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Oscillating multipliers on symmetric and
locally symmetric spaces
Effie Papageorgiou
Abstract. We prove Lp-boundedness of oscillating multipliers on symmetric spaces of noncompact
type of arbitrary rank, as well as on a wide class of locally symmetric spaces.

1 Introduction and statement of the results

The main objective in this article is to study the Lp boundedness of oscillating
multipliers on symmetric spaces of arbitrary rank and locally symmetric spaces. Our
aim is to find the corresponding analogues of the classical Euclidean assumptions on
the abovementioned geometries and to generalize the results obtained in the rank one
case by Giulini and Meda in [13]. The ingredients we shall use were already known,
however, their present use allows us to overcome the rank obstacle in a uniform
manner.

To put the result in perspective, let us discuss the background. On R
n , consider the

function

m̃α ,β(ξ) = ∥ξ∥−β e i∥ξ∥α
θ (∥ξ∥) , α, β > 0,

where θ is a smooth function, vanishing near zero and equal to 1 outside the unit ball.
As usual, denote by C∞0 (Rn) the set of smooth, compactly supported functions on
R

n . Let T̃α ,β be the operator which in the Fourier transform variables is given by

̂(T̃α ,β f ) (ξ) = m̃α ,β(ξ) f̂ (ξ) , f ∈ C∞0 (Rn) .(1)

In other words, T̃α ,β is a convolution operator with kernel the inverse Fourier
transform of m̃α ,β . This family provides examples of operators that do not fall under
the scope of Calderón–Zygmund theory, but rather are given by “strongly singular
kernels,” [11]. They are also interesting because of their intimate connection with the
Cauchy problem for the wave and the Schrödinger equation, for α = 1 and α = 2,
respectively. In the euclidean setting, these operators have been extensively studied,
see for example [10, 11, 17, 25, 26, 27]. The Lp-boundedness of oscillating multipliers
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has been studied also in various geometric settings as Riemannian manifolds, Lie
groups and symmetric spaces, see for instance [1, 12, 13, 21] and the references therein.
In particular, for the rank one case of symmetric spaces (which include hyperbolic
space) and locally symmetric spaces, see [8, 13, 18, 24].

In the present paper, we deal with oscillating multipliers in the setting of noncom-
pact symmetric spaces of arbitrary rank. These are Riemannian, nonpositively curved
manifolds, with a structure that induces a Fourier-like analysis. In more detail, let G
be a semi-simple, noncompact, connected Lie group with finite center and take K be
a maximal compact subgroup of G. We consider the symmetric space of noncompact
type X = G/K, with dim X = n. Denote by g and k the Lie algebras of G and K,
respectively. We have the Cartan decomposition g = p⊕ k. Let a be a maximal abelian
subspace of p and denote its dual by a∗. If dima = d, then we say that X has rank d.
The Killing form of g induces a scalar product on a, hence on a∗. The norm induced
by the corresponding product on a∗ will be denoted by ∥ ⋅ ∥.

Let X be a symmetric space of noncompact type. Consider the function

mα ,β(λ) = (∥λ∥2 + ∥ρ∥2)−β/2e i(∥λ∥2+∥ρ∥2)α/2
, α, β > 0, λ ∈ a∗ ,(2)

where ρ is the half sum of positive roots counted with their multiplicity. This multiplier
is the analogue of (1) in the present setting, but since it remains bounded for all λ ∈
a∗, as in [13], the cut-off function in (1) is no longer necessary. Denote by κα ,β the
inverse spherical Fourier transform of mα ,β in the sense of distributions. Consider
the convolution operator Tα ,β , where

Tα ,β( f )(x) = ( f ∗ κα ,β)(x) =∫
G
κα ,β(y−1x) f (y)d y, f ∈ C∞0 (X).(3)

Let Γ be a discrete and torsion free subgroup of G and let us consider the locally
symmetric space M = Γ/X, which equipped with the projection of the canonical
Riemannian structure of X, becomes a Riemannian manifold.

To define oscillating multipliers on M, we first observe that if f ∈ C∞0 (M), then the
function Tα ,β f defined by (3) is right K-invariant and left Γ-invariant. So, Tα ,β can be
considered as an operator acting on functions on M, which we shall denote by T̂α ,β .

Let κ be a K-bi-invariant function and denote by ∗∣κ∣ the convolution operator
whose kernel is ∣κ∣. Let p ∈ (1,∞), denote by p′ its conjugate and set

s(p) = 2 min{ 1
p

, 1
p′
} .

We shall assume that the following version of the Kunze and Stein phenomenon holds,

∥ ∗ ∣κ∣∥Lp(M)→Lp(M) ≤ c∫
G

∣κ(g)∣φ−iηΓ(g)s(p)dg ,(4)

where φλ are the elementary spherical functions, ηΓ is a vector of the euclidean sphere
S(0, (∥ρ∥ 2 − λ0)1/2) of a∗ and λ0 is the bottom of the spectrum of the Laplacian ΔM .
For example, this is the case for M = Γ/G/K, when (i) Γ is a lattice, or (ii) G possesses
Kazhdan’s property (T) or (iii) Γ/G is nonamenable, see [20] for more details. We say
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that M belongs in the class (KS) if (4), is valid on it. Note that X belongs in (KS),
[14, 20].

Our main result is the following theorem.

Theorem 1 Assume that α ∈ (0, 1) and that M = Γ/X belongs in the class (KS).
(i) If β > nα/2, then Tα ,β (resp. T̂α ,β) is bounded on Lp(X) (resp. on Lp(M)) for all

p ∈ (1,∞).
(ii) If β ≤ nα/2, then Tα ,β (resp. T̂α ,β) is bounded on Lp(X) (resp. on Lp(M)) for all

p ∈ (1,∞), provided that β > αn∣1/p − 1/2∣.

The above theorem was proved in [13, 24] for the rank one case, taking β ∈ C with
Reβ > 0, but we will consider β > 0 for simplicity. Our proof treats symmetric and
locally symmetric spaces of arbitrary rank in a uniform way.

Let us make a few remarks about the symmetric space case. First, the operator Tα ,β
is bounded on L2(X) since the multiplier is bounded for all α, β > 0. But for p ≠ 2,
there is a certain necessary condition (see [7, Theorem 1] or [3, p.604]), first observed
by Clerc and Stein, which has no Euclidean analogue: every multiplier that yields an
Lp(X) bounded operator, for some p ∈ (1,∞), p ≠ 2, extends to an invariant by the
Weyl group, bounded, holomorphic function inside the tube Tp = a∗ + i∣2/p − 1∣Cρ .
Here, Cρ denotes the convex hull of the images of ρ under the Weyl group. In the
rank one case, the interior of the tube reduces to the strip {λ ∈ C ∶ ∣Imλ∣ < ∣2/p − 1∣ρ}.
Moreover, when p = 1, the multiplier should even extend to a bounded continuous
function on the closed tube T1. Denote by ⟨⋅, ⋅⟩ the C-bilinear extension of the inner
product of a∗ to a∗

C
and observe that at λ = iρ, the quantity ⟨λ, λ⟩ + ∥ρ∥2 vanishes.

Thus, mα ,β is not defined for λ = iρ, for any β > 0 and the L1(X) problem is ill-posed.
The critical index concerning the size of β appearing in Theorem 1 is the same as

in the euclidean case. This is due to the following observation: the part of the operator
“at infinity,” which is related to the large-frequencies’ part of the kernel, is bounded
on all Lp(X), p ∈ (1,∞), without any restrictions on the size of the parameter β; on
the other hand, the remaining “local part” is essentially euclidean, thus inducing the
condition between parameters α, β on Theorem 1. However, the result for α = 1, cannot
be obtained as a limit case of α ∈ (0, 1), α → 1−. Indeed, for α = 1 the critical index for
β is (n − 1) ∣1/p − 1/2∣, rather than n ∣1/p − 1/2∣, so a different approach is required, see
for instance [8].

The case α > 1 differs considerably from the corresponding Euclidean result or,
for instance, the case of Riemannian manifolds of nonnegative Ricci curvature [1,
Theorem 1]. In fact, for α > 1, the operator is bounded only on L2(X). This is once
again due to the necessary condition of Clerc and Stein. Indeed, writing the complex
number ⟨λ, λ⟩ + ∥ρ∥2 in polar form, it is easy to see that the multiplier mα ,β(λ) is not
bounded in any tube domain Tp , p ≠ 2 (see also [13, p.97]).

As usual, we perform a splitting of the kernel κα ,β :

κα ,β = ζκα ,β + (1 − ζ)κα ,β ∶= κ0
α ,β + κ∞α ,β ,(5)

where ζ ∈ C∞(K/G/K) is a cut-off function such that

ζ(x) =
⎧⎪⎪⎨⎪⎪⎩

1, if ∣x∣ ≤ 1/2,
0, if ∣x∣ ≥ 1.

(6)
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Denote by T0
α ,β (resp. T∞α ,β) the convolution operators on X with kernel κ0

α ,β (resp.
κ∞α ,β). Let T̂0

α ,β and T̂∞α ,β be the corresponding convolution operators on M. To prove
the Lp boundedness of the local part T0

α ,β on X, we follow the spectral multiplier
approach of [2] (see also [12, 22]) and then use the spherical Fourier transform in order
to adapt these ideas to the symmetric space setting. Then, the result on M for T̂0

α ,β will
follow. To prove the Lp boundedness of the parts at infinity T∞α ,β , T̂∞α ,β , we shall make
use as in [3, 20, 24] of Kunze and Stein phenomenon. We modify the proof of the
main multiplier theorem in [3, 20] in order to exploit the decay rate of the derivatives
of mα ,β .

The paper is organized as follows. In Section 2, we present the necessary tools we
need for our proofs. In Section 3, we study the Lp boundedness of the part of the
operator near the origin. In Section 4, we treat the part at infinity and we finish the
proof of Theorem 1.

Throughout this article, the different constants will always be denoted by the same
letter c.

2 Preliminaries

In this section, we recall some basic facts about symmetric and locally symmetric
spaces, which we will use for the proof of our results. For details see [3, 15, 16, 20].

Let G be a semisimple Lie group, connected, noncompact, with finite center and let
K be a maximal compact subgroup of G. We denote by X the noncompact symmetric
space G/K. The group G acts naturally on X by left translations. Denote by g and k the
Lie algebras of G and K, respectively. If X, Y are two elements of g, then ad(X)(Y) =
[X , Y] is a linear transformation of g to itself. Thus, we may define the Killing form by
B(X , Y) = tr(adXadY), which is symmetric and bilinear. Let also p be the subspace
of g which is orthogonal to k with respect to the Killing form. We identify p with the
tangent space at the origin o = K on X.

Fix a a maximal abelian subspace of p and denote by a∗ the real dual of a. The
Killing form on g restricts to a positive definite form on a. This in turn induces a
positive inner product, hence a norm ∥ ⋅ ∥ on a, and by duality, on a∗ as well (we will
use the same notation for the norms). If dim a = d, we say that X has rank d.

The Killing form endows X with both a natural Riemannian metric and a corre-
sponding G-invariant measure (denoted dx). Therefore, we can define the Laplace–
Beltrami operator ΔX on X. If Γ is a discrete, torsion-free subgroup of G, then the
locally symmetric space M = Γ/X, equipped with the projection of the canonical
Riemannian structure of X, becomes a Riemannian manifold. In the sequel, we assume
that dim X = n.

We say that α ∈ a∗/{0} is a root vector, if the space

g
α = {X ∈ g ∶ [H, X] = α(H)X , for all H ∈ a}

is nontrivial. We shall denote by mα = dimgα the multiplicity of the root α and by
Σ ⊂ a∗ the root system associated to (g, a), containing all roots. Let W be the Weyl
group associated to Σ, that is, the finite subgroup of isometries of Σ, generated by
reflections orthogonal to the walls (the hyperplanes orthogonal to the roots of Σ).
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The roots divide a into Weyl chambers, maximal connected regions where no root
vanishes. Choose a Weyl chamber a+, to be called positive, and say that a root α is
positive if α(H) is positive for H in a+. The set Σ+ contains all positive roots and
Σ+0 ⊂ Σ+ all α that are indivisible, meaning that α/2 is not a root. Denote by ρ the half
sum of positive roots counted with their multiplicities:

ρ = 1
2 ∑

α∈Σ+
mα α ∈ a∗ .

Thus the norm ∥ρ∥ is defined, and the L2 spectrum of the Laplace-Beltrami operator
ΔX consists of the half line [∥ρ∥2 ,∞).

We have the Cartan decomposition on the group level by

G = K(expa+)K ,(7)

where a+ is the closure of the cone a+. Let H be the (unique, contrarily to the K
components) a+ component of x ∈ G in the decomposition (7) and define ∣x∣ = ∥H∥.
Viewed on G/K, ∣x∣ is the distance of xK to the origin o = K. Functions on X are
identified with the right K-invariant functions on G and vice versa. Similarly, left K-
invariant functions on X can be viewed as K-bi-invariant functions on G. Normalize
the Haar measure dk of K such that ∫K dk = 1. Then, from the Cartan decomposition,
it follows that

∫
G

f (g)dg = ∫
K

dk1 ∫
a+

δ(H)dH∫
K

f (k1 exp(H)k2)dk2 ,(8)

where the Jacobian density δ(H) satisfies

δ(H) = ∏
α∈Σ+

sinhmα α(H) ≍ { ∏
α∈Σ+

( α(H)
1 + α(H))

mα

} e2ρ(H) ,(9)

where f (x) ≍ g(x) means that there exist finite positive constants C1 ≤ C2 such that
C1 g(x) ≤ f (x) ≤ C2 g(x). Note that if f is K-bi invariant [4, p. 1038], then

∫
G

f (g) dg = ∫
X

f (x) dx .(10)

The role played by exponentials in euclidean Fourier analysis is played by the
(elementary) spherical functions in the Fourier analysis of K-bi-invariant functions
on G. They are K-bi-invariant and given by the integral representation

φλ(x) = ∫
K

e(i λ−ρ)H(x k)dk.

We then have

∣φλ(exp H)∣ ≤ φ0(exp H) ≤ c(1 + ∥H∥)a e−ρ(H), λ ∈ a∗ , H ∈ a+,(11)

for some constants c, a > 0, [4, p. 1046]. Denote by S(K/G/K) the Schwartz space of
K-bi-invariant functions on G. Then, the spherical Fourier transform H is defined by

H f (λ) = ∫
G

f (x)φ−λ(x) dx , λ ∈ a∗ , f ∈ S(K/G/K).

https://doi.org/10.4153/S0008414X21000250 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000250


892 E. Papageorgiou

Let S(a∗) be the usual Schwartz space on the euclidean space a∗ and S(a∗)W the
subspace of Weyl-invariant functions in S(a∗) (e.g., radial: m(λ) = m0(∥λ∥)). Then,
by a celebrated theorem of Harish-Chandra,H is an isomorphism between S(K/G/K)
and S(a∗)W and its inverse is given by

(H−1 f )(x) = c∫
a∗

f (λ)φλ(x) dλ
∣c(λ)∣2 , x ∈ G , f ∈ S(a∗)W ,(12)

where c(λ) is the Harish-Chandra function. It is explicitly known, but we shall only
need the following rough estimate:

∣c(λ)∣−2 ≤ c(1 + ∥λ∥2)b/2(13)

for some constants c, b > 0, [3, p. 601].
Set

mt(λ) = e−t(∥λ∥2+∥ρ∥2) , t > 0, λ ∈ a∗ .

Then the heat kernel pt(x) on X is given by (H−1mt)(x) [4]. The heat kernel on
symmetric spaces has been extensively studied, see for example [4, 6]. Sharp estimates
of the heat kernel have been obtained by Davies and Mandouvalos in [9] for the case
of real hyperbolic space, while Anker and Ji [4] and later Anker and Ostellari [6],
generalized the results of [9] to all symmetric spaces of noncompact type. Recall also
a few fundamental properties of the heat kernel, [6]: it is a bi-K-invariant function
on G, thus determined by its restriction to the positive Weyl chamber. Moreover it is
symmetric and positive: pt(x , y) = pt(y, x) > 0, for every x , y ∈ X, where

pt(x , y) = pt(gK , hK) = pt(h−1 g), g , h ∈ G .(14)

The heat operator e tΔ is given by

e tΔ f (x) = ∫
X

pt(x , y) f (y)d y, f ∈ C∞0 (X), x ∈ X , t > 0.(15)

Finally, the semigroup property holds:

∫
X

ps(x , y)pt(y, z)d y = ps+t(x , z).(16)

Recall that Σ+0 is the set of positive indivisible roots α and by mα the dimension of
the root space gα . In [6, Main Theorem] it is proved the following sharp estimate:

pt(exp H) ≍ ct−n/2 ⎛
⎝ ∏

α∈Σ+0
(1 + α(H))(1 + t + α(H))

mα+m2α
2 −1⎞

⎠

× e−∥ρ∥
2 t−ρ(H)−∥H∥2/4t , t > 0, H ∈ a+ ,(17)

where n =dimX.
From (17), we deduce the following crude estimate

pt(exp H) ≤ ct−n/2e−∥H∥
2/4t , t > 0, H ∈ a+,(18)

which is sufficient for our purposes.

https://doi.org/10.4153/S0008414X21000250 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000250


Oscillating multipliers on symmetric and locally symmetric spaces 893

3 Lp boundedness of the local part

In this section, we shall prove the following proposition.

Proposition 2 Assume that α ∈ (0, 1).
(i) If β > nα/2, then T0

α ,β (resp. T̂0
α ,β) is bounded on Lp(X) (resp. on Lp(M)) for every

p ∈ [1,∞].
(ii) If β ≤ nα/2, then T0

α ,β (resp. T̂0
α ,β) is bounded on Lp(X) (resp. on Lp(M)), p ∈

(1,∞), provided that β > αn ∣1/p − 1/2∣.

To prove the Lp boundedness of the local part T0
α ,β of the operator Tα ,β on X we

shall follow the approach of [2] (see also [12, 22]), and express the kernel κα ,β of the
operator Tα ,β via the heat kernel pt of the symmetric space X.

As in [13], we may write

Tα ,β = μα ,β(ΔX), where μα ,β(ξ) = ξ−β/2e i ξα/2
, ξ > 0,(19)

and observe that

mα ,β(λ) = μα ,β(∥λ∥2 + ∥ρ∥2), λ ∈ a∗.(20)

Consider the functions ω0 , ω ∈ C∞0 (R+), such that

supp ω0 ⊂ {ξ ∶ 0 ≤ ξ ≤ 2} , supp ω ⊂ {ξ ∶ 1/2 ≤ ξ ≤ 2}

and take

ω j(ξ) = ω(2− j ξ), j ∈ N, and ∑
j≥0

ω j(ξ) = 1.

Then, as in [1], for j ≥ 0, we write

μ j(ξ) = μα ,β(ξ)ω j(ξ),(21)

where

supp μ0 ⊂ {ξ ∶ 0 < ξ ≤ 2} and supp μ j ⊂ {ξ ∶ 2 j−1 ≤ ξ ≤ 2 j+1}, j ∈ N.(22)

Define the operators Tj = μ j(ΔX) and note that by (19) and (21), we have Tα ,β =
∑ j≥0 Tj . Using the group structure, we may also write

Tj = ∗κ j =H−1m j ,(23)

where

m j(λ) = μ j(∥λ∥2 + ∥ρ∥2) = μα ,β(∥λ∥2 + ∥ρ∥2)ω j(∥λ∥2 + ∥ρ∥2)
= mα ,β(λ)ω j(∥λ∥2 + ∥ρ∥2), λ ∈ a∗ .(24)

Observe that m j are Weyl-invariant as radial functions, so the kernels κ j are K-bi-
invariant. By (22) and (24), we have

supp m0 ⊂ {λ ∶ 0 ≤ ∥λ∥2 + ∥ρ∥2 ≤ 2} and
supp m j ⊂ {λ ∶ 2 j−1 ≤ ∥λ∥2 + ∥ρ∥2 ≤ 2 j+1}, j ∈ N.
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Depending on the size of ∥ρ∥, finitely many of the above sets may be empty. To simplify
the presentation, let us assume from now on that ∥ρ∥ = 1, so that

supp m0 ⊂ {λ ∶ ∥λ∥ ≤ 2}, supp m1 ⊂ {λ ∶ ∥λ∥ ≤ 4} and(25)

supp m j ⊂ {λ ∶ 2( j−2)/2 ≤ ∥λ∥ ≤ 2( j+1)/2}, j ≥ 2.(26)

Set
h j(ξ) = μ j(2 j ln ξ)ξ−1 , j ≥ 0,(27)

and observe that

supp(h0) ⊂ (1, e2), supp(h j) ⊂ (e1/2 , e2), j ∈ N,(28)

and that
h j(e2− j ΔX)e2− j ΔX = μ j(2 j ln e2− j ΔX)e−2− j ΔX e2− j ΔX

= μ j(ΔX).(29)

Recall that we denoted by pt the heat kernel of X and by κ j the kernel of the operator
Tj = μ j(ΔX). Then, from (29) it follows that

κ j(x) = μ j(ΔX)δ0(x) = h j(e2− j ΔX)e2− j ΔX δ0(x)

= h j(e2− j ΔX)p2− j(x).(30)

Note that

∑
j≥0

κ j(x) = ∑
j≥0

μ j(ΔX)δ0(x)

= μα ,β(ΔX)δ0(x) = κα ,β(x).(31)

Our proof will be based on the following lemma, the proof of which is postponed
until the end of this section.

Lemma 3 For every j ≥ 0,

∥κ j∥L1(B1) ≤ c2−(β−αn/2) j/2 .

Here, B1 denotes the geodesic unit ball on X, which is a homogeneous space in the
sense of Coifman and Weiss, see [5].

3.1 Proof of Proposition 2

We treat first the case of symmetric spaces. It suffices to interpolate between the L∞
and L2 result, and then use duality. In our proof, the properties of the spherical Fourier
transform on K-bi-invariant functions are central. For locally symmetric spaces, the
required Lp boundedness for T̂0

α ,β will follow as a consequence of the Lp result for
T0

α ,β on symmetric spaces.
(i) Let β > αn/2. Recall that κα ,β = ∑ j≥0 κ j . We shall show that κ0

α ,β ∈ L1(X), using
the fact that it is compactly supported. Indeed, by (5) and Lemma 3, we have

∥κ0
α ,β∥L1(X) = ∥ζκα ,β∥L1(X) ≤ c∥κα ,β∥L1(B1)
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≤ c ∑
j≥0

∥κ j∥L1(B1) ≤ c ∑
j≥0

2−(β−αn/2) j/2 < c.

This implies that

∥T0
α ,β∥L∞(X)→L∞(X) ≤ c.(32)

It remains to show the L2 result for T0
α ,β by summing over T0

j . The spherical Fourier
transform properties will allow us to estimate m0

j by the known estimates of m j . By
Plancherel theorem, the K-bi-invariance of ζ and κ j , and (5), we get that

∥T0
j ∥L2(X)→L2(X) ≤ ∥m0

j ∥L∞(a∗) = ∥H(κ0
j )∥L∞(a∗)

= ∥H(ζκ j)∥L∞(a∗) = ∥H(ζ) ∗H(κ j)∥L∞(a∗)

= ∥H(ζ) ∗ m j∥L∞(a∗) ≤ ∥H(ζ)∥L1(a∗)∥m j∥L∞(a∗) .(33)

But ζ ∈ S(K/G/K). So, as it is mentioned in Section 2, its spherical Fourier transform
H(ζ), belongs in S(a∗)W ⊂ L1(a∗). So,

∥H(ζ)∥L1(a∗) ≤ c(ζ) < ∞.

From (33), (26) and (2) it follows that

∥T0
j ∥L2(X)→L2(X) ≤ c(ζ)∥m j∥L∞(a∗)

= c(ζ) sup
2( j−2)/2≤∥λ∥≤2( j+1)/2

∣mα ,β (λ)ω(2− j λ)∣

≤ c(ζ)2−β j/2 , j ≥ 2.

It is easy to see that using the same arguments for the remaining cases j = 0, 1, an
inequality of the form above is also satisfied. Further, by the fact that T0

α ,β = ∑ j≥0 T0
j ,

it follows that

∥T0
α ,β∥L2(X)→L2(X) ≤ ∑

j≥0
∥T0

j ∥L2(X)→L2(X)

≤ c ∑
j≥0

2−β j/2 ≤ c < ∞.(34)

By interpolation and duality, it follows from (32) and (34) that T0
α ,β is bounded on

Lp(X), for all p ∈ [1,∞].
(ii) Let β ≤ αn/2. Once again, we shall interpolate between the L∞ and L2 result.

Recall that T0
j = ∗κ0

j and that κ0
j = ζκ j . So, from Lemma 3 we get that

∥T0
j ∥L∞(X)→L∞(X) ≤ ∥κ0

j ∥L1(X) = ∥ζκ j∥L1(X)

≤ c∥κ j∥L1(B1) ≤ c2−(β−αn/2) j/2 .(35)

Also, we have that

∥T0
j ∥L2(X)→L2(X) ≤ c2−β j/2 .(36)

Interpolating between (35) and (36) we get that for p ≥ 2

∥T0
j ∥Lp(X)→Lp(X) ≤ c∥T0

j ∥
1−2/p
L∞(X)→L∞(X)∥T0

j ∥
2/p
L2(X)→L2(X)
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≤ c2−(1−2/p)(β−αn/2) j/22−(2/p)β j/2

≤ c2−(β−αn( 1
2−

1
p )) j/2 .

Thus,

∥T0
α ,β∥Lp(X)→Lp(X) ≤ ∑

j≥0
∥T0

j ∥Lp(X)→Lp(X)

≤ c ∑
j≥0

2−(β−αn( 1
2−

1
p )) j/2 < ∞,

provided that β > αn ( 1
2 −

1
p). The Lp-boundedness of T0

α ,β for p ∈ (1, 2), follows by
duality.

To prove the Lp boundedness of the local part T̂0
α ,β of the operator on the locally

symmetric space M, we need the following result [19, Proposition 13].

Proposition 4 Assume that p ∈ (1,∞). If the operator T0 = ∗κ0 is Lp(X)-bounded,
then the operator T̂0 = ∗κ0 is Lp(M)-bounded.

So, for the Lp result on M, observe first that T̂0
α ,β can be defined as an operator

on the group G, and then, apply the local result of Proposition 2 to conclude its
boundedness on Lp(X). Consequently, the continuity of T̂0

α ,β on Lp(M) follows by
Proposition 4. Note that the Lp boundeness of T̂0

α ,β holds without any restrictions on
the group Γ.

3.2 Proof of Lemma 3

In this section, our aim is to prove estimates of the L2-norm of the kernels κ j , which
will allow us to prove Lemma 3 by using the Cauchy–Schwartz inequality.

For r > 0, set

Vr = {H ∈ a ∶ ∥H∥ ≤ r}, and V+r = Vr ∩ a+.

Set also

Br = {x = k1(exp H)k2 ∈ G ∶ k1 , k2 ∈ K , H ∈ V+r } = K exp V+r K .(37)

The set Br consists of all points on X at distance at most r from the origin K, [4,
p. 1066]. For small radii, observe the following euclidean upper bound for volume
growth: using (8), (9) and the fact that ∑α∈Σ+ mα = n − d, [4, p. 1037], we have

∣Br ∣ ≤ c∫{H∈a+∶∥H∥≤r}
∏

α∈Σ+
α(H)mα dH ≤ crn , r ≤ 1.(38)

By G-invariance, the same upper bound would hold for small balls of any center (and
in fact, a lower bound of the same form is true, see [5, p. 1317]). Finally, consider the
annulus

Aq = B2(q+1)/2/B2q/2 , q ∈ R.

The following lemma is technical but important for the proof of Lemma 7.
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Lemma 5 There are constants c > 0 and δ ∈ (0, 1/8) such that for all j ∈ N, q ≥ − j and
∣t∣ ≤ δ2(q+ j)/2,

∣e i te2− j ΔX p2− j(x)∣ ≤ ce−c2(q+ j)/2
2n j/2 , for all x ∈ Aq .(39)

Proof By (15) and (16), we have that

e i te2− j ΔX p2− j(x) = ∑
m≥0

(it)m

m!
em2− j ΔX p2− j(x) = ∑

m≥0

(it)m

m!
p(m+1)2− j(x).(40)

Since pt is a K-bi-invariant function, the same is true for e i te2− j ΔX p2− j . Bearing in mind
that if x = k(exp H)k′ ∈ Aq , then ∥H∥ ≥ 2q/2, it follows from (40) and the estimate (18)
of pt(exp H) that

∣e i te2− j ΔX p2− j(exp H)∣ ≤ c ∑
m≥0

∣t∣m
m!

p(m+1)2− j(exp H)

≤ c ∑
m∈N

∣t∣m
m!

((m + 1)2− j)−n/2e−2q/4(m+1)2− j

≤ c2 jn/2 ∑
m∈N

m−n/2 ∣t∣m
m!

e−2q+ j/4(m+1)

≤ c2 jn/2 ∑
m∈N

∣t∣m
m!

e−2q+ j/4(m+1) .(41)

Set

N1 = {m ∈ N ∶ m ≤ 2(q+ j)/2} , N2 = N/N1 ,

and

Sk = ∑
m∈Nk

∣t∣m
m!

e−2q+ j/4(m+1) , k = 1, 2.

From (41), we have that

∣e i te2− j ΔX p2− j(exp H)∣ ≤ c2 jn/2(S1 + S2).(42)

We shall first estimate S1. If m ∈ N1, then m ≤ 2(q+ j)/2. So,

e−2q+ j/4(m+1) ≤ e−2q+ j/4(2(q+ j)/2+1) ≤ e−2(q+ j)/2/8 ,

and

S1 ≤ ce−2(q+ j)/2/8 ∑
m∈N1

∣t∣m
m!

= ce−2(q+ j)/2/8e∣t∣.

But ∣t∣ ≤ δ2(q+ j)/2 , and consequently

S1 ≤ ce−2(q+ j)/2/8eδ2(q+ j)/2
≤ ce−c2(q+ j)/2

,(43)

since δ < 1/8.
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To estimate S2, we make use of Stirling’s formula: 1
m! ≤ c ( e

m )
m . By the estimate (18)

of pt(exp H), and the facts that ∣t∣ ≤ δ2(q+ j)/2 and m > 2(q+ j)/2, we have

S2 = ∑
m∈N2

∣t∣m
m!

e−2q+ j/4(m+1) ≤ ∑
m∈N2

∣t∣m
m!

≤ c ∑
m∈N2

(δ2(q+ j)/2)m ( e
m
)

m

≤ c ∑
m∈N2

(δ2(q+ j)/2)m ( e
2(q+ j)/2 )

m
≤ c ∑

m∈N2

(δe)m .

But δ < 1/8 < e−2. So,

S2 ≤ c ∑
m∈N2

(δe)m ≤ c ∑
m>2(q+ j)/2

e−m ≤ ce−2(q+ j)/2
.(44)

Putting together (42–44), the estimate (39) follows, and the proof of the lemma is
complete. ∎

We also need the following approximation lemma, [1, 23].
For f ∈ Ck

0(R), k ∈ N, consider the norm

∥ f ∥C k = ∥ f ∥∞ + ∥ f ′∥∞ + ⋅ ⋅ ⋅ + ∥ f (k)∥∞.

Lemma 6 Let f ∈ Ck
0(R), k ∈ N and s > 0. Then there exist a continuous and inte-

grable function ψ and a constant c > 0, independent of s and f, such that

supp ψ̂ ⊂ [−s, s], ∥ψ̂∥∞ ≤ c, and ∥ f − f ∗ ψ∥∞ ≤ c∥ f ∥C k s−k .

Finally, we need the following estimates of the functions h j defined in ( 27):

∥h j∥∞ ≤ c sup
ξ∈(e 1/2 ,e2)

∣μ j(2 j ln ξ)ξ−1∣ ≤ c2−β j/2 ,(45)

and

∥h j∥C k ≤ c2−β j/22αk j/2 , j, k ∈ N.(46)

The proofs of (45) and (46) are straightforward, thus omitted.
We shall now prove the following lemma, which will allow us to prove Lemma 3 by

using the Cauchy–Schwartz inequality.

Lemma 7 Assume that q ≤ 0. Then, there are constants c, ck > 0 such that for all j, k ∈
N, q ≥ − j,

(i) ∥κ j∥L2(X) ≤ c2−(β− n
2 ) j/2.

(ii) ∥κ j∥L2(Aq) ≤ ck2−(β− n
2 +k(1−α)) j/22−kq/2.

Proof (i) By the semigroup property of the heat operator and the estimate (18) of
pt(x , y), we have that

∥pt(⋅, y)∥2
L2(X) = ∫X

p2
t (x , y)dx = ∫

X
pt(x , y)pt(y, x)dx

= p2t(y, y) = p2t(o) ≤ ct−n/2 .
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It follows that

∥p2− j(⋅, y)∥L2(X) ≤ c
√

2 jn/2 = c2 jn/4 ,(47)

for any y ∈ X.
Recall now that κ j(x) = h j(e2− j ΔX)p2− j(x). So, combining (47) and (45), we get

that

∥κ j∥L2(X) ≤ ∥h j∥∞∥p2− j∥L2(X) ≤ c2−β j/22 jn/4 = c2−(β−n/2) j/2 .(48)

(ii) Let us consider a function ψ j,q , satisfying Lemma 6, i.e.,

∥ψ̂ j,q∥∞ < c, ∥h j − h j ∗ ψ j,q∥∞ ≤ ∥h j∥C k 2−k(q+ j)/2 ,(49)

and

supp ψ̂ j,q ⊂ [−δ2(q+ j)/2 , δ2(q+ j)/2],

where the constant c in (49) is independent of j and q. Combining (46) with (49), it
follows that

∥h j − h j ∗ ψ j,q∥∞ ≤ c2−β j/22kα j/22−k(q+ j)/2 .(50)

Write

κ j(x) = h j (e2− j ΔX) p2− j(x)

= ((h j − h j ∗ ψ j,q) + h j ∗ ψ j,q) (e2− j ΔX)p2− j(x).(51)

Thus

∥κ j∥L2(Aq) ≤ ∥ (h j − h j ∗ ψ j,q) (e2− j ΔX) p2− j(x)∥L2(Aq)

+ ∥(h j ∗ ψ j,q)(e2− j ΔX)p2− j(x)∥L2(Aq) ∶= I1 + I2 .(52)

From (47), it follows that

I1 ≤ ∥h j − h j ∗ ψ j,q∥∞∥p2− j∥L2(X)

≤ ∥h j − h j ∗ ψ j,q∥∞2 jn/4 .

But, by (50),

∥h j − h j ∗ ψ j,q∥∞ ≤ c2−β j/22kα j/22−k(q+ j)/2 .

So,

I1 ≤ c2−(β−n/2+k(1−α)) j/22−kq/2 .(53)

Let us now estimate I2. By the inversion formula of the euclidean Fourier transform,
we have that

(h j ∗ ψ j,q)(e2− j ΔX) = c∫
R

̂(h j ∗ ψ j,q)(t)e i te2− j ΔX dt

= c∫
R

ĥ j(t)ψ̂ j,q(t)e i te2− j ΔX dt.(54)
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Bearing in mind that supp ψ̂ j,q ⊂ [−δ2(q+ j)/2 , δ2(q+ j)/2], we get that

∣(h j ∗ ψ j,q)(e2− j ΔX)p2− j(x)∣ ≤ c ∫
∣t∣≤δ2(q+ j)/2

∣ĥ j(t)∣∣ψ̂ j,q(t)∣ ∣e i te2− j ΔX p2− j(x)∣ dt

≤ c∥ĥ j∥∞∥ψ̂ j,q∥∞ ∫
∣t∣≤δ2(q+ j)/2

∣e i te2− j ΔX p2− j(x)∣ dt.

But from Lemma 5, we have that

∣e i te2− j ΔX p2− j(x)∣ ≤ ce−c2(q+ j)/2
2n j/2 , for all x ∈ Aq and ∣t∣ ≤ δ2(q+ j)/2.

So,

∣(h j ∗ ψ j,q)(e2− j ΔX)p2− j(x)∣ ≤ c∥ĥ j∥∞∥ψ̂ j,q∥∞ ∫
∣t∣≤δ2(q+ j)/2

e−c2(q+ j)/2
2 jn/2dt

≤ c∥ĥ j∥∞∥ψ̂ j,q∥∞δ2(q+ j)/2e−c2(q+ j)/2
2 jn/2

≤ c∥h j∥1∥ψ̂ j,q∥∞e−c2(q+ j)/2
2 jn/2 ,(55)

where in the last step we used the inequality ∥ĥ j∥∞ ≤ ∥h j∥1.
Next, recall that from (45), we have that ∥h j∥∞ ≤ c2−β j/2. Also, by (28), supp h j ⊂

(e1/2 , e2). These yield that

∥h j∥1 ≤ c2−β j/2 .(56)

Also, from (49), we have that ∥ψ̂ j,q∥∞ < c. Combining this with (56) and (55) we
deduce that

∣(h j ∗ ψ j,q)(e2− j ΔX)p2− j(x)∣ ≤ c2−β j/2e−c2(q+ j)/2
2 jn/2 .(57)

Finally, note that if q ≤ 0, then by (38),

∣B2(q+1)/2 ∣ ≤ c2qn/2 and Aq ⊂ B2(q+1)/2 .

So, by (57), it follows that

∥(h j ∗ ψ j,q)(e2− j ΔX)p2− j∥L2(Aq) ≤ ∣Aq ∣1/2∥(h j ∗ ψ j,q)(e2− j ΔX)p2− j∥∞
≤ c∣B2(q+1)/2 ∣1/22−β j/2e−c2(q+ j)/2

2 jn/2

≤ c2qn/42−β j/2e−c2(q+ j)/2
2 jn/2

≤ c2(q+ j)n/42−β j/2e−c2(q+ j)/2
2 jn/4 .

Using that

e−cx xn/2≤ ck x−k , c, ck > 0, for every x ≥ 1 and k ∈ N,

we obtain that

I2 = ∥(h j ∗ ψ j,q)(e2− j ΔX)p2− j∥L2(Aq) ≤ ck2−β j/22−k(q+ j)/22 jn/4
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= ck2−(β−n/2+k) j/22−kq/2

≤ ck2−(β−n/2+k(1−α)) j/22−kq/2 .(58)

From (58) and (53), it follows that

∥κ j∥L2(Aq) ≤ I1 + I2 ≤ ck2−(β−n/2+k(1−α)) j/22−kq/2 ,

and the proof of the lemma is complete. ∎

3.2.1 Proof of Lemma 3

Recall that by (23), we have κ0 =H−1m0. So, by (24), (25) and the inversion formula
(12), we have

∣κ0(x)∣ ≤ ∫∥λ∥≤2
∣mα ,β(λ)ω0(∥λ∥2 + ∥ρ∥2)φλ(x)∣ dλ

∣c(λ)∣2 .

Using (11) and (13), we immediately obtain the trivial estimate

∣κ0(exp H)∣ ≤ c(1 + ∥H∥)a e−ρ(H), H ∈ a+ .

Thus, κ0 is integrable in B1, with

∥κ0∥L1(B1) ≤ c.(59)

For j ≥ 1 write

∫∣x ∣≤1
∣κ j(x)∣dx = ∫∣x ∣≤2−(1−α) j/2

∣κ j(x)∣dx + ∫
2−(1−α) j/2≤∣x ∣≤1

∣κ j(x)∣dx .(60)

Using Lemma 7 and the fact that by (38), ∣Br ∣ ≤ crn , r ≤ 1, the Cauchy–Schwartz
inequality implies that

∫∣x ∣≤2−(1−α) j/2
∣κ j(x)∣dx ≤ ∣B2−(1−α) j/2 ∣1/2∥κ j∥L2(X)

≤ c2−(1−α) jn/42−β j/22 jn/4

≤ c2−(β−αn/2) j/2 .(61)

Set

A� = {x ∈ G ∶ 2−(1−α)(�+1)/2 ≤ ∣x∣ ≤ 2−(1−α)�/2} ,

and note that

{x ∈ G ∶ 2−(1−α) j/2 ≤ ∣x∣ ≤ 1} ⊂ ∪ j−1
�=0A� .

Note also that if q = −(1 − α)(� + 1), � = 0, 1, ..., j − 1, then, 0 ≥ q ≥ − j.
It follows that

∫
2−(1−α) j/2≤∣x ∣≤1

∣κ j(x)∣dx ≤
j−1

∑
�=0

∫
A�

∣κ j(x)∣dx

≤
j−1

∑
�=0

∣A�∣1/2∥κ j∥L2(A�)
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≤
j−1

∑
�=0

∣B2−(1−α)�/2 ∣1/2∥κ j∥L2(A�)

≤ c
j−1

∑
�=0

2−(1−α)�n/4∥κ j∥L2(A�).(62)

But, from Lemma 7,

∥κ j∥L2(Aq) ≤ ck2−(β−n/2+k(1−α)) j/22−kq/2 ,(63)

for all j, k ∈ N, and q ∈ [− j, 0].
Choosing k > n/2, from (62) and (63), it follows that

∫
2−(1−α) j/2≤∣x ∣≤1

∣κ j(x)∣dx ≤ c
j−1

∑
�=0

2−(1−α)�n/42−(β−n/2+k(1−α)) j/22k(1−α)�/2

≤ c2−(β−n/2+k(1−α)) j/2
j−1

∑
�=0

2(k−n/2)(1−α)�/2

≤ c2−(β−n/2+k(1−α)) j/22(k−n/2)(1−α) j/2

≤ c2− jβ/22 jn/42−n j/42n jα/4

≤ c2−(β−αn/2) j/2 .(64)

Combining (61) and (64), we obtain that

∥κ j∥L1(B1) ≤ c2−(β−αn/2) j/2 ,

and the proof of the lemma is complete.

4 The part at infinity

In this section, we prove the Lp-boundedness of T∞α ,β (resp. T̂∞α ,β), which combined
with the Lp-boundedness of T0

α ,β (resp. T̂0
α ,β) proved in Section 3, finish the proof of

Theorem 1.

Proposition 8 Assume that α ∈ (0, 1) and that M belongs in the class (KS). Then the
operator T∞α ,β (resp. T̂∞α ,β) is bounded on Lp(X) (resp. on Lp(M)) for all p ∈ (1,∞).

For the proof of the proposition above we shall make use, as in [3, 20, 24], of the
Kunze and Stein phenomenon. We shall give the proof of the Lp-boundedness only
for T̂∞α ,β . The case of T∞α ,β is similar, thus omitted. For that we need to introduce some
notation.

For p ∈ (1,∞), set

vΓ(p) = 2 min{(1/p), (1/p′)}∥ηΓ∥
∥ρ∥ + ∣(2/p) − 1∣,(65)

where p′ is the conjugate of p and ηΓ ∈ a∗ is the vector appearing in (4). Recall that
∥ηΓ∥ = (∥ρ∥2 − λ0)1/2, where λ0 the bottom of the spectrum of the Laplacian ΔM . Note
that vΓ(p) ≤ 1.
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Consider a bounded, Weyl invariant function m(λ), λ ∈ a∗. For N ∈ N, v ∈ R and
θ > 0, we say that a multiplier m(λ), λ ∈ a∗, belongs in the class M(v , N , θ), if
• m is analytic inside the tube Tv = a∗ + ivCρ and
• for all multi-indices k ∈ N with ∣k∣ ≤ N , ∂k m(λ) extends continuously to the whole

of Tv with

∣∂k m(λ)∣ ≤ c(1 + ∥λ∥2)−∣k∣θ/2 ∶= ⟨λ⟩−∣k∣θ .(66)

Let κ =H−1m, and denote by κ∞ its part away from the origin. Consider
the convolution operator T̂∞κ . The following result will be applied to prove
Proposition 8.

Proposition 9 Fix p ∈ (1,∞) and consider a Weyl-invariant function m ∈M(v , N , θ),
θ ∈ (0, 1), with v > vΓ(p) and N = [ n+1

2θ ] + 1. Then, T̂∞κ is bounded on Lp(M).

Let us assume for the moment that this result is valid. Then, note that the multiplier
mα ,β belongs in the class M(v , N , θ), for θ = 1 − α. Indeed, mα ,β (λ) has poles only at
λ = iρ and the points in its Weyl orbit. So, the function λ @→ mα ,β (λ) is analytic in
the tube Tv = a∗ + ivCρ , v ∈ (vΓ(p), 1). Secondly, for λ ∈ Tv , it is straightforward to
see that

∣∂k ma ,β(λ)∣ ≤ c(1 + ∥λ∥)−β−∣k∣(1−a) ≤ c(1 + ∥λ∥2)−∣k∣(1−α)/2 ,(67)

for every multi-index k. Thus, it follows from Proposition 9 that T̂∞α ,β is bounded on
Lp(M), for all p ∈ (1,∞), and the proof of Theorem 1 is complete.

It remains to prove Proposition 9. Since M belongs in the class (KS), then, according
to Kunze and Stein phenomenon, we have that

∣∣T̂∞∣∣Lp(M)→Lp(M) ≤ ∫
G
∣κ∞(x)∣φ−iηΓ(x)s(p)dx

≤ c∫∣x ∣≥1/2
∣κ(x)∣φ−iηΓ(x)s(p)dx .

We shall deal only with the integral for ∣x∣ ≥ 1; the case for 1/2 ≤ ∣x∣ ≤ 1 is trivial due to
compactness. To estimate the integral for ∣x∣ ≥ 1, we proceed as in the proof of Theorem
1 in [20], which is based on Proposition 5 of [3]. Using (37), we have

∫∣x ∣≥1
∣κ(x)∣φ−iηΓ(x)s(p)dx = ∑

j≥1
∫

B j+1/B j

∣κ(x)∣φ−iηΓ(x)s(p)dx

∶= ∑
j≥1

I j .(68)

Thus, it is sufficient to estimate the integrals in these annuli (actually the proof in [3]
uses a polyhedral variant of the balls B j). Set b = n − d, d = dima∗ = rank X and let
b′ be the smallest integer ≥ b/2. In [20, p. 645], using [3, p. 608], it is proved that for
any θ > 0, if m ∈M(v , N , θ), then for j ≥ 1 and every multi-index k with ∣k∣ ≤ N , we
have

I j ≤ c j−N j(d−1)/2 ∑
0≤∣k∣≤N

(∫
a∗
(⟨λ⟩b′−N+∣k∣∣∂k

λm(λ + iρ)∣)2dλ)
1/2

.
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We shall now modify the arguments used in the proof of [20, Theorem 1] to control
I j . There, it is assumed that the decay rate of the multiplier derivatives (66) holds true
for θ = 1. We show that the result is still valid for θ ∈ (0, 1) (increasing the number of
derivatives we have to control). Let m satisfy

∣∂k m(λ)∣ ≤ c(1 + ∥λ∥2)−∣k∣θ/2 ∶= ⟨λ⟩−∣k∣θ ,(69)

for some fixed θ ∈ (0, 1). If N is large enough, say N > n+1
2θ ≥ 2b′+d

2θ , using (69) it follows
that

I j ≤ c j−N j(d−1)/2 ∑
0≤∣k∣≤N

(∫
a∗
(⟨λ⟩b′−N+∣k∣⟨λ⟩−∣k∣θ)2dλ)

1/2

≤ c j−N j(d−1)/2 (∫
a∗
⟨λ⟩2(b′−θ N)dλ)

1/2

≤ c j−N j(d−1)/2 .(70)

Combining (68) and (70), we conclude that

∫∣x ∣≥1
∣κ(x)∣φ−iηΓ(x)s(p)dx = ∑

j≥1
I j ≤ c∑

j≥1
j−N j(d−1)/2 < ∞,

since N − d−1
2 > 1, and the proof of Proposition 9 is complete.

Acknowledgment The author would like to thank Professor Anestis Fotiadis for
stimulating discussions and support, as well as the anonymous referee for valuable
comments and suggestions.

References

[1] G. Alexopoulos, Oscillating multipliers on Lie groups and Riemannian manifolds. Tohoku Math. J.
46(1994), no. 4, 457–468. https://doi.org/10.2748/tmj/1178225675

[2] G. Alexopoulos, Spectral multipliers for Markov chains. J. Math. Soc. Japan 56(2004), 833–852.
https://doi.org/10.2969/jmsj/1191334088

[3] J.-P. Anker, Lp Fourier multipliers on Riemannian symmetric spaces of noncompact type. Ann.
Math. 132(1990), 597–628. https://doi.org/10.2307/1971430

[4] J.-P. Anker and L. Ji, Heat kernel and Green function estimates on noncompact symmetric spaces.
Geom. Funct. Anal. 9(1999), no. 6, 1035–1091. https://doi.org/10.1007/s000390050107

[5] J.-P. Anker and N. Lohoué, Multiplicateurs sur certains espaces symétriques. Amer. J. Math.
108(1986), no. 6, 1303–1353. https://doi.org/10.2307/2374528

[6] J.-P. Anker and P. Ostellari, The heat kernel on noncompact symmetric spaces. Amer. Math. Soc.
Transl. Ser. 2 210(2003), 27–46. https://doi.org/10.1090/trans2/210/03

[7] J. C. Clerc and E. M. Stein, Lp multipliers for noncompact symmetric spaces. Proc. Nat. Acad. Sci.
71(1974), 3911–3912. https://doi.org/10.1073/pnas.71.10.3911

[8] M. Cowling, S. Giulini, and S. Meda, Oscillatory multipliers related to the wave equation on
noncompact symmetric spaces. J. London Math. Soc. 66(2002), no. 2, 691–709.
https://doi.org/10.1112/S0024610702003563

[9] E. B. Davies and N. Mandouvalos, Heat kernel bounds on hyperbolic space and Kleinian groups.
Proc. London Math. Soc. (3) 57(1988), no. 1, 182–208. https://doi.org/10.1112/plms/s3-57.1.182

[10] C. Fefferman, Inequalities for strongly singular convolution operators. Acta Math. 124(1970), 9–36.
https://doi.org/10.1007/BF02394567

[11] C. Fefferman and E. M. Stein, H p spaces of several variables. Acta Math. 129(1972), nos. 3–4,
137–193. https://doi.org/10.1007/BF02392215

https://doi.org/10.4153/S0008414X21000250 Published online by Cambridge University Press

https://doi.org/10.2748/tmj/1178225675
https://doi.org/10.2969/jmsj/1191334088
https://doi.org/10.2307/1971430
https://doi.org/10.1007/s000390050107
https://doi.org/10.2307/2374528
https://doi.org/10.1090/trans2/210/03
https://doi.org/10.1073/pnas.71.10.3911
https://doi.org/10.1112/S0024610702003563
https://doi.org/10.1112/plms/s3-57.1.182
https://doi.org/10.1007/BF02394567
https://doi.org/10.1007/BF02392215
https://doi.org/10.4153/S0008414X21000250


Oscillating multipliers on symmetric and locally symmetric spaces 905

[12] A. Georgiadis, Oscillating spectral multipliers on Riemannian manifolds. Analysis 35(2015), no. 2,
85–91. https://doi.org/10.1515/anly-2012-1196

[13] S. Giulini and S. Meda, Oscillating multipliers on noncompact symmetric spaces. J. Reine Angew.
Math. 409(1990), 93–105. https://doi.org/10.1515/crll.1990.409.93

[14] S. Helgason. Differential geometry, lie groups, and symmetric spaces. 1st ed., Academic Press,
New York, NY, 1978.

[15] S. Helgason, Groups and geometric analysis. Academic Press, New York, NY, 1984.
[16] C. Herz, Sur le phénomène de Kunze–Stein. C. R. Acad. Sci. Paris Sér. A 271(1970), 491–493.
[17] I. I. Hirschman, On multiplier transformations. Duke Math. J. 26(1959), 221–242.

https://doi.org/10.1215/S0012-7094-59-02623-7
[18] A. D. Ionescu, Fourier integral operators on noncompact symmetric spaces of real rank one.

J. Funct. Anal. 174(2000), 274–300. https://doi.org/10.1006/jfan.2000.3572
[19] N. Lohoué and M. Marias, Invariants géometriques des espaces localement symétriques et théorèms

de multiplicateurs. Math. Ann. 343(2009), 639–667. https://doi.org/10.1007/s00208-008-0285-5
[20] N. Lohoué and M. Marias, Multipliers on locally symmetric spaces. J. Geom. Anal. 24(2014),

627–648. https://doi.org/10.1007/s12220-012-9348-7
[21] M. Marias, Lp-boundedness of oscillating spectral multipliers on Riemannian manifolds. Ann.

Math. Blaise Pascal. 10(2003), 133–160. https://doi.org/10.5802/ambp.171
[22] M. Marias, Lp estimates on functions of Markov operators. Proc. Amer. Math. Soc. 120(2002),

no. 5, 1533–1537. https://doi.org/10.2307/2699616
[23] I. P. Natanson, Constructive function theory. Vol. I, Uniform Approximation, Ungar, New York,

NY, 1964.
[24] E. Papageorgiou, Oscillating multipliers on rank one locally symmetric spaces. J. Math. Anal. Appl.

494(2021), no. 1, 124561. https://doi.org/10.1016/j.jmaa.2020.124561
[25] T. P. Schonbek, Lp multipliers; a new proof for an old theorem. Proc. Amer. Math. Soc. 102(1988),

361–364. https://doi.org/10.2307/2045889
[26] E. M. Stein, Singular integrals, harmonic functions and differentiability properties of functions of

several variables. Proc. Sympos. Pure Math. 10(1967), 316–335.
[27] S. Wainger, Special trigonometric series in k-dimensions. Mem. Amer. Math. Soc. 59(1965), 41–53.

Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
and
Current address: Department of Mathematics and Applied Mathematics, University of Crete, Heraklion
70013, Crete, Greece
e-mail: papageoeffie@gmail.com

https://doi.org/10.4153/S0008414X21000250 Published online by Cambridge University Press

https://doi.org/10.1515/anly-2012-1196
https://doi.org/10.1515/crll.1990.409.93
https://doi.org/10.1215/S0012-7094-59-02623-7
https://doi.org/10.1006/jfan.2000.3572
https://doi.org/10.1007/s00208-008-0285-5
https://doi.org/10.1007/s12220-012-9348-7
https://doi.org/10.5802/ambp.171
https://doi.org/10.2307/2699616
https://doi.org/10.1016/j.jmaa.2020.124561
https://doi.org/10.2307/2045889
mailto:papageoeffie@gmail.com
https://doi.org/10.4153/S0008414X21000250

	1 Introduction and statement of the results
	2 Preliminaries
	3 Lp boundedness of the local part
	3.1 Proof of Proposition proposition12
	3.2 Proof of Lemma lemma13
	3.2.1 Proof of Lemma lemma13


	4 The part at infinity

