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An exponential polynomial is a finite linear combination of terms unea:t^tnea'
where n is any non-negative integer and a is any complex number. The set X of
exponential polynomials is clearly a vector space over the field of complex numbers
C and this set is identical with the set of solutions to all homogeneous linear
ordinary differential equations with constant coefficients.

With the truncated convolution product of two functions x and y defined by

Cx(t -
Jo

x *y:t-+ x(t — r)y(r)dr,
Jo

X{ + , *) is a commutative ring and an algebra over C. An ideal / of X is a
subspace of X that contains x * y whenever y belongs to I and x is an exponential
polynomial.

As usual Dkx denotes the feth derivative of x so that Dkx is an exponential
polynomial when x is one. We define the degree of an exponential polynomial x
to be zero if x(Q) ? Oandnif Dkx(0) = Ofor k = 0,1,2, —,n - 1 but£>"x(O) # 0.
Also we define the set Yn as

Yn = {yeX:Dky(0) = 0 for k = 0 , 1 , - , n } .

It is clear that for a fixed non-negative integer n, Yn is a subspace of X and Yn

consists of all exponential polynomials of degree greater than n. Moreover, each
Yn is an ideal and

Our main result (Theorem 6) is that any non-trivial proper ideal / is equal
to Yn for some non-negative integer n. Thus, the set of all ideals of X forms a
single descending chain.
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To show this, we will employ the space C(R) of all continuous complex-valued
functions defined on the real line R and taken with the topology of convergence
uniform on all compact subsets of R. Also, we will be concerned with the two
kinds of integral equations of convolution type.

As well, it is possible to construct from the ring X, a field of convolution
quotients in a manner innovated by Mikusinski (see, for example, Erdelyi, [1]).

Under the operations of addition and truncated convolution, C(R) is a com-
mutative ring and an algebra over C (see Erde"lyi, [1], page 15 for details of
C[0, oo) that apply to C(R)). Other elementary properties that Erdelyi shows (loc.
cit., pages 43 and 45) for C[0, oo) that also hold for C(R) are:
a) If {/„} e C(R) and if /„ -*f uniformly on all compact subsets of R as n -» oo

(hereafter referred to as locally uniform convergence), then/e C(R). Moreover,
if g e C(R), then fn*g -*f *g locally uniformly as n -* oo.

b) If/e C(R) and if/*" is defined by/*1 = /and/*" = /*( I-1 ) */for n = 2,3, •••,
then /*" -> 0 locally uniformly as n -> oo.
It follows from a) and b) that if f,geC(R) and i f / * g = / , then f = 0,

since / = / *g*n for any positive integer n. Thus C(R) has no idempotents or
identity.

LEMMA 1. Let f,geC{R). Then the integral equation

x-x*f=g

has a unique continuous solution.

PROOF. A continuous solution to this equation is the limit in C(R) of the Cau-
chy sequence (g + f • g + • • • + /*" * g). If y is the difference between any two con-
tions, then y ~ y */ and so y = 0.

The remaining propositions will be stated in terms of exponential polynomials.
By elementary calculus, it may be shown that

umea *unea = Am,num+n+1ea

and

umea * uneb = Pmea + Qneb (a # b)

where Am,n is a complex number and Pm and Qn are polynomials of degree m and
n. Hence the truncated convolution product of two exponential polynomials is an
exponential polynomial, and so, X is a commutative ring and an algebra over C.

LEMMA 2. X has no non-zero divisors of zero.
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PROOF. Suppose that x,yeX and x *y = 0. Suppose also that y ^ 0. With

0 = D(x * y) = x(0)y + (Dx) * y

and y / 0, it follows that x(0) = 0. Inductively, Dnx(0) is zero for n = 0,1,2, •••
and since any exponential polynomial is an entire function, x = 0. Hence X has
no non-zero divisors of zero.

PROPOSITION 3. Letfg be exponential polynomials. Then the integral equa-
tion

x-x *f = g

has a unique exponential polynomial solution.

PROOF. By Lemma 1, this equation has an unique continuous solution. With
/being continuously differentiable, x */along with g is continuously differentiable.
Thus x is continuously differentiable. By induction, and as / and g are indefinitely
differentiable, it follows that x is indefinitely differentiable.

Since / is an exponential polynomial, there is a linear differential operator,
L(D), with constant coefficients, such that L{D)f = 0. Using

D\f *x)= f(0)Dk~ *x + • • • Dk~lf(0)x + {Dkf) * x,

we see that

and so
(L(D) - M(D))x = L(D)g

where M(D) is a linear differential operator with order less than that of L(£>).
Since JJJ)) ^ M(D) and UP)g e X, x is an exponential polynomial.

PROPOSITION 4. Letf,g,be exponential polynomials where f is not identically
zero. Then the integral equation x * / = g has an unique exponential polynomial
as a solution if, and only if, the degree of g exceeds the degree off.

PROOF. Let the degree of/ be n. Since/is a non-identically zero entire function,
n is finite. If n = 0 and the degree of g is positive, then /(0) # 0 and #(0) = 0 .
By Proposition 3, there exists &n xeX such that

U s i n g e *Df = / — / ( 0 ) e w h e r e e:t-*l, we o b t a i n

/(0)x *e + x *(e *Df) ~ e *Dg or x *f = g.

Now if n > 0 and the degree of g exceeds n, Dkf(0) = 0 for k = 0,1, •••, n - 1,
a = D"/(0) ^ 0 and £>ngr(O) = 0. Again, by Proposition 3, there exists an xeX
such that
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ax + x *Dn+1f= Dn+ig,
and so,

ax *e + x*(D"f-ae) = Dng or x*DJ=D"g.

On repeated integration, with

Dkf(0) = 0 = Dkg(0) for k = 0,1, •••, n - 1,

we obtain x */ = g.
Conversely, suppose that m is the degree of g and that m does not exceed

the degree of/. Suppose also that there is exponential polynomial x for which
x*f=g.

If m is zero so that g(0) is non-zero, there is a contradiction of x */(0) = 0.
If m is positive, the relation x *f = g leads, after differentiating m times, to a si-
milar contradiction. Hence it is necessary that the degree of g exceeds the degree
of/for x */ = g to have a solution in X.

The uniqueness of any exponential polynomial solution follows from Lem-
ma 2.

REMARKS. Since the set X( + , *) is a commutative ring with no non-zero
divisors of zero, it is possible to construct a field Fx of convolution quotients of
exponential polynomials in the same manner that Mikusinski constructed the field
of convolution quotients F from the ring C[0, oo). One difference between the two
fields is that Fx is not complete whereas F is complete.

The equation x */ = g where f,g eX and/ ̂  0 always admits a solution in
Fx. Moreover, if

p = degree/ - degree g + 1

is a positive integer, by the above Proposition, there is an exponential polynomial
y satisfying y *f = g * e*p where e : t -* 1. Thus if s is the inverse of e in Fx,
then x=s*p * y satisfies x *f= g and so this equation has a pth extended derivative
(Erdelyi, [1], page 29) of an exponential polynomial as a solution.

PROPOSITION 5. Let f be an exponential polynomial of degree n and

I, = {h=f*g:geX}.

Then If = Yn.

PROOF. TO show that If c yn, one may make use of the formula

1=0

The reverse inclusion follows from Proposition 4.
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THEOREM 6. Let I be any non-trivial proper ideal ofX. Then I — Yn, where

Yn = {yeX:Dky(0) = 0 for fc = 0,1,2,- ,n}

for some non-negative integer n.

PROOF. It is trivial that each Yn is an ideal of X. If J is any ideal of X that
contains an element x for which x(0) # 0 and z(0) = bx(0) where z is any element
of X, then, by Proposition 3, the equation Dz — bDx = (£>x) * y + x(0)y has a
solution y in X. On integration, this equation yields z — bx + x *y and so z e J.
Hence J = X.

Let / be any non-trivial proper ideal of X and x be any element of / so that
x(0) = 0. Thus x = e * Dx and so x e IDx.

Now let heIDx with h = g *Dx where geX. With x(0) = 0,

h = g *Dx = D(g *x) = g(0)x + (Dg) *x

and so he I. Thus x e JDx c / for all x e / .
By Proposition 5, IDx = YnM for some non-negative integer n(x). Hence

we see that / = Yn for some non-negative integer n.

4

Other aspects of the ring structure of X may be of interest. With the observa-
tions that Yn = IUn where un:t-yf and that the trivial ideal is none other than
Jo, we see that any proper ideal is of the form If = {g *f :geX} for some
feX.

It is clear that no non-trivial proper ideal of X is prime since for any / , If

contains / • / but not / .
However, if / is a non-trivial proper ideal of X so that I = Yn for some non-

negative integer n, it can be shown that x*(n+2) belongs to Yn for all x e l . Adop-
ting the definition of the radical of an ideal given by Jacobson ([2], page 173)
as the set

{x e X : x*m e I for some positive integer m}

we see that the radical of any non-trivial ideal is X, so all ideals of X are primary.
The ring X may be embedded in a ring U consisting of ordered pairs (a, x)

where ae C and xeX and where addition and multiplication are defined in the
usual manner (Jacobson, [2], page 85) for embedding a ring without identity into
a ring with identity. U may easily be shown to be an integral domain and to have
all ideals forming a single descending chain •••<= (0, Yn+1) <= ...<= (0, y0) c (0,X)
<= U.
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Moreover, U may be shown to be an Euclidean Domain (loc. cit., page 122) by
denning 5(a,x) to be 1, if a & 0, 2(1+degx) when a = 0 and x ^ 0 and zero other-
wise. These claims may be verified by use of the results in this note and the observa-
tion that for x,yeX, degree (x * y) = degree x + degree y + 1.

Note added in proof. These results may be viewed n two other ways that
have been kindly suggested by Professor H, K. Farahat of the University of
Calgary and Professor J.-P. Kahane of the University of South Paris respectively.

The first is that if d(p) denotes the ordinary degree of a polynomial p (that
differs from our definition of the degree of an exponential polynomial), then

T = {pjq: p, q are polynom als, q # 0, d(p) ^ d(q)}

with the operations of addition and multiplication is a ring. It may be shown that

S = {plqeT: d(p) < d(q)}

is a unique maximal ideal of T. T is also a Euclidean Domain and the ideals of
T and S form single descending chains.

The Laplace transform is an isomorphism between our ring X(+,*) and S
whose elements are also rational functions. Also V is isomorphic to T.

The second is that if / is an exponential polynomial, it is entire. For
f(i) = X£°=oa//fc!, set J/(f) = S?=oa*£i+1- Then J is an isomorphism
between X( +, *) and a subring of the familiar ring of formal power series in one
indeterminate.
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