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CONSTRUCTING LATTICE-ORDERED FIELDS
AND DIVISION RINGS

R.H. REDFIELD

Neumann's totally ordered power series fields and division rings may be tipped over to
form archimedean lattice-ordered fields and division rings. This process is described and
then generalised to produce non-archimedean lattice-ordered fields and division rings in
wliich 1 > 0 and, as well, ones in which 1 ^ 0 .

During the Conference on Ordered Algebraic Structures held in Curasao in August
of 1988, Paul Conrad asked for a general way of constructing examples oflattice-ordered
fields and John Dauns asked in a problem session for an example of a proper lattice-
ordered division ring. The present author described to each of them the example de-
scribed in Section 1 below, in which an archimedean lattice-ordered field or division ring
is constructed by "tipping over" a power series field of the kind described by Neumann
in [5]. It is an easy matter to generalies the method used in this example to construct
more complicated examples in which 1 > 0 (Section 2). Furthermore, a modification
of the multiplicative structure yields many more examples in which 1 ^ 0 (Section 3).

In what follows, let F denote a subfield of real numbers.

1. THE EXAMPLE

Let (A,-,<*) be a totally ordered group with identity i. The power series ring
X HA ^ *S *ne se*' °f aM elements z £ fJA F which have inversely well-ordered support,
that is, such that

SuPP(*) = {6 £ A | z, ± 0}

is an inversely well-ordered subset of (A, <*). These elements are added coordinatewise

(z+w)s - z6+w6

and multiplied as polynomials
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366 R.II. Redfield [2]

where the elements {rOi^} C F form a factor set in the sense that they satisfy the
following conditions:

(i) ra<0 > 0 for all a , 0 £ A;
(i>) rap,ira,i3 = *'a,01*'p,-y for all a , /?, 7 G A;

(iii) rs,t = 1 = rttS for all 8 € A.

Note that since the supports are inversely well-ordered, the multiplication is well-
defined. The elements of fJA F are then ordered according to the maximal elements in
their supports

0<*z if and only if 0 < z,, for fi = \f Supp(z);

: if and only if 0<*z — w.

Neumann showed in [5] that the resulting structure (x IIA> +> '»—*)> ' s ' n 6 e n e r a l a

totally ordered division ring and, if (A,-) is abelian and the factor set satisfies

(iv) ra,p = rf3,a for all a , /3 6 A,

a totally ordered field.

Define a new order •<. on x 11A ^ by ' 'Ppin6 ^ over, that is, by letting

z ^ w if and only if zg < W{ for all 8 € A.

This new order is simply the cardinal order on x 11A ^ a n c ' n e n c e {x 11A ^> +> —) ' s a n

archimedean lattice-ordered group. From the definition of the multiplication, it is clear
that 0 -< fg whenever 0 -< / and 0 -< g, and hence that (x I I A ^ ' "̂>'» —) ' s a lattice-
ordered ring. Since (x YIA **> "*"> ) m u s t be a field or a division ring, (x Y\A F , +, •, ̂ )
is therefore an archimedean lattice-ordered field or division ring.

2. T H E GENERAL CONSTRUCTION

If (A, <) is a partially ordered set, then a subset F of A is locally inversely well-

ordered if for all 7 € F , [7,00) D F is inversely well-ordered; a root system is a partially
ordered set (A,<) such that for all 8 E A, [6,00) is totally ordered; a rooted group is
a partially ordered group whose underlying partially ordered set is a root system. We
will be interested in orderable partially ordered groups, that is, those partially ordered
groups (A, •, <) which possess a total order which extends < and with respect to which
A is a totally ordered group.

It is not hard to find examples of orderable rooted groups. Clearly any totally
ordered group is an orderable rooted group, and it is well known that any torsion-free
abelian rooted group is orderable (see [2]). To create other orderable rooted groups,
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let (f i , - ,<) be a totally ordered abelian group with identity z. Fix a positive integer

n and let

i < n u> if and only if w = £n for some i < £;

a < n /? if and only if i < „ a"1/?.

Then clearly (fi, •, < „ ) is an orderable rooted group. Furthermore, if fl is any orderable
rooted group and F is a trivially ordered orderable group, then it is easy to see that
the cardinally ordered product fi x F is also an orderable rooted group.

Note that for any group (A, - ) , (2 A , - ,C) is a partially ordered semigroup, where

AB = {ab | o € A, b e B) for all A, B C A .

Now let (A, •, < ) be an orderable rooted group with identity i and suppose that X

is a collection of locally inversely well-ordered subsets of A which satisfies the following

conditions (see [6]):

(P i ) X contains all the atoms of (2 A , c ) ;
(P 2 ) X is an ideal of the lattice (2 A , C) ;

(P3 ) X is a subsemigroup of (2 A , •) ;
(P4) if A, B € X and 6 £ A, then {(a,/?) € A x B \ <xf3 = 6} is finite.

Form the product f|A F and let x FIA ^ denote the set of all elements of FJA F which
have their supports in X. Define addition and multiplication as in Section 1 above and
define a binary relation X on x I IA

0 -< z if and only if 0 < z^ for all maximal elements fj, € Supp(z);

w -< z if and only if 0 -< z — to.

Then (* FIA F> +> '> ^ ) i s a lattice-ordered ring (see [1, 3 , 4, 6, 7]).

We wish to choose X so that (x FIA F» +, •, ̂ ) is a lattice-ordered division ring or
a lattice-ordered iield. To do this, we reverse the method described in Section 1; we tip
A up and use the resulting collection of inversely well-ordered sets as X. Specifically,
since A is orderable, there exists a total order <* on A which extends < and such that
(A, •, <*) is a totally ordered group; let X be the collection of all inversely well-ordered
subsets of (A ,<* ) . Clearly X satisfies (P a ) - (P 3 ) above; that X satisfies ( P 4 ) is well
known (see [1, 5]). To see that F £ X is locally inversely well-ordered, let 7 6 F and
let E C {6 e r I 7 < 6}. Since S C F and F is inversely well-ordered in (A, <*) , there
exists IT € S such that s<*<r for all s E S- Then for any s € E , s ^ <r because <*
extends < . However, since (A, < ) is a root system, {8 £ F | 7 < 6} is totally ordered,
and thus 3 < cr. We conclude that a is a maximal element of E in (A, <) and hence F
is locally inversely well-ordered in (A, < ) . Therefore, as noted above, (x F IA -^I +»'i ^ )
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is a lattice-ordered ring. But (x YIA ^>+>") 1S a division ring or a field by [5], and
hence (x I I A ^» +»'•> —) *s m ^ac* a lattice-ordered division ring or lattice ordered field.
Furthermore, if, for each a 6 A , we let

f 1 if 8 = a
a - <

(̂  0 otherwise

then z is the unit element of (x Y\A ^> ~̂>') anc^ clearly 0 -< i.

3 . A MODIFICATION OF THE GENERAL METHOD

By modifying the multiplication but not the addition or the order, the construction
described in Section 2 produces lattice-ordered division rings and fields whose unit
elements do not exceed zero.

Suppose in general that (D, +, •) is a division ring and that u is a nonzero element
in the centre of D. Define a binary operator <)u on D by letting

x()uu = xyu~x.

Then (£>, +,Qu) is also a division ring but with u as unit element.

Now consider the division ring (x [IA ^> +)•>—) constructed above and suppose
that there exists an element u in the centre of x FIA ^ s u ch that 0 / u but 0 X u~1.
Then clearly 0 X x<)uy whenever 0 -< x and 0 •< y, and hence (x FIA ^> +iO«) d:) is a
lattice-ordered division ring whose unit element does not exceed zero.

Such elements u exist in many of the rings (x YIA >̂ +>"» - ) • ^or suppose that A
contains an element TJ in its centre which is not comparable to i in (A, <) and is such
that rgiV = rVig for all 6 € A. Then, since {va,p} C F forms a factor set,

and since <* is a total order, either t]<*i or t]~l<*i. Hence there exists an element d
in the centre of A (either d = rf or i? = TJ~1 ) which is not comparable to i in (A, <),

is less than i in (A, <), and is such that rgj = r-gj for all 8 G A. Let u = (•& + i j
Then

{ 1 if 8 = i?2n for n > 0

- 1 if 8 = t?2rl+1 for n > 0

0 otherwise
and w"1 = i? + i X 0. If i? = •d1 were not a maximal element of Supp(u) in (A, < ) , then
i?m > i? for some m > 1, and hence, since <* extends < , vm>*$. This contradicts
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our assumption that i?<*i, and hence i? must be a maximal element of Supp(u) in

( A , < ) . Thus, since 0 > - 1 = u^, 0 -fi u. To see that u is in the centre of x 11A F>

note that for z e x E L *" a n < 1 ^ € A,

+ T6tXz6 = rtj-ifZt-ig + r%ifz6 =

Thus it"1 is in the centre of x I IA ^ ant^ n e n c e so is u.
We conclude that whenever A possesses an elment •& in its centre which is not

comparable to i in (A,<) and such that rs,$ = r^j for all 8 £ A, there exists a
multiplication <)u on x H A ^ s u ch t^a'; (-Y FIA ^ ' +i «̂> —) ' s a lattice-ordered division
ring whose unit element does not exceed zero. If (x 11A ^> +>">—) ' s a proper lattice-
ordered field, then (A, <) clearly posseses such an element and the new multiplication
which tliis element generates is clearly commutative. Therefore, the multiplication on
any proper lattice-ordered field (x YIA >̂ +>'» —) c a n always ^e modified to produce a
lattice-ordered field (x I I A ' +>0UI r̂ ) whose unit element does not exceed 0.
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