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A MEASURE FOR POLYNOMIALS IN 
SEVERAL VARIABLES 

BY 

G E R A L D M Y E R S O N 

ABSTRACT. We define a notion of measure for polynomials in 
several variables, basing our construction on the geometry of the 
zero-set of the polynomial. For polynomials in one variable, this 
measure reduces to the usual one. We begin the development of the 
theory of this measure along lines parallel to the theory of Mahler's 
measure, indicating the differences and similarities between the two. 

Let P be a polynomial in one variable with complex coefficients, 
P(z) = a0Il(z - « j ) . The measure of P, denoted M(P), is defined by 

(1) M(P) = |a0 |nmax(l, |o I . | ) . 

As is well-known, an application of Jensen's formula yields 

(2) M(P) = exp j log |P(e2™e)| de. 
Jo 

Mahler [8] generalized this concept of measure to polynomials in several 
variables; if P is a polynomial in n variables then M(P) is defined by 

(3) M(P) = exp f • • • f log \P(e2™\ . . . , e2™e~)\ dO^- dSn. 

No analogue of (1)—no expression for M(P) in terms of the zero-set of 
P—has been found for Mahler's measure. It is of course possible that no such 
analogue exists. We present evidence favoring this proposition, in the form of a 
family of polynomials with very different zero-sets all having the same meas­
ure. We then suggest an alternative measure for polynomials in several 
variables. Our suggestion is at once a generalization of both (1) and (2). 

We would like to thank David Boyd for his helpful comments on an earlier 
version of this paper. 

To each monomial m = z\x • • • z ^ we associate the point m* = ( a 1 ? . . . , a^) 
in [Rn. Here the a;, 1 < j < n, are integers, negative integers permitted. To a sum 
P = 2 = i Cjffij we associate the convex hull C(P) of the set {mf , . . . , m*}. In [4], 
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C(P) was called the exponent polytope of P ; it is a generalization of the 
familiar Newton polygon. 

THEOREM 1. Let P = Y^=i qm,-, each mi a monomial in n variables. If C(P) is 
n-dimensional (i.e., does not lie in any lower-dimensional affine subspace of 
Un), then M(P) = M(c1z1 + • • • + cnzn 4- cn+1). 

The proof is an exercise in change of variables, and will be omitted. 
We note the following special case of Theorem 1. Let P(x, y) = 

xayb + xcyd + xeyf. If the points (a, b), (c, d), and (e, f) are not collinear, then 
M(P) = |3, where (3 is defined by |3 = M(x + y + l) . The first appearance we 
know of, of the number /3 in print is in [1], where 1.38135... is given as its value. 
This constant has appeared in this and other contexts in many subsequent 
papers. In [12], it was called " C " . The maximal volume of a hyperbolic 
3-simplex is given on page 20 of [5] (see also [10]); as David Boyd pointed out 
to the author, this number is in fact IT log (3. 

Theorem 1 suggests that M(P) is insensitive to the geometry of the zero-set 
of P. Let us try, then, to arrive at a concept of measure for polynomials in 
several variables by starting at (1), rather than (2). 

First we note that if P(0) ^ 0 then (1) is equivalent to 

(4) M(P) = |P(0)| f i k l " 1 

K!<i 

Now for 0 < t < 1 let N(t) = #{z : \z\ < t and P(z) = 0}. Then it is easy to show 
that (4) is equivalent to 

(5) M(P) = |P(0)| exp f N(t) dt/t. 
Jo 

This expression suggests the following construction. For P a polynomial in n 
variables with P ( 0 ) ^ 0 , and 0 < t < l , let A(t) = jx{z: |z |<t and P(z) = 0}, 
where JUL is 2 n - 2 dimensional Lebesgue measure normalized so that the unit 
ball has measure 1; then define the functional Q, by 

(6) ft(P) = |P(0)| exp f A(t)dtlt2n-\ 

The expression on the right side of (6) was suggested to the author by David 
Masser (the notation on the left side was suggested by [7], the first paper on 
our topic). By construction, it is a generalization of (1) to polynomials of 
several variables. That it is also a generalization of (2) is the content of the 
following theorem. 

THEOREM 2. Let S={z in Cn : \z\ = 1} be the unit sphere in Cn, and let da be 
the unique rotation-invariant Borel measure on S, normalized so that S has 
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measure one. Then 

(7) ( Î (P ) -exp f \og\P\da. 

In short, where M(P) is the geometric mean of P on the torus, fl(P) is the 
geometric mean of P on the sphere. 

Proof. This is essentially formula 17.3.5 (12) of [14] to which we refer the 
reader. 

REMARK. Since the right side of (7) is defined even when P(0) = 0, we now 
take (7) as the definition of Ct(P). 

Mahler's measure has been studied in many recent papers. We now begin a 
parallel investigation of the fl-measure. 

First, we note that the ft-measure is sensitive to the number of variables 
involved in a way that Mahler's measure is not. Let U be the canonical 
projection from Cn to Cm, m<n, and let P = P(zt,..., zm). Then it is clear 
that M(P °I1) = M(P), whereas in general Cl(P °H)j= £l(P) (we will point out an 
example below). We should perhaps attach a subscript to Cl to indicate the 
intended dimension, but we expect the intent to be clear from the context. 

It is immediate that the formula 

(8) M(PQ) = M(P)M(Q) 

has its counterpart in 

(9) n(PQ) = n(pmo). 

Next, we evaluate the fl-measure for some simple polynomials. Our evalua­
tions rely upon formulas 1.4.5 (2) and 1.4.7 (2) of [14], which we quote here as 
Lemmas 3 and 4. 

LEMMA 3. Let fbe a function of one complex variable. Then for any w in S, the 
unit sphere of Cn, we have 

(10) f /«z , w» da(z)=— P f \l-r2y-2f(rei6)rdrdd, 
Js 77 J 0 J0 

provided the integrals exist. Here (z, w) = Y,ziwj. 

LEMMA 4. For n > 1, let Bn_! be the unit ball in C n " \ and let dv be Lebesgue 
measure normalized so that the ball has measure one. Then 

(11) f fda = f <Mz') -J - f 7 ( * ' , ei6zn) dO, 

where z' = (zl9..., z„_i), provided f:S->C is integrable. 
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We also need the following special case of Jensen's formula. 

LEMMA 5. 

2TT JC 

2ir 

log \aeine + b\d6= max(log \a\, log |b|). 

THEOREM 6. Let P(z) = a1z1 + - - - + anzn + b. Let a = (\a1\
2 + - • • + |an |2)1/2. 

Then 

CL(P)=< 

\b\ if | 6 |>a , 

a e x p f ( ( l - r 2 ) n _ 1 - l ) d r / r if | b |<a . 

Proof. Apply Lemma 3 to f(z) = log \az + b\, with w = ( a 1 ? . . . , c^Va. The 
left side of (10) is then loglî(P). On the right side, we find 

n - 1 f27T f 

IT J 0 J 0 

2 T T / - l 

( l - r 2 ) n - 2 l og | a r e i 0 + b | rdrdO 

= 2 ( n - l ) | K l - r 2 ) n " 2 ( - ^ | "log|are i e + b | d ^ d r . 

Applying Lemma 5 to the inner integral we find 

log H(P) = 2(n - 1 ) J r(l - r2)n"2 max(log ar, log |b|) dr. 

If \b\ > a then max(log ar, log |b|) = log |b| and it follows that fl(P) = \b\. This is 
also immediate from (6) since | b | > a implies A(f) = 0 for 0 < t < l . If | b | < a 
then we integrate separately over the ranges 0 < r < | b | / a and | b | / a < r < l to 
establish the theorem. 

We draw attention to two special cases of Theorem 6. 

COROLLARY, (a) f l ^ + • • • + zn) = exp(-(Hn_a - l og n)/2) = e~y/2+ Oin'1), 
where Hn^1 = 1 + | + • • • + l / ( n - 1 ) and y = 0*57721... is Eulefs constant. 

(b) 1/ P ( 2 l , . . . , zn) = zx then n(P) = exp(-Hn_J2) = e ' ^ n " 1 ' ^ 0(rT3 / 2) . 

We note in passing that M(zx + • • • + zn) = e~y/2Jn + 0(n~1 / 2 log n), as 
proved in [13]. Part b) is the example, promised earlier, of the dependence of 
fl on the number of variables. 

THEOREM 7. Let P(x, y) = axm + byn, m and n positive integers, ab^O. Let À, 
0 < À < 1 , be such that \a\ Àm = \b\ (1-A2)n / 2 , and let p = ( l -A 2 ) 1 / 2 . Then 
loglî(P) = À 2 ( log |b | - èn -mlogÀ) + p 2 ( l o g | a | - i m - n l o g p ) . 

Proof. Apply Lemma 4 to /(z l 5 z2) = log|az™+bz2|. The left side of (11) is 
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logfl(P). On the right side, we have 

f dv{zx) — I log | a z ^ + bz^ein6\ d6. 
JBi 2TT J0 

Evaluate the inner integral by Lemma 5, then replace \z2\ by ( l - | z i | 2 ) 1 / 2 (since 
(zi, z2) is in S). Noting that B1 is just the unit disk in C, we go to polar 
co-ordinates and obtain 

logn(P) = - f f max(log|arm | , log|b(l-r2)n / 2 | )rd^dr. 
TT J 0 Jo 

The integral with respect to 6 is trivial. The integral with respect to r is split 
into the intervals 0 < r < A and A < r < l and the theorem follows. 

THEOREM 8. Let P(x, y) = axy + b. Let A = | a | 2 - 4 | b | 2 . Then 

, x [\b\ if A<0 , 

[è(|a| + VA)e-VA/|a| if A>0 . 

Proof. If A < 0 then a simple calculation shows that P has no zeroes inside 
the unit ball. Then by (6), a (P) = \b\. 

If A>0 , apply Lemma 4 to f(zl9 z2) = log|az1z2 + b|, obtaining 

log fî(P) = I dv{zx) —- I log \az1z2e
ie + b\ dO. 

JBl 2TT JO 

Evaluate the inner integral by Lemma 5, replace \z2\ by (1 — Iz^2)172, go to polar 

co-ordinates and carry out the trivial integration with respect to 6, yielding 

log n(P) = 2 f r max(log | a r ( l - r2)1 / 2 | , log |6|) dr. 
Jo 

Now let 

then 

è l o g n ( P ) = f r\og\b\dr+ f r log(|a| r ( l - r 2 ) 1 / 2 ) d r + f rlog\b\dr. 
J0 Jr_ Jr+ 

Evaluation of these integrals establishes the theorem. 

The greatest interest in Mahler 's measure has been in its restriction to 

polynomials with integer coefficients. Let us adopt this restriction on our 

polynomials. It is then evident from (1) that, in the one-variable case, M(P) is 

an algebraic number. In the many variable case, no value of M(P) has yet been 

proved transcendental. On the other hand, we know of no reason to think that 

|8 (say) is algebraic. 
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By way of contrast, the values of ft(P) arising from Theorems 6, 7 and 8 are 
in many cases recognizably transcendental, being simply constructed from 
algebraic numbers and exponentiation. Of course, the examples presented are 
far too special to justify a conjecture to the effect that ft(P) will always have 
such a simple form. 

In the one-variable case, it is clear from (1) that M ( P ) > 1 , with equality if 
and only if P is monic and has no roots outside the unit circle. By a theorem of 
Kronecker, this is equivalent to P being a cyclotomic polynomial (that is, all its 
roots being roots of unity). In the many-variable case, it is again true that 
M ( P ) > 1 , and equality holds if and only if P is a "generalized cyclotomic 
polynomial"—see [6], [3], or [15]. 

It is not always the case that i l ( P ) > l . From part b) of the corollary to 
Theorem 6 we see that fi(P) can approach zero as the number of variables 
increases. Even if the number of variables is held at two, part a) of the 
corollary together with (9) shows that fl((zA + z2)

k) = (e/2)~k/2, and from 
Theorem 7 we find £l(z\ + z\) = (e/2)~k/2. Nevertheless, we deduce immediately 
from (6) the following version of Kronecker's theorem (variation on 
Kronecker's theme?). 

THEOREM 9. Assume P ( 0 ) ^ 0 . Then f l ( P ) > l , with equality if and only if 
P(0) = ±1 and P has no zeroes inside the unit ball. 

We conclude with some open questions. 
1. The examples preceding Theorem 9 suggest that fl(P) is small only when 

the number of variables is large or P vanishes to high order at zero. Can one in 
fact prove that fl(P) is bounded away from zero by some function of the 
number of variables and the order of vanishing at the origin? 

2. Can one characterize all polynomials with integer coefficients not vanish­
ing in the unit ball? Montgomery and Schinzel [11] have done this for the 
polydisc. 

3. Can one find useful inequalities relating Q(P) to the coefficients of P? 
Mahler [8] has done this for M(P); see also [9] and [2]. 
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