proof. By 2.7 of [4], it suffices to show that 

A = B + pT^l 

where 

[A, B] = span{<aZ> - ba:a e A, b-• e B}. 

By condition (ii) of the definition, we need only show 

Nf(B) c \ÂTB\. 

Let a e N^(B) and note that a*a, aa* e B; since a2 = 0 one has 

(a*a)(aa*) = 0. 

Hence 

a(a*a)Vn - (a*a)Vna = ^(tf*^)17" -> a as n -» oo. 
A 

5° Remarks. Let X = 5 denote the collection of pure states of B 
equipped with the weak* topology (B = C(X) and Jf is compact). For 
i e I , its unique extension to A is JC o P (in fact, the extension property 
alone ensures the existence of such a conditional expectation; see [3] 
Theorem 3.4.) Henceforth, X is to be identified with its image in the pure 
states of A. 

The nature of the normalization condition will be illuminated in the 
following proposition. Some notation is required: for a e N(B), put 

s (a) = {x G X:x(a*a) > 0}, 

1(a) = {/ e B:x(f) ¥= 0 ^> x G s (a) } . 

Note that s (a) is open in X and 1(a) is an ideal in B. Obviously, 
a*a G 1(a), in fact, it is strictly positive in 1(a). 
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6° PROPOSITION. For each a G N(B), there is a homeomorphism 

oa:s(a) -* s (a*) 

such that 

x(a*fa) = oa(x)(faa*) for all f G B, x G s (a). 

Proof. Let a = v\a\ be the polar decomposition of a in A** (where 
\a\ = (a*a)Vl). It follows that v\a\ = \a*\v (observe that aa* = va*av*). 

Claim: i° If / G 1(a), then vfv* G I(a*). 
ii° If / G /(a*), then v*/v G / (a) . 

To verify the claim it suffices to show that i° holds (since a* = v*\a*\ ) . 
Suppose/ = \a\g\a\ with g G B; then 

v/v* = v|a|g|a|v* = aga* G 5 (since a is a normalizer). 

If g â 0, then 

aga* ^ ||g||aa* G /(a*). 

Since a n y / G 7(a) may be approximated by linear combinations of such 
elements (recall that a is strictly positive in 1(a) ) , the claim is established. 
It follows that v determines an isomorphism between 1(a) and I(a*). 
Let 

oa:s(a) -> s (a*) 

be the unique partial homeomorphism for which 

oa(x)(f) = x(v*fv) for a l l / G /(a*), x e *(a). 

7° COROLLARY, f o r / (E B a # ( £ ) , one /KM 

/ ( / ) = / ( /*) airf <y = id| s ( / ) . 

If a, b G N(B), then ah G Af(£) flwd ̂  = oa o oh where this composition 
makes sense. 

Let (J^x, TTX, £x) denote the GNS triple associated to the pure state 
x G X. The unique extension of ITX to a normal representation of A * * will 
be denoted by the same symbol. Observe that 

<nx(f)Zx = x(f)ix for a l l / G B. 

8° COROLLARY. Let a G N(B) with a = v|a| as aZwve awa7 x G s(a). 
77z£« 

further, irx(v)t-x _L ^ if and only if oa(x) ¥= x. 

Proof. By scaling a appropriately, we may assume that x(a*a) = 1. By 
the proposition, 
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oa(x)(aa*) = 1 

and for all / e B one obtains 

x(a*fa) = oa(x)(faa*) = [oa(x)(f) ][oa(x)(aa*) ] = ofl(*)</). 

Thus 

**(*)(/) = K(a*/a)^, «J 

= K ( iflivVvW & , O 

= K(/Kc(v)£t> ^O)^ ) 

since 7r;c( |a| ) ^ = £x. By the extension property one infers that this 
formula holds for arbitrary elements of A. If oa(x) ¥= x, it is evident that 
these are orthogonal pure states; hence, the vectors giving rise to them 
must be orthogonal. 

Since the irreducible representations associated to the pure states, x and 
oa(x), are equivalent (they occur on the "same" Hilbert space), the states 
themselves are unitarily equivalent. 

A further technical result is required for later use. 
9° LEMMA. Given a G N(B) and x G s (a), the following conditions are 

equivalent: 
i° x(a) * 0 

ii° oa(x) = x 
iii° there is f G B with x(f) ¥= 0 such that af G B. 

Proof. As above, we may assume that x(a*a) = 1. As a first step, we 
demonstrate the equivalence of the first two conditions. Let a = v\a\ be 
the polar decomposition of a. Realizing x as a vector state, one obtains: 

x(a) = (vx(a)ex9 £x) = (TTX(V)7TX( \a\ )£x, Q 

= K(v)£*, O (since *x( M #x = £*)• 
By the preceding corollary, oa(x) = x if and only if 

K(v)€x, o * o. 
iii => ii: This follows immediately from Corollary 7. 
i => iii: By continuity, there is an open set U, with x G U c s (a), such 

that y (a) ¥= 0 for ally G U; hence, oa(y) = y for all y G U. Choose/ G B 
so that x(f) = 1 and s(f) c £/, and set Z> = af by Corollary 7, 

°b = °aoaf= i d U)-
Thus by Proposition 6 

b*hb = /2Z>*Z? for all A G 5. 
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A routine calculation verifies that [h, b]*[h, b] = 0 (where [h, b] = 
hb - bh) for all h e B. Hence, b = of <E B. 

10° Remark. The definition of a diagonal subalgebra may be 
reformulated in a way that does not refer to the presence of an identity. 
An abelian subalgebra is said to be diagonal if it contains a positive 
element which is strictly positive in the ambient algebra and if conditions 
i, ii in the original definition are satisfied. 

11° Example. In a recent article, [32], Raeburn and Taylor construct a 
continuous trace algebra from a Cech two-cocycle (with values in ^ the 
sheaf of germs of continuous circle-valued functions), the class of which 
corresponds to the Dixmier-Douady class of the algebra constructed 
(under the isomorphism: 

i/2(-, se) = #3(-, Z) ). 

This algebra has a natural diagonal isomorphic to ©yQC £/,-), where { Ui} is 
the covering with respect to which the two-cocycle is given. A systematic 
study of diagonals in continuous trace algebras may be found in [23]. 

12° Example. Let G be a discrete abelian group and let x be a symplectic 
bicharacter on G; that is, x'.G A G —* T, is a character of the 
skew-symmetric tensor product. Let A denote the universal C*-algebra 
spanned by unitaries, {ug:g e G}, satisfying the relations, 

ugJrh u*u% e C 1 and 

(f) uguh = x(g A h)uhug for g, h G G 

(see [12], [26], [41] ). Such algebras are characterized by Olesen, Pedersen, 
and Takesaki (see [26] ) as those admitting ergodic actions by compact 
abelian groups. Indeed 

a:G-^Aut(Ax) 

by 

as(ug) = (s, g)ug f o r 5 G G , g e G, 

yields such an action. 
Let H c G be maximal with the property that H A H c ker x-

Let BH c Ax be the abelian subalgebra generated by {uh\h G H) and 
PH'.A —» BH be the faithful conditional expectation given by 

PH(a) = JH± at{a)dt 

where 

/H- = {/ e G:(t, h) = 1 for all h G H). 
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We claim that BH = C(H) is diagonal in Ax It follows from the 
commutation relations (f) that u normalizes BH for all g e G. Observe 
that the bicharacter induces a map 

such that 

<XH(g\ h) = xGr A h) f o r g e G . A e H. 

Since H is maximal with the property x(H AH) = 1, it follows that 

H = ker xH-
A 

Moreover, Ad u\B is simply translation by XH(S) (clearly, s(ug) = H = 
s(ug*) and aw (x) = xxnis) f° r aH x e H). If g ë H, there are a finite 
number of positive elements fk e BH with 2 / ^ = 1, so that 

fku
gfk

 = 0 for each &, 

since the collection of open sets 

{ f / c H:XH(g)Un f / = 0 } 
A 

covers 7/. 
It follows that ugfk G Nf (BH) (each A:) and that Nf{BH) is total in 

ker PH. Thus, !?# is diagonal in Ax as claimed. We shall return to this 
example in later sections. 

2. Twists. We draw upon the theory of continuous groupoids to provide 
us with a machine for producing diagonal pairs. That all such pairs arise in 
this fashion will be shown to be the case in the next section. The reader 
unfamiliar with the theory of locally compact groupoids is urged to 
consult [34] for details. As our notation differs slightly from his, a few 
comments concerning terminology will aid intelligibility. 

1° Notation. If T is a topological groupoid with unit space X (Renault 
uses the symbol T° for the unit space), we denote the range and source 
maps by r, s:T —> X; the collection of composible pairs is denoted T 
(recall that 

T2 = { (yl9 Y2) e r X T:s(yi) = r(y2) } 

with composition (yl9 y2) i~> Y1Y2); ^ e involution is written y (-^ y* 
(so y*y = s(y) and yy* = r(y) ). The isotropy group bundle, 
{y G T:r(y) = s(y) }, is written Is(T); evidently, X c Is(T). The groupoid 
T will be called a relation if X = Is(T) and s:T —> X is a local 
homeomorphism; the letter "!£" is to reserved for relations (Renault terms 
relations principal r-discrete groupoids). We collect some elementary 
properties of a relation R (cf [38], Proposition 1.2.8). 
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i° X c R is open. 
ii° r.R —» X is a local homeomorphism. 

iii° S2(i?) = {[/ c î  open:r|^, sl^ are injective} covers R. 
iv° The quotient map X —» X/i? is open. It will often be convenient to 

identify R with its image in I X I (under (r, s) ) though the relative 
topology is often coarser. If V c X, set 

[K] = r(s-\V)); 

[V] is called the saturation of F; if [K] = X, then F i s said to be/w//. We 
shall say T is a groupoid on X when we mean that X is the unit space. 

2° Definition. Let T be a groupoid on X and let G be a locally compact 
abelian group. Then T is said to be a G-groupoid if T is a free G-space, with 
T/G Hausdorff, for which the following holds: (?) For all gl5 g2 G G, and 
(Yj, Y2) G T2, one has 

(siYi> &Y2) G r 2 a n d 

(giYi)(&Y2) = teife)(YiY2)-

Further, T is said to be & proper G-groupoid if it is a locally trivial principal 
G-bundle over T/G, and if every Y G Is(T) can be written as gjc for some 
g G G and JC G X 

3° Facts. With G and T as above, it is immediate that s(gy) = s(y) and 
r(gy) = r ( ï ) ; indeed, if y G T and x G X, then (y, x) e T2 if and only if 
x = ^(Y) and by (?) one has (gY, x) G T ; moreover, (gy)* = g y*. 
If T is proper (as a G-groupoid), then Is(T) = G X X. Observe that 
T/G is a groupoid on X with groupoid structure inherited from T. The 
groupoid T/G will be referred to as the subjacent groupoid. 

4° Definition. A proper T-groupoid T on X is said to be a /w/^ if T/T is 
a relation. 

Let T be a twist over R (i.e., R ~ T/T); let E(T) denote the collection of 
compactly supported equivariant continuous functions on T, that is 

E(T) = {/ G Cc(r):/(/y) = f/(y) all / G T, y G T}. 

It will be convenient to regard elements of E(T) as sections of the 
conjugate complex line-bundle F(T) associated to the principal T-bundle 
T (i.e., F(T) = C X T / ~ where (z/~, y) ~ (z, fy) for all / G T , y G T, 
z G C). If / G ls(r), the corresponding section is given by 

y M> (/(y), y) where y G R. 

Note that equivariance ensures that this assignment is well defined. Our 
purpose is to endow E(T) with the structure of a *-algebra. We require yet 
more notation; put 

https://doi.org/10.4153/CJM-1986-048-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-048-0


C*-DIAGONALS 977 

N(T) = {/ e £ ( r ) : s u p p / c U e fi(tf ) }, 

note that N(T) spans E(T); finally, put 

D(T) = { / e £ ( r ) : s u p p / c X}. 

Since ^ ( T ) is trivial over X, one has that D(T) = CC.(X). 
A partially defined product is now introduced on F(T): 

(z„ y j ) ^ , y2) = ( z ^ , YiY2) where (yl9 y2)
 e r ^ zi> z2 G c 

Define the product of two elements / , g G £ ( r ) according to the 
formula 

(fg)(p) = 2 /(«)g(j8) where (a, £) G tf2, p e *. 

Note that for each p <E R the sum is finite, since supp / X supp g is 
compact in R2. If g G Z)(T), then the above formula yields 

(fg)(p) =f(p)g(s(p)) forp G *. 

Involution is defined in the usual manner, namely: /*(y) = /(y*). 

5° PROPOSITION. W7f/z product and involution as above, E(T) is a 
* -algebra which contains a distinguished abelian subalgebra, D(T) = 
cc(*). 

Proof. The tedious verification is left to the reader. We remark that the 
product above agrees with the usual groupoid convolution in CC(T) 
restricted to the equivariant functions. 

Viewing E(T) as a right Z)(T)-module, the map 

P:E(T) -> D(T) 

given by restricting sections (to X) is clearly a Z>(T)-module morphism. 
We shall require further properties. 

6° LEMMA. The map P:E(T) —» D(T) satisfies the following conditions for 
allf G £ ( D , g G 7V(T). 

i° />(/*) = P(f)* 
ii° ^ ( / V ) = 0 A/M? />(/•/) = 0 i / W only iff = 0 

iii° P(g*fg) = g*P(f)g. 

Proof 
i° This is obvious. 

ii° If / G £(T) and x G X (note that if (a, p) G # 2 with x = ap, then 
a = p*), the product formula yields 

(/*/)(*)= 2 /*(P*)/(P) = 2 I/(P)I2^0; 
5(p)=X *(p)=X 
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if (/"/)(*) = 0 for all JC G X, then/(p) = 0 for all p <E R. 
iii° If g G N(T) a n d / G Z)(T), it follows immediately that g*fg G D(T). 

For g G iV(r) and x e X, there is at most one p E i^ for which ^(p) = x 
and g(p) ^ 0. Now l e t / G £(T); if there is such a p, then 

(g*/g)(*) = lg(p)l2/(Kp)); 

otherwise the left side of the equation is zero. In either case the assertion 
follows. 

We view E(T) as a C0(X)-module (on the right) in the obvious way, and 
use P to define a C0(X)-valued sesquilinear form on E(T) along the lines 
of Rieffel's treatment in [37] (see also [18], [27] ). F o r / g G E(T) put 

< / g> = P<J*g)\ 

note that 

< / gh) = P(f*gh) = P(f*g)h = a g)h 

for all h G C0(X) a n d / g G £ ( r ) . 

7° PROPOSITION. PF/Y/Z the inner product defined above, E(T) is a (right) 
pre-Hilhert CQ(X)-module. The completion of E(T) with respect to the 
norm 

II/HA = I </>/>& 
is a Hilbert CQ(X)-module. 

Proof That E(T) is a pre-Hilbert module follows directly from the 
definition (cf [18] Definition 2.1) and the above lemma. The second 
assertion follows from Remark 2.5 of [27]. 

Let J$?(T) denote the completion of E(T) with the above norm. 

8° PROPOSITION. There is a *-homomorphism, IT:E(T) —» L(Jif(T) ), such 
that 

<f)g=fg M allf g G E(T). 

Proof We must first show that left multiplication by elements in E(T) 
is bounded with respect to ||-||A. This is clear for elements in D(T). 
Since E(T) is spanned by N(T), it suffices to show that left multi­
plication is bounded for elements in N(T). L e t / G N(T) and note that 
/ * / G D(T)', now, putting h = (f*ff\ one obtains 

(fgjg) = P(g*f*fg) = P(g*h2g) = (hg, hg), 

for any g G E(T), and it follows that left multiplication by / i s bounded. 
Let 7r(/) denote the unique extension to a bounded operator on J^(T), 
where / G E(T) is arbitrary. That ir(f) has an adjoint is clear from 
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<fg,h) = P(g*f*h) = (gj*h); 

in fact, ir(f*) = v(f)* for all / e E(T). Hence the desired *-homo-
morphism. 

Let A(T) (resp. B(T) ) denote the completion of TT(E(T)) (resp. 
TT(D(T))) in L(JP(r>); it is well known that L(Jf(T)) is a C*-algebra 
(though generally not separable). Henceforth, we suppress TT and regard 
B(T) as an abelian subalgebra of the C*-algebra A(T). Note that 
B(T) S C0(X). 

9° THEOREM. With the situation as above, B(T) is diagonal in A(T). 

The proof proceeds through a sequence of lemmas. In showing that P 
extends to a conditional expectation on A(T), we invoke Tomiyama's 
characterization of such maps as projections of norm one onto a sub-
algebra. The following elementary fact concerning operators on a Hilbert 
space will be required: 

(fl) Let al9...,an e B(3f) be such that 

Safo ^ 1; 

for any b e B(Jé?) one has 

ZJ a*bat ^ \\b\\. 

10° LEMMA. For allf e E(T), \\P(f) || =i | | / | | . 

Proof. G iven / G is(r), it will suffice to find gl9 . . . , gn e 2?(r) with 

2 gfs, ^ i, 

such that 

i 

Let j:R —» X X X be the embedding defined by 

j(p) = (r(p), s(p) ). 

If K c JR is compact and K n X = 0, then the collection of open subsets 
of X, 

qi{K) = {U c AV(*) n f/ X t/ = 0}, 

covers X (indeed, j(K) is compact and its complement, which contains 
j(X)9 is open). Choose a partition of unity, {hl9...,hn} c 2?(T), 
subordinate to the cover 

#(supp A * ) , for suppC^C/)). Set g, = hf and 
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observe that 

p(f) = 2 g,fg, 
i 

Let P also denote its unique extension to A(T); by Tomiyama's 
criterion 

P:A(T)-^ B(T) 

is a conditional expectation (see [43] ). 

11° LEMMA. P is faithful. 

Proof Let a be a non-zero element in A(T); there exis ts / e N(T) such 
that af ^ 0 (since JV(r) is total in Jf(T) ). One obtains 

fP(a*àtf = P(f*a*af) = (af af) * 0, 

where the first equality follows from Lemma 6(iii) by continuity. Hence 
P(a*a) ^ 0 and P is faithful. 

12° LEMMA. The free normalizers are total in ker P. 

Proof Evidently, E(T) n ker P is dense in ker P. It will, therefore, 
suffice to verify that for a n y / e E(T) with P{f) = 0, there exist g1? . . . , 
gn e 7V(r) with g^ = 0 such that 

/ = 2 f r 
7 

Given such a n / there are a finite number of open sets, Vl9. . . , Vn e $l(R), 
such that 

5(Pf) Pi r(Pf) = 0 for each /, and s u p p / c U Vt. 

Let /ij, . . . , hn G CC(R) be a partition of unity for supp / subordinate to 
{ Vt } and set 

g,(Y)=/(Y)^,(Y). 

The adjunction of a unit (if necessary) does not change the fact that P is 
faithful; further, the free normalizers remain total in its kernel. Thus B(T) 
is diagonal in A(T), and the theorem is proved. 

13° Remarks. The correspondence between 1-cocyles on a groupoid and 
automorphisms of the associated *-algebra is well known (see [34] Section 
II.5 and [13] Section II.4). A continuous map c:R —» T is called a T-valued 
1-cocycle if 

c(po) = c(p)c(o) for all (p, a) <= R2; 

the collection of all such is denoted Zl(R, T). 
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Returning to the situation above with T a twist over a relation R, let 
c G Z](R, T), and define an element uc G Lpf(T) ) by 

K / X y ) = c(y)f(y) for a l l / G E(T\ y G T 

(this is clearly bounded so one extends to all of Jf?(T) by continuity). That 
uc is unitary follows from the observation that it preserves the inner 
product (note that u* = u_c, where — c is the inverse of c G Zl(R, T) ). 
One checks that 

Ad «,( ,4(0) =A(T) 

and we denote this automorphism of A(T) by ac. If / G B(T), then 
ac(f) = f. In fact, this condition will be seen to characterize 
automorphisms arising from 1-cocycles (see Section 3 below). Note that ac 

is inner if and only if there is a continuous function h:X —» T such that 

c(p) = h(r(p) )h(s(p) ) for all p ^ R, 

that is, c G Bl(R, T) (cf [34] Proposition II.5.3). 

3. The twist of a diagonal. In this section, the twist is shown to be a 
complete invariant of a diagonal pair. This is done by associating a twist 
to a given diagonal pair and then verifying that the pair constructed from 
the twist (as in the preceding section) is canonically isomorphic to the 
given pair. 

Let A be a C*-algebra. The extremal points of the unit ball of A* may be 
viewed as a topological groupoid (with respect to the weak* topology) on 
the collection of pure states. The dual groupoid, as it is called, has been 
studied in [1] and [36]. In the latter, Renault shows that the spectrum of a 
diagonal, as a subset of the pure state space is a "nice" transversal, in the 
sense that the desired twist is the reduction of the dual groupoid to 
the spectrum of the diagonal. 

For the sake of completeness we provide an independent construction 
which follows the lines indicated in our original note (cf. [22] ). 
Nevertheless, the reader would do well to keep the dual groupoid 
perspective in mind. 

1° THEOREM. Given a diagonal pair, (A, B), there is {up to isomorphism) a 
unique twist T and an isomorphism 

<I>:A(T) -> A 

such that <t>(B(T) ) = B. 

Proof. We may assume without loss of generality that A is unital. For, if 
A is not unital, one adjoins a unit to both A and B, obtains the desired 
twist for the pair (A, B), and then deletes the point at infinity from the unit 
space (together with the copy of T above it). Let X = B c A* (where 
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the injection is given by the extension property of B relative to A). 
Set 

D = { (d, x) e N(B) X X:x(d*d) > 0}; 

for each (d, x) e D, let [d, x] be the linear functional on A defined by 

[d9 x](a) = x(d*a)x(d*d)~l/2 for all a e A. 

Observe that if/ e 5 with x(f) > 0, then x = [/, x]. If (c, x), (</, x) e D, 
then by Lemma 1.9 the following conditions are equivalent: 

i° [c9 x] = [d9 x] 
ii° x(c*J) > 0 

iii° there exist/, g ^ B with x ( / ) , x(g) > 0 such that cf = dg. 
Let 

r = { [d, x]:(d, x) e D} c ,4*. 

r is to be endowed with the structure of a twist. The T-action is given by 
scalar multiplication (that is, t[d, x] = [Td, x] ). The groupoid structure is 
given by the following formulas 

s[d, x] = x 
[d,x]* = [d*,od(x)] 
( [c> y]9 W, x] ) e T2 if and only if y = od(x), in which case, 
[c, y][d9 x] = [a/, x]. 
We define the topology on T by giving a neighbourhood system at a 

point [J, i ] E T. Let (/ c I , F c T be open sets such that JCG t / c s(d) 
and 1 e V; set 

W[t/, K) = {t[d9y]:y e £/, f e K}. 

One checks that this topology is the same as the relative weak* topology 
and that the above operations are continuous with respect to it. Since 
scalar multiplication commutes with multiplication in any algebra, it is 
clear that T is a T-groupoid. Let R denote the subjacent groupoid and 
let 

q:T -> R 

denote the quotient map. If r[d, x] = x, then [d, x] = tx for some / e T, 
whence Is(#) = X, and R is a relation (as q(W(U, V) ) = U). Further, 
each normalizer determines a local section for the circle-bundle map q. 
Indeed, if p e R, then p = q[d, x] for some (J, x) e Z> and the map 

(<^(>0, >0 ^ [4 J] 

trivializes the circle-bundle over the open set, 

U(d) = {{od(y),y):y <=s(d)}. 

Thus, T is a twist. 
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We claim that, for every/ G N(T), there is a unique <j>(f) G N(B) such 
that 

(t) Ay) = y(Hf)), for ail y G r. 
By compactness, there exist dx,... ,dn G N(B) such that 

q(suppf) c y £/(^). 

Choose a partition of unity, {/^}, for s(suppf) c X, subordinate to the 
cover {s(^) }. Define gk ^ B for \ ^ k ^ n by 

X(g ) = ( ^ ^ ' *1 ) W * ( « ~ ' / 2 for x e 4 4 ) 
VÔ/O* I Q elsewhere 

and set 

<t>(f) = 2 dkgk. 
k 

Then, (f) holds by construction. Now, <f> extends linearly to a 
*-isomorphism from E(T) onto a dense subalgebra of A (one checks that 
<Kfg) = *C/Xg) for/, g G tf(r) and # / * ) = # / ) * ) . It remains to show 
that <£ is isometric. Since P is faithful, one has 

IMI = sup{ \\P(b*a*ab) \\Vl:P(b*b) ^ 1} for all a e A, 

but this is how the C*-norm was defined on E(T). Hence, 

<t>:E(T) - » A 

extends to an isomorphism of C*-algebras. 

Suppose r is a twist on X. 

2° Definition. Let Aut(T) denote the group of homeomorphisms, 
8:T —> r , satisfying: 

i° for all (a, p) G F \ 

(6(a), SOS) ) G T2 and 8(aj8) = 8(a)8(/l) 

ii° tS(y) = 8(ty) for a l l / G T, y G T. 
Set 

A l i t o r ) = {8 G Aut(r):8(x) = x, for all x G X}. 

3° Remarks. Condition i° implies that 8(X) = X. One sees immediately 
that Aut^(r) is a normal subgroup of Aut(T). Further, Aut^(r) is 
isomorphic to Zl(R, T), where R is the subjacent relation, via the map 

c G Z\R, T) h-> Sc G Aut^(r), 

where 8c(y) = c(y)y. For analogous results concerning standard Borel 
equivalence relations consult [13] (Section II.4). 
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4° COROLLARY. For each a G A\xi{A) with a o P = P o a, there is 
a* G Aut(T) such that: 

y(a(a) ) = (a*y)(a) for all a G A, y G T. 

Further, a* G Aut^T) if and only if a o P = P. 

Proof This follows directly from the construction of T c ^4* in 
Theorem 1. 

5° Example. Let G be a discrete abelian group with symplectic 
bicharacter x> a n d let i / c G be maximal with the property that 

A 

X(H AH) = 1, as in example 1.12. Let R denote the relation on H as­
sociated to the diagonal pair, (A 9 BH). One sees that 

R = G/H X H 
A 

where the unit space is identified with {0} X H (note that s( [g], x) = JC, 
and r( [g], x) = XXH(S) )• The associated twist is seen to be topologically 
trivial as each ug defines a continuous section on { [g] } X H. 

Suppose H0, Hx are abelian groups and 

0:HO -> Hx 

A A 

is an injective homomorphism. We view Re = H0 X Hx as a relation on Hx 

via the maps 

s(h, x) = x 

(h,x)* = (-KxOQi)). 

We wish to characterize those twists over Re which arise as above for some 
bicharacter x on H0 © Hx for which Hx is maximal with the property that 
X(HX A Hx) = 1. 

Let T be a twist over R0 = H0 X Hx, and suppose there is a 
homomorphism 

a:Hx-+ Aut(T) 

satisfying the conditions 
A 

i° a:Hx X T —> T is continuous 
A 

ii° ^ ( j ) = x j for all x9 y G /f1# 

Consider the i/0-valued cocycle on î ^ defined by p(h, x) = h and the 
associated homomorphism (cf [34] Section II.5) 

8:H0 -> Aut^(r) 

given by 

8z(y) = (z> p(y) >r; 
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since p(a'x(y) ) = p(y) for all x e / / , , y e T, one obtains 

Szax(y) = « A ( ï ) f o r all JC G Jïj, z G ^ 0 , y e T. 

Consequently, there is an ergodic action 

£:H0 X V Aut(^(r) ) 

such that 

Y08(z, x)(a) ) = (5z«x(y) )(a), 
A A 

for all (z, x) e /f0 X //1? y e T, Û e v4(r). Let x denote the associated 
bicharacter on / / 0 © Hl (see [26] ); it follows that 

(Ax, B„) = (A(T\ C(H{) ). 

4. Twists and cohomology. The collection of twists over a given relation 
is to be endowed with the structure of an abelian group. The usual second 
cohomology of a relation (with coefficients in T) is canonically isomorphic 
to the subgroup of twists which are topologically trivial (i.e., the quotient 
map; q:T —> R, admits a continuous section). The connection between 
second cohomology and extensions, familiar from group theory, is 
considered in the setting of groupoids by Renault (see [34] Proposition 
1.1.14). Viewing twists as extensions which need not admit continuous 
sections, it is appropriate to consider the group of twists as a replacement 
for the usual second cohomology of a relation. 

Let R be a relation on X, and let TW(JR) denote the collection of 
isomorphism classes of twists over R. 

1° Fact. There is a bijective correspondence between H (R, T) and the 
subset of Tw(R) consisting of twists admitting a continuous section. 

Proof. Suppose q:T —> R admits a continuous section o:R —> T. Let 

ca:R
2 -> T 

be the unique continuous function satisfying the condition 

ca(p{, p2)o(plp2) = o(pl)o(p2) for all (p,, p2) G R2. 

For all (p,, p2, p3) e R3 (that is, s(p{) = r(p2), s(p2) = r(p3) ), one obtains 
the following by associativity of groupoid composition 

o(Pi)o(p2)o(p3) = ca(ph p2)ca(pxp2, p3)o(pxp2p3) 

= co(P\> P2P3)co(P2> P3)°(P\P2P3)> 

hence, ca G Z2(R, T). Another choice of section yields a cocycle in the 
same class. That every class in H2(R, T) arises from some topologically 
trivial twist is clear. 
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2° Remark. Let T be a twist over R. If there is a continuous section 

a:# -» r , 

which is a groupoid morphism, then T is said to be a trivial twist. The 
map 

a:T X # -> r , 

defined by a(/, p) = /a(p) is an isomorphism of twists. Let i£0 denote the 
trivial twist T X R. 

Given two twists, ^-:I] -* R, i = 1, 2, we define the product twist 
Tj * T2 as the quotient of 

{ (Yi> Y2)
 G F I X r2:^i(Yi) = 42(Y2) } 

by the equivalence relation 

(Yi, Y2) ~ (tyl9 Ty2) for ; G T. 

Note that this is the usual product of circle-bundles over a common 
base space. The groupoid structure is prescribed by the following 
formulas: 

s(y\> Y2) = s(y\) = ^(Y2) 

(YI, Y2)* = (Yi*, Y2*) 

((a}9a2)9(fil9p2)) e ( r , *T2)2 

if and only if (al9 ft) e Tz
2, / = 1, 2 

(«!, a2)(Pi, P2) = (ai#i> «2^2)-

One verifies that Tj * T2 is a twist over R. 

3° PROPOSITION. When endowed with the above product Tw(/£) w a/? 
abelian group with neutral element [R0], and the injection 

H2(R9 T) -> Tw(#) 

is a homomorphism. 

Proof. For any twist T, the isomorphism RQ * T = T is given by 

( (*, Y), Y) »-> 'Y-

It remains to show that inverses exist; let T + be the twist obtained from T 
by inverting the T-action. That is, there is a groupoid isomorphism 

y G T ^ Y + G T + 

for which /y+ = (/Y) + - There is a trivializing section, 
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given by a(y) = (y, y ); since a is a groupoid morphism, it follows that 
[ r + ] = — [r]. A straightforward calculation reveals that multiplication of 
cocycles corresponds to the above defined product of twists. 

Let y denote the sheaf of germs of continuous circle-valued functions. 
We construct a natural homomorphism (cf. [22, 23] ) 

Ç:H\X, <?) ^ Tw(R), 

where H (X, S?) is viewed as the group of (equivalence classes of) 
circle-bundles over X. 

We view the Cartesian product, X X X, as a topological groupoid on X 
(here the unit space is identified with the diagonal A = { (x, x):x e X} ) 
with respect to the following operations: 

s(x, y) = y, (x, y)* = (y, x)9 

( (x, y), (w, z) ) is composible if and only if y = w, and then 

(*> y\y>z) = (*>z)-

4° PROPOSITION. There is a bijective correspondence between isomorphism 
classes of proper T-groupoids with subjacent groupoid XXX (cf. definition 
2.2) and isomorphism classes of circle-bundles over X. 

Proof Let A be a circle-bundle over X with bundle map p: A —» X. Let 
A+ denote the conjugate circle-bundle obtained by inverting the T-action 
(so there is a homeomorphism X e A I—> X+ e A+ such that (/X)+ = /X+); 
note [A+] = - [A] in H](X, Sf). Let ^(A) denote the quotient of A X A+ 

by the equivalence relation 

(Xb X2
+) ~ (t\x, Â 2

+ ) for all t e T. 

Observe that >F(A) is a circle-bundle over X X X, in fact 

^(A) = r*(A) * s*(A+) (product of pull-back circle-bundles). 

We claim that ^(A) is a proper T-groupoid on X with unit space 
inclusion 

p(X) e I M ( À , A + ) <= *(A). 

The source map is given by s(Xu X2)
 = P(^i)> involution by (Xb X2 )* = 

(X2, X+). Now 

((XbX2
+),(X3 ,X4

+)) G *(A)2 

if and only if 

p(X2) = p(X3); 

in this case, there is a unique t e T such that X3 = tX2 and one writes 

(A„ A2
+)(A3, A4

+) = r(A„ A+). 
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Composition commutes with the T-action by construction and ^(A) is 
thus a proper T-groupoid. Conversely, suppose we are given a proper 
T-groupoid ^ over XXX. For JC G I , put Ax = s~](x) and note that 
r: Ax —> X is a circle-bundle map where the T-action is inherited from ^ . 
We claim that ^ = ^ ( A J ; indeed, 

Ax
+ = A* = r~\x). 

Further the composite 

A^ X A* c ^ 2 -> * 

is surjective by the transitivity of SF. Hence, <fr is the quotient of A^ X A^ 
by the equivalence relation 

(X, M
+ ) ~ (/A, ô*+), 

as desired. This does not depend on the specific choice of x, since for any 
y G X, there exists y e ^ with r(y) = x and s(y) = 7; hence, the map 

X e Ax h-> Xy G A^ 

is a circle-bundle isomorphism. 

With the situation as above, let q:^(A) -^ X X X denote the quotient 
map. 

5° COROLLARY. Let R be a relation on X and A a circle-bundle over X. 
The groupoid 

(r, *)*(*(A) ) = { (p, y) G R X ¥(A):(r, *XP) = <?(Y) } 

is a twist over R. Further, the map 

$:Hl(X,Sf)-*Tw(R), 

given by 

f[A] = [ (M)*( t (A))] 

is a group homomorphism. 

5. Morita equivalence. Rieffel's theory of strong Mori ta equivalence of 
C*-algebras (developed in [37] ) is here adapted to the setting of diagonal 
pairs. A criterion for strong Morita equivalence of diagonal pairs will be 
given in terms of the associated twists (via the linking algebra 
characterization appearing in [6] ). We introduce the notion of T-structure 
(patterned on the notion of fi-manifold appearing in [20] ), which enables 
one to transplant twist structure from one space to another in a manner 
that ensures the strong Morita equivalence of the associated C*-algebras. 
A related but more general notion is that of equivalence of groupoids (cf 
[36], [35] ). 
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1° Definition. Two diagonal pairs, (Ai9 Bt) i = 1, 2, are said to be 
Morita equivalent (write (A]9 Bx) « (A2, B2) ), if there is a C*-algebra A 
and two projections,/?!,/^ G A^(^X with/?! + /?2 = 1, such thatp iAp i is 
not contained in any proper ideal (/' = 1, 2), as well as isomorphisms 

<i>i:Ai ~>PiAPi for i = 1, 2 

such that B = <j>x(Bx) © <I>2(B2) *s diagonal in ^4. 

2° Remarks. This definition is a modification of the linking algebra 
characterization of strong Morita equivalence (see [6] Theorem 1.1). In 
particular, if (Al9 Bx) « (A2, B2), then Ax and A2 are strongly Morita 
equivalent, where the Ax -A2-equivalence bimodule is P\Ap2 (with the 
obvious inner products). One should check that this defines an 
equivalence relation on diagonal pairs. The requirement that B = <j>x(Bx) 
© ^2(^2) be diagonal ensures that: 

Nf(B) n P\Ap2 is total in pxAp2. 

Suppose (Ai9 B{) are diagonal pairs for / = 1, 2, 3. If Jx is an 
^-^-equivalence bimodule and J2 is an A2-A3-equivalence bimodule, 
then Jx ®A J2 (as defined in [37] ) is an ^-^-equivalence bimodule. If 
both Jx and J2 arise, as above, in diagonal preserving linking algebras (i.e., 
Nj- n Jt is total in Jt)9 then the same can be said of Jx 0 ^ J2. 

3° Definition. Let T be a twist on X and U c X an open set; the 
twist 

Ta= {y Œ T:r(y)9s(y) e £/}, 

is called the reduction of T to £/. If £/is full (i.e., [U] = X) the reduction is 
said to be full. 

Note that A(TV) embeds naturally in A(T) as an hereditary subalgebra, 
which is full, that is, not contained in any proper ideal, exactly when the 
reduction T^ is full. When this is the case, the associated pairs are Morita 
equivalent, that is 

(A(T), B(T) ) « (AÇTy), BWu) ). 

The smallest hereditary subalgebra of M2(A) containing exx ® A(T) and 
e22 ® A(TV) is the desired linking algebra. 

4° PROPOSITION. Suppose Tt is a twist on Xtfor i = 1, 2; one has 

{A(TX\ B{TX) ) « (A(T2), B(T2) ) 

if and only if there is a twist T on the disjoint union Xx _LL X2 such that 
I] = Tx and Xt is full for i = 1, 2. 

Proof. This follows immediately from the definition of Morita 
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equivalence for diagonal pairs and the characterization of the twist as a 
complete invariant of a diagonal pair (see Theorem 3.1 above). 

5° Definition. With Yx and T2 as in the above proposition, we say the 
twists are Morita equivalent and write 

Tj « T2 via T; 

the twist r is referred to as a linking twist (note that this need not be 
unique). 

6° Definition. A continuous open map \p:Z —> X is called a quasilocal 
homeomorphism (qlh), if it is locally injective (that is, the collection of 
open sets U(\p) = {[/ c Z:\p\v is injective} covers Z) , and a local 
homeomorphism, if, in addition, it is surjective. 

Such maps are useful in inducing Morita equivalent twists to other 
spaces, as is seen in the next proposition. 

7° PROPOSITION. Let T be a twist on X and \p:Z —> X be a quasilocal 
homeomorphism for which \p(Z ) is full. Let T* denote the space 

Z*T * Z = { (z„ y, z2):^(zx) = r(y), i/<z2) = s(y) } 

c z x r x z. 
Then T* may be endowed with the structure of a twist on Z in such a way that 

r « r*. 
Proof. One checks first that T^ is a T-groupoid on Z (where the unit 

space is identified with { (z, i//(z), z):z e Z} ) under the operations 

s(zu y, z2) = z2, (z1? y, z2)* = (z2, y*, z^ 

(zl9 y b z2)(z2, y2, z3) = (zl5 y^2, z3) 

and the T-action is given by 

t(zh y, z2) = (zl9 ty, z2)\ 

the subjacent relation is denoted BJ where R is the subjacent relation 
for T: 

R* = { (zl5 p, z2):iKzd = r(p), ^(z2) = s(p) } c Z X R X Z. 

The local triviality of the circle-bundle T^ over R^ follows from that of T 
over R and the fact that xp is locally injective (so there exist local sections). 
We proceed now to the construction of the linking twist. Let 

<f>:Z 1±X^ X 

denote the local homeomorphism given by 

^ = [y iîy e X 
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Then r* « V via T* (note that (T*)z = r* and (Y+)x = T). 

Observe that there is a distinguished copy of i?(i//) in F% where 

R(+) = {(zl9 z2)eZX Z:4iz{) = t(z2)}. 

The following proposition provides a converse of sorts to the preceding 
one: 

8° PROPOSITION. Let T be a twist on Z, and let \p:Z —» X be a local 
homeomorphism. If there is a groupoid morphismj:R(\p) —» T which identifies 
unit spaces (i.e.,j(z) = z), then there is a unique {up to isomorphism) twist A 
on X and a surjective twist morphism ir:T —> A satisfying the following 
conditions: 

i° TT\Z = xp 

ii° ImO) = 7T~\X) 

iii° r = A*. 

Proof The twist A is constructed as the quotient of T by the equivalence 
relation 

a ~ /? if there exist p, a e JR(I//) such that aj'(p) = j(<?)P-

This is clearly reflexive and symmetric; transitivity remains to be checked. 

With a ~ ft as above, suppose ft ~ y with /?/(X) = y(ju,)y. One sees that 

The quotient A is then a twist on X (note that the quotient map 7r:T —> A 
is itself a local homeomorphism). Conditions i° and ii° hold by 
construction. Let <j>:T —> Z * A * Z be given by 

<HY) = (KY), "(Y), s(y) )• 

One checks that <j> defines the isomorphism indicated in iii°. 

Viewing A as the quotient of T by j:R(\p) —» T, one writes A = T/j. It is 
perhaps worth noting that the isomorphism class of A depends on the 
choice of j . It is shown below that any twist Morita equivalent to a given 
one can be obtained via the constructions delineated in the two preceding 
propositions. Towards this end, we require the notion of T-cocycle. 

9° Definition. Let V be a twist on X with quotient map q:T —» R and let 
tft = {U(:i G 1} be a countable locally finite cover of a space Z. A 
collection of continuous maps 

O.j-.U^Y (where Uy = U, n Uj) 

is called a T-cocycle on Z relative to ^/ if 
i° q o Ojj'.Ujj —> R is a homeomorphism onto some coz e ti(R) 
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ii° for each z e Utjh 

( ^ • ( z ) , ^ ( z ) ) e T2 and 

^ ( z ) ^ ( z ) = 0ik(z). 

Observe that lm(0/z) c Xby ii° and lm(0zz) is open by i°. We say that 0 
is true if Uz Im(0zz) is full. 

10° PROPOSITION. With notation as above, let 6 be a true T-cocycle on Z 
relative to °U. There is a twist T(0) on Z which is Morita equivalent to T via a 
linking twist T over Q for which there exist sections JUZ defined on Wt c Q 
satisfying the conditions: 

i ° H ^ = U, 
ii° If p e. Wt, a e Wj with z = r(p) = r(a), then 

Oft) = H(p)*Pj(o). 

Proof The twist T(0) is constructed directly from the T-cocycle 0 using 
the methods of Propositions 7 and 8. Let 

u = i i u, 

and define 

$: U -> X by ,/<z) = 0zz(z) i f z G [ { . and 

4>: 1/ -> Z by inclusion (z e l£ h-> z e Z ). 

Note that i// and <#> are quasilocal homeomorphisms and that \p(U) is full 
(because 0 is true), while <#> is surjective. Define a groupoid morphism 

i:R(4>) —» T^ (identifying the unit spaces), 

where 

#(4>) = 1 1 £/ and T^ = -U 17. * T * U- Uh 

as follows. If z G £/• put 

i(z) = (z, ^.(z), z) Œ u{xr x y n r* 

That * is a groupoid morphism follows directly from the cocycle property. 
Set T(0) = T v i and note that T(0) is Morita equivalent to T. The linking 
twist T is constructed, in like manner, as the twist induced by a T-cocycle 
on Z _LL X. The collection °ll = °U U {X} constitutes an open covering 
of Z _LL X\ let d denote the T-cocycle defined relative to °U which restricts 
to 0tj on each U- and for which V*(x) = x for each x e X (note that 
X n L̂; = 0 for each /'). Let U = U LL X and define, by analogy with the 
above, 

https://doi.org/10.4153/CJM-1986-048-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-048-0


C*-DIAGONALS 993 

$:U -> X 

$:U -> Z 11 X 

7:R$) -> T* 

It follows that Ï = T(S) is the linking twist, that i s j \ 0 > « T via T<0>. 
Now, for each i, define a continuous map vt:Ut —» T^ by 

?,.(*) = (z,#„(z ) ,#„( ; ) ) e ( ^ X r X X) n T?; 

put /vi = 77T o *>z-, where TT-.T* —» Tv7(cf. Proposition 8 above). Observe 
that 

tff = I m ( ^ ) G a ( g ) 

(where g is the subjacent relation for T). Define sections ju.z:J^ —» T by 

ft(p) = ^0*(p) )• 

It is a routine matter to verify that conditions i° and ii° hold for these 
sections. 

11° Remark. The linking twist T = T(0) in the above proposition is 
unique subject to the requirement that there exist sections {/ij which 
implement the cocycle (see Theorem 13 below). 

We introduce an equivalence relation on the collection of T-cocycles on 
a given space Z (by analogy with the usual notion of equivalence of Cech 
cocycles). An equivalence class of T-cocycles will be termed a T-structure 
on Z. 

12° Definition. Suppose 6] and 02 are T-cocycles on Z relative to the 
same covering °ll = {Ut:i £ / } . Then 6 and 6 are said to be equivalent 
(write 6l ~ 0 ) , if there exist continuous functions hi\\Ji —> T such that 
for each z e £/• 

(A,.(z),0j(z) ),(*?.(*), A/z)) e T2 and 

hj(z)$l(z) = efj(z)hj(z). 

If they are given relative to different covers, then they are said to be 
equivalent if their restrictions to some common refinement are equivalent 
(in the above sense). An equivalence class of T-cocycles on a space is 
termed a T-structure on that space. If 0 is a T-structure on Z, then 6 e 0 
will be construed as a T-cocycle representative (relative to some 
covering). 

In the following result we establish that the twist structure induced by a 
T-cocycle only depends on its equivalence class; furthermore, every 
Morita equivalent twist arises in this fashion. 
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13° THEOREM. Suppose A and T are twists on Z and X, respectively, which 
are Morita equivalent via a linking twist T. There is, then, a unique 
Y-structure 0 on Z such that if 6 G © is any T-cocycle in this class, one has a 
twist isomorphism T(8) = Ï . 

Proof. Let Q be the subjacent relation for the linking twist T. For each 
z (E Z, there is pz G Q with r(pz) = z and Vz G fl(<2) with pz G VZ such 
that r(Vz) c Z and 5(K) c I . By the paracompactness of Z, we may 
assume there to be a countable family of open sets {Vt:i > 0} c £2(<2) 
with ^ ) c I and r(Jf) c Z for each z > 0, such that the collection 

qt= {r(\T)\i > 0} 

covers Z. We may further assume there to be a family of continuous 
sections 

a , . :^->T for/ > 0. 

We define a T-cocycle # relative to fus ing these sections as follows. For 
each z G r(J^) n f(K), there are unique p7 G Ĵ  and p G K such that 

* = KP/) = KP,); 

put 

0,y(r) = a,.(Pl.)*a/p,.). 

This is to be the desired T-cocycle. Set V0 = X, and note that there is a 
canonical section a0 defined on X (recall that X is identified with the unit 
space of T c T). Put 

V = 1 1 V 

and define two local homeomorphisms 

^: V -> X 

$ : K - > Z l l Jf, 

by ^(p/) = (̂Py) and <J>(pz) = r(p-) for p, G Ĵ  c K We define a groupoid 
morphism 

i:R(4>) -> T* 

by 

*(p/> Py) = (ft, 0r/(P/)*O/.(p/-), Py), 

for p, G J£ p. G K, r(pz-) = r(p-). The linking twist associated to the 
T-cocycle 6 is then given as the quotient of T^ by this embedding, that 
is, 

T(8) = r*/4. 
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Consider the map <ï>:r̂  —> Ï given by 

$(P/, Y, Pj) = o&PdyOjiPj)* where sty) = r(y), sty) = j(y). 

The map O factors through T(S) in the evident way (N.B. i(R(<f))) = 
0 ~ (Z _LL X) ), and one obtains the isomorphism T(0) = T. To complete 
the proof, it remains to show that if 6' is a T-cocycle on Z equivalent to #, 
then there exist implementing sections as above. It suffices to consider two 
cases. First, if 0' is obtained from 0 by restriction to some refining cover, 
then the implementing sections are obtained from those of 0 by restriction. 
We may therefore assume that 0' is given relative to {r(Vt) } and that there 
exist continuous functions 

hfAVd -> r 
satisfying the condition (as in definition 12) 

(f) h,(z)6tp) = 6>fc)hj(z) for all z e r(V,) n r(Vj), 

where it is implicit that the compositions make sense. There exist open sets 
Ut G Qi(Q) with r(Uj) = K^) , a n d continuous sections a-: Ut —> T such that 
for each / > 0, and p- G (̂  

aXftO = o^hnriPt) ), where r(Pl-) = r(P;>. 

It follows from (f) that if pz' G Ui9 pj G [̂ - with r(p[) - r(pj) = z, then 

0/(z) = a;(P;)*o;(p;). 

14° Remark. Let 0 be a T-cocycle on X (where X is the unit space of T) 
given relative to some cover °U = {Uf.i G / } . Suppose that there are open 
sets Vt G tt(R) with sty) = Ul for each i G /, such that 

0it(s(p) ) = r(p) for each / G / and p G Vt. 

Then T(0) is a twist over R; moreover, [T(0) ] — [T] G Im f (cf. Section 
4.4). Conversely, if A is a twist over i? with [A] — [T] G Im f, there is a 
T-cocycle 0 as above such that [A] = [T(0) ]. Let M(R) denote the 
quotient Tw(R)/Im f; we view M(R) as the group of Morita classes of 
twists over R. 

6. Hyperfinite relations. In this section the group of twists is computed 
for a certain class of relations on compact spaces. A characterization of 
the associated diagonal pairs is presented together with a number of 
examples. An analogous discussion of relations on locally compact spaces 
is possible, but in the interests of brevity and smoothness of exposition, we 
defer the imperative towards greatest generality. In contrast to the 
situation considered in [13], where the second cohomology of hyperfinite 
Borel relations is shown to be trivial, the group of twists (read second 
cohomology) of the hyperfinite relations considered here need not 
vanish. 
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1° Definition. Let R be a relation on X\ then R is said to be finite if it is 
compact (as a topological space). 

N.B. If R is finite then Xis necessarily compact and X/R is Hausdorff 
(see [19] Theorem 3.11). 

2° PROPOSITION. T/'i? is a finite relation on X, then the quotient map 
\p:X —» X/i? w a covering map and R = R(*p)-

Proof That \p is an open map is immediate (see 2.1.iv). We show that \p 
is locally injective; that is, for each x e X, we produce an open 
neighbourhood U of x such that \p\u is injective (i.e., £/ e £/(*//), cf. 
Definition 5.6). Since the unit space X is open in R, and R is 
homeomorphic to its image under the embedding 

(r, *):£ -> X X X, 

there is an open set V cz X X X such that 

(r,sy\V) = X. 

Hence, given x e X, there is an open neighbourhood U of x such that 
[/ X U c F; it follows that i / ^ is injective. By compactness, X may be 
covered by a finite number of open sets in Uty); therefore, each element of 
X/R has a finite preimage. 

Claim. For any z e A7i£, there is an open neighbourhood W of z such 
that *//~~ (W) is homeomorphic to the disjoint union of a finite number of 
copies of W. Suppose that this is not the case for some z e X/R. Let 

and choose disjoint open sets Ut with xz e £yj. <E £/(;//), for each /. Set 

u = n ^ ) , 

and note that if K is an open set with z e F c £/, then 

K ~ ^ _ 1 ( K ) n iç for each/. 

Thus, by supposition, \p~ (V) is not contained in Uy Lf-. There is, then, a 
sequence {yy-} c X for which y- £ U/ Ui and t/Oy-) —> z. Let x0 be a limit 
point of the sequence {y-}; by continuity i//(*o) = z, but this is impossible 
as 

*-\z) c u ^ . 

The claim is hereby established. It is evident that R ~ R($)-

3° Remarks. Suppose that Q cz R are finite relations on X\ then the 
quotient map of R factors through that of Q (cf. [23] Section 4). More 
precisely, if \p}:X -» XIQ and \p2'-X —> X / # are the associated quotient 
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maps, then there is a covering map <j>:X/Q —> X/R such that \p2 = <t> o \p\. 
Note further that Q is (topologically) a compact-open subset of R. To 
avoid cumbersome notation, we shall often identify a relation R with its 
image in X X X. 

4° Definition. Let i? be a relation on a compact space X. Then R is 
said to be hyperfinite if there is an increasing sequence of finite relations 
Rn c R, n ^ 1, such that R = UnRn. 

5° Remarks. With # as in the definition, set X0 = Xand Xn = X/ /^ . By 
the above remark, one obtains a sequence of covering maps 

Xn x„ -> x 
*„ « + 1 

Note that \pn = 4>n-\° • • • O<£o> where yfyn is the quotient map associated to 
Rn. If \p:X —> Z is a covering map, write 

Tw(i//) = Tw(#(i//)) and i / 1 ^ ) = H](R(xP), T). 

Recall the six-term exact sequence associated to \p (see [23] ): 

o -> #'«o -> H\Z, #>) -* H\X, y ) -> Tw(̂ ) 

-» H2(Z, ST) -^ H\X, Se). 

As the restriction of twists to subrelations (on the same unit space) defines 
a homomorphism between the associated groups of twists, it is of some 
interest to consider how the sequences associated to a pair of covering 
maps intertwine. 

6° LEMMA. Suppose one has a commuting triangle of covering maps: 

x • y 

Then one has the following commutative diagram with exact rows: 

X 

- / / ' ( a ) -

_ - / / ' ( X t ^ ) _ ^ T v , ( ^ ) _ H *H\Z, yy 

<p* 
r 

-HZ(X, &>) 

»Hl{Y,yy »Hl(X,<?)—+TMo)-j* ~H\Y,<fy *H\X, y) 
^ a" ^ ô a* 

where v is the map given by restriction of twists and X is given by restriction of 
cocycles. 
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Proof. That the rows are exact follows from [23]; that 8 intertwines v and 
<£>* follows from Proposition 4.1 (ibid.). That TJ intertwines À and <j>* results 
from the fact that a cocycle on R(o) extends if and only if its class maps 
into Im <f>*. 

We shall require some standard facts relating to the inverse limit 
functor for abelian groups (cf [16] Section 2, [17] Section 1). By inverse 
system of groups, we shall mean a sequence indexed by the positive 
integers 

Gn^ G+- G<-
Or r r 

70 7 1 7 2 

7° Facts. The functor lim defined on inverse systems of abelian groups 

is left exact. The right derived functor, denoted lim1 has an explicit 

description. Let { (Gn,fn):n è 0} be an inverse system of abelian groups; 
put 

n 

and define an endomorphism / of G as follows 

/(&)> g\> #2> •••) = ( & ) " fo8\> Si ~ /i#2> • • •)• 

Then 

lim Gn ^ ker/ , 

while 

lim1 Gn ~ coker/. 

If each/^ is surjective, then so i s / whence 

lim1 Gn = 0. 

If, in addition, there exist morphisms, sn\Gn —» Gw + 1, such t h a t / o sn = 
idG , then one has: 

lim Gn = G0 0 I I ker/ r 
< — n 

To say that lim is the right derived functor of lim means that given an 

inverse system of short exact sequences: 

NI \ \ 

0 -> H„ -» G„ -» K„ -» 0, n ^ 0, 
J. J-' X 
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one obtains a six-term exact sequence involving the two functors: 

0 -» lim Hn -» lim Gn -» lim Kn -> lim1 ifw 

-> lim1 G„ -* lim1 Kn -> 0. 

Finally, if Gn = G, for all «, the sequence simplifies: 

0 -> lim #„ -> G -» lim tfw -> lim1 Hn -> 0. 

8° COROLLARY. PTZY/Z notation as in the remarks above, consider the 
inverse system of restriction maps: 

Tw(W <— Tw(^2)
 <r~ Tw(tM <—.... 

One obtains the following short exact sequence'. 

0 -> lim Im(f w) -> lim Tw(^) -» lim ker(i/# -> 0, 

Im(f„) =* coker(^*) = i/'(X, ^) /Im(^*), and 

kertt£) c //2(X„, 5*). 

Proof. It follows from the above lemma that 

{0 -» Imtf„) -» Tw(^„) -> ker(^*) -> 0:« â 0} 

is an inverse system of short exact sequences. To complete the proof it 
suffices to show that the maps 

Im(fw + 1) -» I m ( Q 

are surjective; but this follows from the fact that 

Im(^*+1) c ImO/,*). 

Thus, 

lim1 l m ( 0 = 0. 

Our object is to determine the group of twists over a hyperfinite relation 
in terms of the groups associated to the approximating finite relations. 

9° LEMMA. There is a surjective homomorphism 

H'.Tw(R) —> lim Tw(^) 

which maps the class of a twist to the classes of its restrictions. 
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Proof. Let 

/V.Tw(tf) ~> Tw«/„) 

denote the map given by restriction. Since the order in which restrictions 
are taken is irrelevant, one has: 

Hence, there is a homomorphism 

fi:Tw(R) —> lim Tw(^7) 

through which each \in factors. The surjectivity of ji remains to be verified. 
Let Tn be a twist over R(ipn) for each «, so that 

v,K+\] = [rj. 

Choose twist morphisms an:Tn -> Tw + 1 which identify Tn with the 

restriction of Tw + 1 to R(\pn). Let V denote the quotient of the disjoint union 

J_LW Tn by the smallest equivalence relation which respects the above 

identifications. Then T is a twist over R; further, /zjr] = [rj , by 

construction. 

The kernel of LL consists of twists for which each restriction is trivial. 
Such twists may be obtained by pasting trivial twists together in 
non-trivial ways. Recall (Section 3.3) that unit space preserving automor­
phisms of a twist are in bijective correspondence with circle-valued 
1-cocycles on the subjacent relation. Write 

z'wo = Z\RM, T) 
if ;p is a local homeomorphism. Suppose R(\p\) c R(\p2) and let c e 
Zl(\p]); define an embedding of trivial twists 

ciRWt) X T -» R(xP2) X T 

by 

?(p, /) = (p, c(p)t). 

Evidently, any embedding which respects the inclusion of relations must 
be of this form. 

10° Fact. If R is a hyperfinite relation with covering maps {^}, there is 
a homomorphism 

£.U Z\+n)-> Tw(R) 

such that Im £ = ker /x. 
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Proof. Given cn e Z (i//„), JI > 0, consider the sequence of twist 
embeddings: 

R(xp}) X T -> #(i//2) X T -> #( ,M X T -> . . . , 
?1 ?2 ?3 

and form the inductive limit twist as above (by taking the appropriate 
quotient of the disjoint union). The twist so obtained is denoted T(cn); 
set 

i(cn) = [T(c„) ]. 

It is evident that a twist is isomorphic to one of this form if and only if its 
restrictions are all trivial, that is, Im £ = ker /x. 

It remains to determine when two such twists are isomorphic. This will 
enable us to express Tw(R) as an extension of certain related groups. 

11° THEOREM. Let R be a hyperfinite relation with covering maps \pn. 
There is a short exact sequence: 

0 -> lim1 H](xpn) -? Tw(R) -» lim Tw(^) -> 0. 

Proof. Two sequences (cn)9 (dn) e II Zl(\pn) give rise to isomorphic 
twists if and only if there is a third sequence (en) which makes the 
following diagram commute: 

X T R(\P3) X T 
?2 ~ I 

e3 

R(h) X T _ RW2) X T _ _ R(xP3) X T 
dx d2 

Thus, T(cn) is isomorphic to the trivial twist if and only if there are 
en e Z\xpn) such that 

* > K + l(P) = *n(P) f o r all « > 0, p G RM»). 

As the existence of such depends solely on the class of the cocycles 
involved, the twist T(cn) is trivial if and only if there are hn e Hl(\pn) such 
that 

[cn] = hn- \n(hn + x) for all n > 0. 

It follows from the explicit description of lim1 given in fact 7 that 

ker /i ~ lim1 Hltyn). 

12° Remarks. An analogous result holds for Hl(R, T). Let U(X) denote 
the unitary group of C(X) (i.e., U(X) is the group of all circle-valued 

KWX) X 1 KW 
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continuous functions on X). The sequence: 

0 -» lim1 U(Xn) -»• H](R, T) -» lim / / ' ( ^ ) -> 0 

is exact. This follows by formal manipulation (see fact 7) from the fact 
that ker 77 is isomorphic to the cokernel of the map 

£/(*)-> lim U(X)/U(Xn). 

If 

ker HlWn9 y) = ker tf2(^, ^ ) = 0, 

that is, i//* is injective on if1^, <^) and #2(-, 5?) for all n, then 

Tw(i?) ~ lim coker \p*. 

Moreover, by fact 7, 

M(R) ~ lim1 tf1^, 9>) (see 5.14). 

We characterize those diagonals which arise from hyperfinite relations. 
Note that if A is a twist over R(\p) with \p:X —» Z a covering map and X 
compact, then 4̂ (A) is a unital continuous trace algebra with diagonal 
C(X ). Thus if R is a hyperfinite relation on a space X and T is a twist 
over R, there is an ascending sequence of unital continuous trace algebras 
Bn c A (T) with B0 ~ C(Jf ), whose union is dense. Such a diagonal will be 
said to be hyperfinite (that is, a diagonal B0 in a C*-algebra yl with unit is 
hyperfinite if there is such an approximating sequence of continuous trace 
algebras). 

13° PROPOSITION. Let B0 be a hyperfinite diagonal in a unital C*-algebra 
A with approximating continuous trace subalgebras Bn. Then the subjacent 
relation of the associated twist is hyperfinite, where the covering maps are 
given as the spectral maps of the pairs (Bn, B0) (see [23] Theorem 2.2). 

Proof Since B0 has the extension property relative to A, it has the 
extension property relative to Bn for each n\ hence, B0 is diagonal in Bn 

(each n) by Theorem 2.2 of [23]. Let *pn:B0 —» Bn denote the associated 
spectral maps; by Section 4 of [23] we may conclude that i/^ + 1 factors 
through \pn for each n. The subjacent relation 

R= U RWn) 
n 

is consequently hyperfinite. 

14° Remarks. With the situation as in the above proposition, let 
Cn = B'n be the relative commutant of BnmA. Write Bn = Xn, and note 
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that Cn ( ^ C(Xn) ) is the center of Bn (B0 c Bn =» Bf
n c B'0 = B0 c £ J . 

We show below that Bn = Cn = B„. Observe that a C*-algebra containing 
a hyperfinite diagonal is ultraliminary (as defined in Section 4 of [23] ). 

15° PROPOSITION. With notation as above, there is a {unique) conditional 
expectation Pn:A —> Bn,for each n = 0, such that: 

i° Pn = PnoPm,ifm>n 
ii° a = lim Pn(a),for all a ^ A 

n 

iii° i w £ac/z a G ^4, c > 0, n = 0, //zere are /zls /z2, . . . , hk G C„ swc/z 

| | P » - 2 hfahjW < e. 

Furthermore, Bn = B„. 

Proof. Let T be the twist on X0 associated to the pair (A, B0) with 
subjacent relation 

R = u *«g, 

where ^„:X0 —> Xw, « ^ 0, are the associated covering maps. We define Pn 

on the dense subalgebra E(T) by 

rn\l AP) | 0 otherwise 

where / G £"(r) is viewed as a compactly supported continuous section of 
the associated complex line bundle (thus, Pn(f) is simply the restriction 
of the sect ion/ to the compact open subset R(\fsn) ). 

Claim. \\Pn(f) || ^ H/ll, for a l l / G E(T). 
Given / G £ ( r ) , there is m ^ 0 such that supp / c R(\pm) (by 

compactness). If m ^ n, then P„(/) = / and there is nothing to prove. 
If m > n, let <£:X„ —> Jfw be the unique map for which /̂m = <j> o \pn. 
Choose a finite subcover {Ul9.. . 9 Uk) c £/(<£) (of X„) and fy G Cn ~ 
C(XJ with /zy ^ 0, supp /zy c Uj9 for e a c h / so that 2 A? = 1. One 
obtains 

fo) />„(/) = 2 hjfhj 

(if g c £ ( D with supp g c R(4,m)\RWn), then fygfy = 0 for each;). By 
fact (fl), the claim is established and Pn extends uniquely to a conditional 
expectation. Conditions i°, ii° are trivial to verify. We verify iii°; given 
a <= A, e > 0, n ^ 0, choose/ e E(T) such that 

| | / - a|| < € / 2 . 

Now, s u p p / c R(\pm) for some m > n. Choose h- G Cn as above so that 
(&) holds. It follows that 
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H P » - 2 hjohfi ^ | | P » - Pn{f)\\ + ||2 hj{f- a)hji\ < c. 

Since Cn is the center of Bn, one has Bn c Cn = B%. Given a e 2?£ we 
wish to show that a = Pn(a\ and we will be done as Pn(a) e Bn. But Pn(a) 
may be approximated by sums of the form 2 h-ahj with hj e Cw. Therefore, 
i^(fl) = a, as desired (since 2 A-A/I- = «(2 A-) = a). 

16° Remarks. The foregoing treatment of hyperfinite diagonals owes 
much to the diagonalization of AF algebras appearing in [42] (see Section 
1.1). Briefly, given an ascending sequence of finite-dimensional subalge-
bras An which generate an AF algebra A (with 1 ^ An c i ) , one 
constructs an increasing sequence of masas Bn c An inductively. Given 
Bn, let 2?w + 1 be generated by Bn and a masa in the relative commutant of 
AnmAn + v Let B be the closure of U„ Bn\ that B is a hyperfinite diagonal 
is immediate (take the approximating continuous trace subalgebras to be 
those generated by B and An). 

The associated relation is treated in detail in [34] (see Chapter III), 
where it is shown to be a complete isomorphism invariant of the algebra. 
Note that the group of twists is trivial as the spectrum of the diagonal is 
totally disconnected (ibid. III. 1.3). A finite relation on a totally 
disconnected space is necessarily an elementary groupoid in Renault's 
sense (ibid. p. 123). 

17° Example. We consider an example arising from Blackadar's twisted 
double embedding for which the relation in question may be viewed as a 
skew product of relations (cf [5] ). Let 

oo 

E = {e:Z+ -> Z2} - I I Z2 

be the Cantor set and <p:E —> E be the continuous map defined by 
(<S>(e))n = en + \ f o r eachrc. 

Let F be the hyperfinite relation on E generated by <f> and its iterates (note 
that <j> is a covering map), that is, 

F = U R(4>n); 
n 

note that the associated C*-algebra A(FQ) (where F0 denotes the trivial 
twist over JF) is the Fermion algebra, that is, UHF of type 2°°. 

Now, let o be a homeomorphism on a compact space Z and consider the 
two-fold covering map <f>a:E X Z —> E X Z defined by 

**' ' \(.4<e),a(z)) i f * 0 = 1. 

Let Fa denote the hyperfinite relation on E X Z generated by <J>a and its 
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iterates, that is, 

Fa = U R(<t>"a) 
n 

(observe that Fa may be viewed as a skew product of F and the trivial 
relation Z with respect to an appropriate cocycle; see [5] for details). Since 
<j>a admits a continuous section, one has that <(>* is injective on all 
cohomology groups (the same holds for (<^)*). Hence, 

Tw(^) = Im $n ~ coker(40* = HX(E X Z , ^ ) / I m « ) * ; 

furthermore 

Tw(Fa) ~ lim Im fw. 

The existence of a continuous section for <j>0 entails the existence of 
sections for the bonding maps in the inverse system {Im fw}. By fact 7 one 
may infer (note that the bonding maps are surjective): 

oo 

Tw(F0) ~ E [ Hl(E X Z, 9>\ 

N.B. H\E X Z, 6e) ~ / /%£, £T(Z, ^ ) ). 

18° Example. Fix /: > 0, and consider the following inverse system of 
monomorphisms (of abelian groups): 

z* <- z* <- z * <- ... 

Let ju :̂Z —> Zk denote the composite X0 o . . . o Xn_]; note that [in is a 
monomorphism as well. By dualizing, one obtains a direct system of 
compact groups: 

'-p/c v 'T'A: . npk v 

Ao X\ X2 

where each map is surjective. As the kernel of each map is finite, they are, 
in fact, covering maps when viewed as maps of topological spaces. We 
wish to compute the group of twists for the associated hyperfinite 
relation 

R = U RQL*) where ji* = A ^ o . . . o AQ. 
n 

N.B. Let Gn = ker ju*, and G = Un Gn\ then G is a torsional subgroup of 
T*, as Gn is finite for each n. Let i\G —> T* be the inclusion map and note 
that 

R ~ Rt: = G X T* (cf. Section 3.5). 

The long exact sequence of sheaf theory yields natural isomorphisms 

https://doi.org/10.4153/CJM-1986-048-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-048-0


1006 ALEXANDER KUMJIAN 

//"(-, se) ~ tf'2 + 1(-, Z) for n > 0, 

which we shall, for computational reasons, avail ourselves of implicitly. 
It is known that the cohomology ring of T^ may be identified (in a way 

that preserves grading) with the exterior algebra on Zk, that is 

J/*(T*, Z) ~ AZ*. 

Viewing Zk as the dual group, the identification Zk ~ H](Tk, Z) arises by 
identifying a character with its homotopy class (as a continuous function 
from T^ to T). Under this identification one has for each n 

(KY = K (on H\Tk, Z) ); 

moreover, by the functoriality of the cup-product (cf. [14] Proposition 
24.4) 

(X^ i /PCI* , Z) -> H*(Tk, Z) 

is a graded ring homomorphism. Hence, it is prescribed by its values on 
the first cohomology group. Viewing the cohomology ring as the exterior 
algebra on Zk, the above ring homomorphism may be written 

AX^iAZ* -> AZ*, 

where 

A X ^ ! A . . . Aej) = Xw(e,)A . . . AX^e,). 

It follows that AX„ and, hence, AJU^ is injective for each n. Hence 

Tw(#) ^ lim coker(jLt̂  A /*,„), and 

M(R) - lim^Z^ A Z \ \n A X„), 

by Remark 12 above. 
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