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Abstract

Extreme points of compact, convex integral families of analytic functions are investigated. Knowledge
about extreme points provides a valuable tool in the optimization of linear extremal problems. The
functions studied are determined by a two-parameter collection of kernel functions integrated against
measures on the torus. For specific choices of the parameters many families from classical geometric
function theory are included. These families include the closed convex hull of the derivatives of
normalized close-to-convex functions, the ratio of starlike functions of different orders, as well as many
others. The main result introduces a surprising new class of extreme points.
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1. Main theorem

Let D and Γ, respectively, denote the open unit disk and the unit circle in the complex
plane C. Let H(D) denote the space of functions analytic in D and let T = Γ × Γ denote
the torus. We investigate extreme points of the compact, convex families in H(D)
defined by, for p, q > 0,

Fp,q =

{
f µ(z) =

∫
T

(1 − xz)p

(1 − yz)q
dµ(x, y) : µ is a probability measure on T

}
.

For p = 1, q = 3, the family F1,3 is the closed convex hull of the derivatives of the
normalized close-to-convex functions on D [4]. If 1 ≤ p ≤ q ≤ 2, p = 2(1 − β) and
q = 2(1 − α), one obtains the closed convex hull of the ratio of two starlike functions
of order α and β [1]. The closed convex hull of a number of other families of analytic
functions can be identified with specific Fp,q families [5, 6]. Solving linear extremal
problems reduces to optimizing linear functionals over the extreme points of these
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families, which leads to the question of determining, for a given p and q, the extreme
points of Fp,q.

For many calculations, it is convenient to make a change of variables:
(x, y)→ (xy, y). Let

kx,y(z) =
(1 − xyz)p

(1 − yz)q
=

∞∑
n=0

Kn(x, y)zn.

With this choice of notation and change of variables,

Fp,q =

{
fµ(z) =

∫
T

kx,y(z) dµ(x, y) : µ is a probability measure on T
}
.

We also define

Ip,q =

{
fµ(z) =

∫
T

kx,y(z) dµ(x, y) : µ is a complex Borel measure on T
}
.

Then Ip,q is the linear span of Fp,q in H(D).
Consider the curve Cp = {(1 − x)p : |x| = 1} and let Ep denote the closed convex hull

of Cp in C. The following are well-known facts.

(i) Every extreme point of Fp,q is a kernel function kx,y.
(ii) If x , 1 and (1 − x)p is an extreme point of Ep, then kx,1 is an extreme point of

Fp,q.
(iii) The family Fp,q is closed under rotations. That is, if f is a function in Fp,q and

|u| = 1, then g(z) = f (uz) is also in Fp,q. Any rotation of an extreme point is an
extreme point.

By rotation, it follows that kx,y is an extreme point if and only if kx,1 is an extreme
point. If 0 < p ≤ 1, the curve Cp encloses a convex region and every point on Cp is
an extreme point of Ep. In this case, by (ii), kx,1 is an extreme point of Fp,q whenever
x , 1. For p > 1, as one traverses the curve Cp in either direction starting at 2p(x = −1)
and ending up at the origin (x = 1), there are two distinguished ‘turning points’. These
turning points occur when |arg(x)| = π(p − 1)/(p + 1) and correspond to the points on
Cp where Re (1 − x)p attains its minimum value. In this case, the convex set Ep is
bounded by part of the curve Cp – the part traversed from one turning point through
2p to the other turning point – together with the vertical line segment joining the two
turning points. Thus, if p > 1, a point (1 − x)p is an extreme point of Ep if and only
if π(p − 1)/(p + 1) ≤ |arg(x)| ≤ π. Again by (ii), kx,1 is an extreme point of Fp,q for
|arg(x)| in this interval and x , 1.

Two fundamental questions arise. The first question is whether any points (1 − x)p,
with |arg(x)| < π(p − 1)/(p + 1), yield kernel functions that are extreme points of Fp,q.
The second question is whether the parameter q plays a role in the determination of
extreme points. In this paper we address both of these questions. The main theorem
answers the first affirmatively and the constructive approach in the proof utilizes the
parameter q.
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T 1.1 (Main theorem). For p > 1 and q > 0 there exist points (1 − x)p on Cp

with |arg(x)| < π(p − 1)/(p + 1) such that the corresponding kernel functions kx,1 are
extreme points of Fp,q.

2. Preliminaries

Fix p, q > 0. Let F = Fp,q and I = Ip,q. A generalized functional on F is a map
L : F→ C that is continuous on F and linear on I. Let F∗ denote the collection of all
generalized functionals on F. If f ∈ F and there exists L ∈ F∗, with Re L nonconstant
on F, such that Re L( f ) = maxF Re L, then f is called a generalized support point
of F. If f uniquely maximizes Re L, then f is called a generalized exposed point of F.

R 2.1. The set of generalized support points of F corresponding to a generalized
functional L is a compact, convex, extremal subset of F. Therefore it contains extreme
points of F as a consequence of the Krein–Milman theorem. A generalized exposed
point then is an extreme point of F.

Our approach is to associate the space of generalized functionals with a subspace of
the space C(T) of all continuous functions on T and to associate generalized support
points with points where the real parts of certain functions in this subspace achieve
their maximum value.

Let B = Sp{Kn : n = 0, 1, 2, . . . , }, that is, B is the uniformly closed linear span of
the coefficient functions Kn(x, y) in C(T). If one writes

(1 − xyz)p =

∞∑
n=0

An(p)xnynzn and
1

(1 − yz)q
=

∞∑
n=0

Bn(q)ynzn,

then

An(−p) = Bn(q) and Kn(x, y) =

n∑
i=0

[Ai(p)xiBn−i(q)]yn = Kn(x, 1)yn.

For example, when p = 2 and q = 1,

K0(x, y) = 1, K1(x, y) = (1 − 2x)y, Kn(x, y) = (1 − x)2yn, n ≥ 2,

and
B = {a0 + a1(1 − 2x)y + (1 − x)2y2 f (y) : a0, a1 ∈ C and f ∈ A0},

where A0 is the classic disk algebra on D. In general, B is not so easily described.
We use the following special case of an unpublished theorem in [7]. For

completeness, we sketch the proof.

T 2.2. F∗ is isometrically isomorphic to B where, for L ∈ F∗, ‖L‖ = sup{|L( f )| :
f ∈ F}. The correspondence is given by LG ↔G where, for each G ∈ B and fµ ∈ I,

LG( fµ) =

∫
T

G(x, y) dµ(x, y).
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P. Let G ∈ B. First we show that LG is well defined. Suppose that fµ = fν ∈ I.
Then ∫

T

kx,y(z) dµ(x, y) =

∫
T

kx,y(z) dν(x, y), z ∈ D.

Hence
∞∑

n=0

∫
T

Kn(x, y) dµ(x, y)zn =

∞∑
n=0

∫
T

Kn(x, y) dν(x, y)zn

and ∫
T

Kn(x, y) dµ(x, y) =

∫
T

Kn(x, y) dν(x, y), n = 0, 1, 2, . . . .

Since G ∈ B = Sp{Kn : n = 0, 1, 2, . . . , },
∫
T

G dµ =
∫
T

G dν. Thus LG( fµ) = LG( fν) and
LG is well defined on F. Also, LG is clearly linear on I.

To show that LG ∈ F∗, it remains to show that LG is continuous on F. Suppose that
fµn converges to fµ in F. Let bn = LG( fµn ) =

∫
T

G dµn and let b = LG( fµ) =
∫
T

G dµ.
The set of probability measures on T is compact, convex and metrizable in the weak∗

topology. Let λ be any weak∗ subsequential limit point of {µn}. Apply the weak∗

convergence to kx,y(z) for each fixed z in D and use the fact that fµn (z)→ fµ(z),
that is,

∫
T

kx,y(z) dµn(x, y)→
∫
T

kx,y(z) dµ(x, y), to conclude that
∫
T

kx,y(z) dλ(x, y) =∫
T

kx,y(z) dµ(x, y) for z in D. Thus LG( fλ) = LG( fµ) = b is the unique subsequential
limit point of {bn}. Therefore bn→ b, LG is continuous on F and LG ∈ F∗.

Conversely, we show that every L ∈ F∗ is of the form given in the theorem. Fix
L in F∗ and let G(x, y) = L(kx,y). Since L is continuous on F, G is continuous on T.
We also need to show that G ∈ B. Suppose that G < B. Then, by a corollary to the
Hahn–Banach theorem, there exists a complex Borel measure λ such that

∫
T

G dλ = 1
and

∫
T

h dλ = 0 for all h in B. For fixed z ∈ D, kx,y(z) =
∑∞

n=0 Kn(x, y)zn and the series

converges uniformly on T, so that kx,y(z) ∈ Sp{Kn : n = 0, 1, 2, . . .} = B. We thus have
fλ(z) =

∫
T

kx,y(z) dλ(x, y) = 0 for each z ∈ D, that is, fλ ≡ 0. Then∫
T

G(x, y) dλ(x, y) =

∫
T

L(kx,y(z)) dλ(x, y)

= L
(∫
T

kx,y(z) dλ(x, y)
)

= L( fλ) = L(0) = 0,

contradicting the choice of λ. Hence G ∈ B and, if fµ ∈ I, then

L( fµ) = L
(∫
T

kx,y(z) dµ(x, y)
)

=

∫
T

L(kx,y(z)) dµ(x, y) =

∫
T

G(x, y) dµ(x, y) = LG( fµ).
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Finally, to show that the correspondence is isometric,

‖LG‖ = sup{|LG( f )| : f ∈ F}

= sup
{∣∣∣∣∣∫
T

G dµ
∣∣∣∣∣ : µ is a probability measure on T

}
≤ ‖G‖ = sup{|G(x, y)| : (x, y) ∈ T}.

If (x0, y0) is such that |G(x0, y0)| = ‖G‖, then |LG(kx0,y0 )| = |G(x0, y0)| = ‖G‖ and the
correspondence is an isometric isomorphism. �

A point (x0, y0) ∈ T is a peak point of a closed subspace B of C(T) if there exists
f ∈ B such that f (x0, y0) = 1 while | f (x, y)| < 1 for all (x, y) ∈ T such that (x, y) ,
(x0, y0). A point (x0, y0) ∈ T is a peak point of Re B if there exists f ∈ B such that
Re f (x0, y0) = 1 while Re f (x, y) < 1 for all (x, y) ∈ T such that (x, y) , (x0, y0). In
each case we say that the function peaks at the point (x0, y0).

C 2.3. (x0, y0) is a peak point of Re B if and only if kx0,y0 is a generalized
exposed point of F.

P. Suppose that (x0, y0) is a peak point of Re B. Then there exists G in B such that
Re G(x0, y0) = 1 and Re G(x, y) < 1 if (x, y) , (x0, y0).

For any probability measure µ on T,

Re LG( fµ) = Re
∫
T

G(x, y) dµ(x, y) =

∫
T

Re G(x, y) dµ(x, y).

If fµ = kx0,y0 and µ is unit point mass at (x0, y0), then Re LG(kx0,y0 ) = 1. If fµ , kx0,y0 ,
then µ is not unit point mass at (x0, y0) and Re LG( fµ) < 1. Thus kx0,y0 is a generalized
exposed point.

Conversely, if fµ is a generalized exposed point, then fµ is an extreme point and
fµ = kx0,y0 for some (x0, y0). Suppose that L is such that Re L peaks at kx0,y0 . Let G
be such that L = LG. Then, using unit point mass at (x, y) to represent each kernel
function kx,y,

1 = Re LG(kx0,y0 ) = Re G(x0, y0) and

1 > Re LG(kx,y) = Re G(x, y), if (x, y) , (x0, y0).

Hence (x0, y0) is a peak point of Re B. �

The final preliminary result concerns a method for constructing peaking functions
for the space Re B. The ideas in the proof originally come from Bishop [2], who was
interested in constructing peak points for algebras of functions. A concise statement
and proof of Bishop’s result is given by [3, Theorem 11.1 in Ch. 2]. Rice [7] adapted
the argument to spaces of functions and proved the following theorem.

T 2.4. Let X be a compact metric space, E be a closed subset of X, B be a
closed subspace of C(X) and x0 ∈ E. Suppose that there exist numbers c and M,

https://doi.org/10.1017/S1446788712000523 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000523


[6] Extreme points of integral families of analytic functions 207

with 0 < c < 1 ≤ M, such that, for any neighborhood U of E in X, there exists H ∈ B
such that:

(a) ‖H‖ ≤ M;
(b) Re H(x) < c, x < U; and
(c) Re H(x) < 1 = Re H(x0), for all x ∈ E with x , x0.

Then there exists G ∈ B such that Re G(x0) > Re G(x) for all x ∈ X with x , x0.

We need a modified version of this theorem. We give the proof of the modified
version, the details of which are guided by the arguments of Bishop [2] and Rice [7].

T 2.5. Let X be a compact metric space, E be a closed subset of X, B be a
closed subspace of C(X) and x0 ∈ E. Suppose that there exist numbers c and M, with
0 < c < 1 ≤ M, functions Hn ∈ B, n ∈ N, and H : X→ C satisfying:

(a) ‖Hn‖ ≤ M for every n;
(b) Hn converges uniformly to H on E;
(c) Re Hn(x0) = 1 for every n;
(d) 1 = Re H(x0) > Re H(x) for all x ∈ E with x , x0;
(e) Hn converges to H uniformly on compact subsets of X \ E; and
(f) Re H(x) < c, x ∈ X \ E.

Then, for a given relatively open neighborhood W of x0 in E, there exists G ∈ B such
that {

x ∈ X : Re G(x) = max
x′∈X

Re G(x′)
}
⊆W.

P. Given any open neighborhood U of E, the hypotheses allow one to find h ∈ B
satisfying:

(i) ‖h‖ ≤ M;
(ii) Re h < c on X \ U;
(iii) Re h(x0) = 1; and
(iv) Re h < 1, on E \W.

Let {Un}
∞
n=0 be a decreasing sequence of neighborhoods of E with U0 = X and

E =
⋂∞

n=0 Un. Since 1 > (M − 1)/(M − c) ≥ 0, we can choose 0 < s < 1 such that
(M − 1) − s(M − c) < 0.

Choose a sequence {εn}
∞
n=0 of positive numbers, decreasing to 0, satisfying εn−1(1 −

sn) + sn(M − 1 − s(M − c)) < 0, n ≥ 1.

Claim. There exists a decreasing sequence of open sets {V j}
∞
j=0 such that V0 = X,

E ∪W =
⋂∞

j=0 V j and a sequence of functions {h j}
∞
j=0 ⊆ B satisfying:

(1) Re h j(x) < Re h j(x0) = 1, x ∈ E \W, j ≥ 0;
(2) ‖h j‖ ≤ M;
(3) Re h j(x) < c, x < V j, j ≥ 1; and
(4) Re hi(x) < 1 + ε j−1; x ∈ V j \W, i = 0, 1, 2, . . . , j − 1, j ≥ 1.
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Take V0 = X and let h0 correspond to V0. That is, choose h0 ∈ B satisfying (i)–(iv)
above with U = V0.

Define

Y1 = {x ∈ U1 ∩ V0 : Re h0(x) < 1 + ε0} and V1 = Y1 ∪W.

Let h1 correspond to V1. Then V1 ⊆ V0, (1)–(3) follow from the properties of h1 and
(4) follows from the definition of Y1.

Inductively, assume V0, . . . , V j and h0, . . . , h j have been chosen. Define

Y j+1 = {x ∈ U j+1 ∩ V j : Re hi(x) < 1 + ε j, i = 0, 1, 2, . . . , j}

and
V j+1 = Y j+1 ∪W.

Let h j+1 correspond to V j+1. Since Y j+1 ⊆ V j, we have V j+1 ⊆ V j. By the choice
of h j+1 it satisfies properties (1)–(3) and the definition of Y j+1 yields property (4).
Since E ∪W ⊆ U j ∪W for all j and

⋂∞
j=0 U j = E, we have E ∪W =

⋂∞
j=0 V j. This

establishes our claim.
To complete the proof of Theorem 2.5, let

G = (1 − s)
∞∑
j=0

s jh j.

Then G ∈ B and G(x0) = 1. If x ∈ E \W, then Re G(x) < 1 since h j(x) < 1 for every j.
If x < E, then there exists a maximal l ≥ 0 such that x ∈ Vl \ Vl+1.

If l = 0, then x ∈ V0 but x < V j for all j ≥ 1, and

Re G(x) = (1 − s)
[
Re h0(x) +

∞∑
j=1

s j Re h j(x)
]

< (1 − s)
[
M +

∞∑
j=1

s jc
]

= M + s(c − M) < 1 by the choice of s.

If l ≥ 1,

Re G(x) = (1 − s)
[ l−1∑

j=0

s j Re h j(x) + sl Re hl(x) +

∞∑
j=l+1

s j Re h j(x)
]

< (1 − s)
[
(1 + εl−1)

1 − sl

1 − s
+ M · sl + c ·

sl+1

1 − s

]
= 1 + εl−1(1 − sl) + sl[M − 1 − s(M − c)] < 1.

Hence

Re G(x) < 1 if x <W, Re G(x0) = 1 and{
x ∈ X : Re G(x) = max

x′∈X
ReG(x′)

}
⊆W as claimed. �
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R 2.6. If, in Theorem 2.5, each Hn satisfies

1 = Re Hn(x0) > Re Hn(x), x ∈ E, x , x0,

then there is no need for the relatively open neighborhood W of x0 in E and one can
conclude that there exists G ∈ B such that Re G peaks at x0.

3. Proof of the main theorem

The proof of the main theorem will follow from Lemmas 3.2–3.4 below and
Theorem 2.5. For Lemma 3.2 we will need some geometric information about the
curve Cp = {(1 − x)p : |x| = 1}. For these calculations parametrize Cp with x = −eiϕ,
−π < ϕ ≤ π. We refer to the part of Cp where 0 < ϕ < π as the upper branch of Cp and
the part where −π < ϕ < 0 as the lower branch. Double angle formulas yield

(1 + eiϕ)p = 2p[cos(ϕ/2)]peipϕ/2.

The tangent vector is given by

p(1 + eiϕ)p−1ieiϕ = p2p−1[cos(ϕ/2)]p−1iei(p+1)ϕ/2.

If η is equal to the argument of the tangent vector, then

η = η(ϕ) = ϕ(p + 1)/2 + π/2,

η(ϕ) is strictly increasing on the interval (−π, π) and Cp is locally convex there. Since

|(1 + eiϕ)p| = 2p[cos(ϕ/2)]p,

starting at 2p (ϕ = 0), the two symmetric branches spiral in different directions around
and down to the origin with decreasing modulus. With this parametrization the points
where |ϕ| = 2π/(p + 1) are the turning points introduced in Section 1.

Claim 3.1. Fix ϕ0 with 2π/(p + 1) < |ϕ0| < min(π, 2π/p). Then the tangent line at
(1 + eiϕ0 )p intersects Cp at exactly two points, excluding the point of tangency. If
ϕ0 > 0, then both of these points lie on the lower branch and, if ϕ0 < 0, then both lie
on the upper branch.

We sketch the proof and, due to symmetry, we only consider ϕ0 > 0. The argument
of the tangent vector at (1 + eiϕ0 )p satisfies 3π/2 < η(ϕ0) < min(π + pπ/2, 3π/2 +

π/p) < 2π. First fix 1 < p ≤ 2. Then 2π/(p + 1) < ϕ0 < π, the curve Cp is a simple
closed curve and, geometrically, is essentially the same as the cardioid C2. The
restricted location of the point (1 + eiϕ0 )p on the upper branch between the turning
point and the origin, the symmetry, the local convexity of Cp and the inclination of the
tangent line, as determined by the argument of the tangent vector, yield the result, just
as with C2.
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Now fix p > 2. The point where |ϕ| = 2π/p is common to both branches and is the
point where both cross the negative real axis for the first time. Consequently

C∗p = {(1 + eiϕ)p : −2π/p ≤ ϕ ≤ 2π/p}

is a simple closed curve and is, geometrically, essentially the same as the cardioid C2.
As in the case 1 < p ≤ 2, the location of the point (1 + eiϕ0 )p on C∗p and the geometric
properties of C∗p yield that the tangent line, excluding the point of tangency, intersects
C∗p in exactly two points, both on the lower branch.

The local convexity and symmetry of Cp show that the tangent line can possibly
have additional intersection points on Cp only after both branches, starting at 2p, have
made a complete revolution about the origin, that is, when |ϕ| = 4π/p. If p < 4, both
branches terminate at the origin before there is a complete revolution about the origin,
so there are exactly two intersection points as claimed. Thus we can assume p ≥ 4 and
we consider points (1 + eiϕ)p where 4π/p ≤ |ϕ| ≤ π. The tangent line at (1 + eiϕ0 )p

can be described by (1 + eiϕ0 )p(1 + Rieiϕ0/2), −∞ < R <∞. Then a straightforward
calculation shows that 2p[cos(ϕ0/2)]p+1 is the minimum modulus of points on the
tangent line at (1 + eiϕ0 )p. Then, for 4π/p ≤ |ϕ| ≤ π,

|(1 + eiϕ)p| = 2p[cos(ϕ/2)]p ≤ 2p[cos(2π/p)]p = 2p[2(cos(π/p))2 − 1]p

≤ 2p[cos(π/p)]2p

< 2p[cos(π/p)]p+1

< 2p[cos(ϕ0/2)]p+1.

Hence the tangent line avoids this part of Cp and the claim follows for all p > 1.
Our eventual goal is to apply Theorem 2.5 and, to this end, we need to construct

appropriate functions H and Hn.

L 3.2. For a given p > 1 and q > 0, there exist x0 = eiθ0 , where 0 < |θ0| <
π(p − 1)/(p + 1), and C ∈ C such that

H(x, y) =

−x0(q − px)y on Γ × Γ \ {1}

−x0(q − px) −C(1 − x)p on Γ × {1}

satisfies:

(1) sup Re H(x, y) < Re H(x0, 1), y , 1; and
(2) Re H(x, 1) < Re H(x0, 1), x , x0.

P. First observe that, if we can find x0 and C that satisfy the lemma, then by
symmetry x0 and C will also satisfy the lemma with an appropriately modified H.
Thus, it suffices to assume that θ0 < 0. Let

θ∗ = −π(p − 1)/(p + 1) and θ0 = θ∗ + ε, ε > 0.
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F 1. Illustration of Lemma 3.2 for the curve γ = −Cp.

Reflect the curve Cp through the origin and parametrize γ = −Cp = {−(1 − x)p : |x| = 1}
with x = eiθ and

γ(θ) = −(1 − eiθ)p = e−iπ(1 + ei(θ+π))p, −π < θ ≤ π.

Then γ(θ∗) is a reflected turning point in the lower half plane. With this parametrization
of γ, the tangent line at γ(θ0) satisfies Claim 3.1 for small ε > 0 and the two intersection
points lie on the part of γ in the upper half plane (see Figure 1).

Recall that η(ϕ), the argument of the tangent vector for the curve (1 + eiϕ)p, is given
by η(ϕ) = ϕ(p + 1)/2 + π/2 so that the argument of the tangent vector at the point γ(θ0)
is given by ε(p + 1)/2 + π/2. Let α = α(θ0) = −ε(p + 1)/2. Then the rotated curve
γr(θ) = eiαγ(θ) has a vertical tangent at γr(θ0). Define T (θ) = T (θ0, θ) = Re γr(θ). By
the choice of α, the local convexity of γ and Claim 3.1, T (θ) achieves a local maximum
at θ0, T (θ) achieves a unique maximum for some value of θ, say θ = β, and there exist
two distinguished angles ϕ1 = ϕ1(θ0), ϕ2 = ϕ2(θ0), ϕ1, ϕ2 > 0, such that T (β − ϕ1) =

T (β + ϕ2) = T (θ0). Also T (θ) < T (θ0) if θ < [β − ϕ1, β + ϕ2] (see Figure 2).
Define g(θ) = g(θ0, θ) = Re [−x0(q − px)] so that g(θ) has a unique maximum at θ0.

Another straightforward calculation yields that

T (θ0, θ0) = 2p{cos[ε/2 + π/(p + 1)]}p+1.

Then, as ε decreases to 0:

(i) 1 + cos(θ0) decreases to 1 + cos(θ∗);
(ii) α = α(θ0) increases to 0;
(iii) T (θ0) = T (θ0, θ0) increases to T (θ∗, θ∗) = T (θ∗, −θ∗);
(iv) g(θ0) = g(θ0, θ0) converges to g(θ∗, θ∗) > g(θ∗, −θ∗);
(v) β converges to −θ∗;
(vi) the interval [β − ϕ1, β + ϕ2] decreases to the point {−θ∗}.

Let R∗ = q(1 + cos(θ∗))/T (θ∗, θ∗) and fix R with R∗ < R < 2R∗. Let σ = g(θ∗, θ∗) −
g(θ∗, −θ∗) > 0. Then we can chose ε sufficiently close to 0 so that:
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F 2. Illustration of the curve γr(θ).

(a) g(θ0) − sup{g(θ) : θ ∈ [β − ϕ1, β + ϕ2]} > σ/2 by (iv)–(vi);
(b) |T (β) − T (θ0)| < σ/(8R∗) by (iii) and (v);
(c) |T (θ) − T (β)| < σ/(8R∗), θ ∈ [β − ϕ1, β + ϕ2] by (v) and (vi);
(d) R > q(1 + cos(θ0))/T (θ0, θ0) > R∗ by (i) and (iii).

So fix θ0 satisfying (a)–(d), fix α = α(θ0), let C = Reiα and let f (θ) = RT (θ0, θ) =

RT (θ). Then Re H(x, 1) = g(θ) + f (θ). We claim that (1) and (2) in the lemma obtain
with this choice of θ0 and C.

Since |x0(q − px)y| ≤ q + p, to achieve (1) we want q + p < f (θ0) + g(θ0) =

R · T (θ0) − q cos(θ0) + p, which, since T (θ0, θ0) > 0, is equivalent to R > q(1 +

cos(θ0))/T (θ0, θ0), which is (d).

Next we want f (θ0) + g(θ0) > f (θ) + g(θ) for −π < θ ≤ π and θ , θ0. Since g(θ)
peaks at θ0, for θ < [β − ϕ1, β + ϕ2] we have T (θ) < T (θ0) and, hence, f (θ0) + g(θ0) >
f (θ) + g(θ). If θ ∈ [β − ϕ1, β + ϕ2], then by (a) we have g(θ0) > σ/2 + g(θ). Also by
(b) and (c) we have |T (θ) − T (θ0)| < σ/(4R∗) so that | f (θ) − f (θ0)| < σR/(4R∗) < σ/2.
Hence

f (θ0) + g(θ0) > ( f (θ) − σ/2) + (σ/2 + g(θ)) = f (θ) + g(θ),

which establishes Lemma 3.2.

L 3.3. Let { fn} be a sequence of continuous functions that converges to
f (x) = (1 − x)p uniformly on Γ. Let (1 + y)n/2n =

∑n
i=0 bni y

i on Γ and gn(x, y) =

yn ∑n
i=0 bni fn+i(x)yi on T. Then gn(x, y) converges to 0 uniformly on compact subsets

of Γ × Γ \ {1} and uniformly to (1 − x)p on Γ × {1}.
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P. We have bni > 0 and
∑n

i=0 bni = 1. Rewrite

gn(x, y) = yn
n∑

i=0

bni y
i fn(x) + yn

n∑
i=0

bni y
i( fn+i(x) − fn(x))

= yn
(1 + y

2

)n

fn(x) + yn
n∑

i=0

bni y
i( fn+i(x) − fn(x)).

(3.1)

Let ε > 0. Since { fn} is uniformly Cauchy on Γ, | fn+i − fn| < ε on Γ for large n.
Therefore ∣∣∣∣∣yn

n∑
i=o

bni y
i( fn+i(x) − fn(x))

∣∣∣∣∣ < n∑
i=o

bniε = ε on T for large n.

Thus the second term in (3.1) converges to 0 uniformly on T. By hypothesis, fn(x)
converges to f (x) = (1 − x)p uniformly on Γ × {1} and, since (1 + y)n/2n converges to
0 uniformly on compact subsets of Γ \ {1}, the first term converges to 0 uniformly on
compact subsets of Γ × Γ \ {1}. Hence gn(x, y) converges as stated in the lemma.

L 3.4. For p > 1 and q > 0, Kn(x, 1)/Bn(q) converges to f (x) = (1 − x)p

uniformly on Γ.

P. We have

f (x) = (1 − x)p =

∞∑
n=0

An(p)xn,

where

A0(p) = 1 and An(p) = (−1)n p(p − 1) · · · (p − n + 1)
n!

, n ≥ 1.

Let p = s + r, 0 ≤ r < 1, s = 1, 2, 3, . . . . Let M = p(p − 1) · · · (p − s + 1) = (s + r)
(s + r − 1) · · · (1 + r). Then, for n = 1, 2, 3, . . . , s + 1,

|An(p)| =
(s + r)(s + r − 1) · · · (s + r − n + 1)

n!
.

For n ≥ s + 2,

|An(p)| =
M · r(1 − r)(2 − r) · · · (n − (s + 1) − r)

n!

= M · r ·
(1 − r

1

)
·

(2 − r
2

)
· · ·

(n − (s + 1) − r
n − (s + 1)

)
·

1
n − s

· · ·
1
n
.

Since (s + r) − j ≥ 1 for j = 0, 1, 2, . . . , s − 1, it follows that, for all n, |An(p)| ≤ M
and, for n ≥ 2, |An(p)| ≤ M/(n − 1)n.

Let f (x) = TN(x) + RN(x) where

TN(x) =

N∑
i=0

Ai(p)xi and RN(x) =

∞∑
i=N+1

Ai(p)xi.
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For n > N, consider∣∣∣∣∣Kn(x, 1)
Bn(q)

− f (x)
∣∣∣∣∣ =

∣∣∣∣∣ n∑
i=0

Ai(p)xi Bn−i(q)
Bn(q)

− TN(x) − RN(x)
∣∣∣∣∣

≤

∣∣∣∣∣ N∑
i=0

Ai(p)xi
(Bn−i(q)

Bn(q)
− 1

)∣∣∣∣∣ +

∣∣∣∣∣ n∑
i=N+1

Ai(p)xi Bn−i(q)
Bn(q)

∣∣∣∣∣ + |RN(x)|.

Let ε > 0. Choose N1 such that
∑∞

i=N1+1 M/(i2 − i) < ε/3. Then |RN(x)| < ε/3 if N ≥ N1.
Let n = i + k so that Bn−i(q)/Bn(q) = Bk(q)/Bk+i(q). Since Bk+1(q) = Bk(q)(k + q)/

(k + 1) and B0(q) = 1, Bn−i(q)/Bn(q) ≤ 1 for 0 ≤ i ≤ n, q ≥ 1.
If 0 < q < 1, then

Bk(q)
Bk+i(q)

=
(k + 1)(k + 2) · · · (k + i)

(k + q)(k + q + 1) · · · (k + q + i − 1)
<

(1
q

)( 2
q + 1

)
· · ·

( i
q + i − 1

)
.

Recall that the gamma function satisfies

Γ(q) = lim
i→∞

(i − 1)!(i − 1)q

q(q + 1) · · · (q + i − 1)
.

Choose N2 so that, if i > N2, then

(i − 1)!(i − 1)q

q(q + 1) · · · (q + i − 1)
< 2Γ(q)

and hence
Bn−i(q)
Bn(q)

<
i!

q(q + 1) · · · (q + i − 1)
<

2Γ(q) · i
(i − 1)q

.

Choose N3 so that, if m > N3, then

∞∑
i=m

1
(i − 1)1+q

<
ε

6Γ(q)M
.

Fix N = max{N1, N2, N3}. Then |RN(x)| < ε/3. For n > N,

if q ≥ 1,
∣∣∣∣∣ n∑
i=N+1

Ai(p)xi Bn−i(q)
Bn(q)

∣∣∣∣∣ ≤ n∑
i=N+1

|Ai(p)| ≤
∞∑

i=N+1

M
(i − 1)i

<
ε

3

and,

if 0 < q < 1,
∣∣∣∣∣ n∑
i=N+1

Ai(p)xi Bn−i(q)
Bn(q)

∣∣∣∣∣ ≤ n∑
i=N+1

M
(i − 1)i

·
2Γ(q)i
(i − 1)q

= 2MΓ(q)
n∑

i=N+1

1
(i − 1)1+q

<
ε

3
.
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Now observe that, for each fixed i, Bk(q)/Bk+i(q) converges to 1 as k→∞. Hence
there exists N0 ≥ N such that, if n ≥ N0, then |1 − Bn−i(q)/Bn(q)| < ε/(3NM) for each
i, 0 ≤ i ≤ N. Consequently

∣∣∣∣∣ N∑
i=0

Ai(p)xi
(
1 −

Bn−i(q)
Bn(q)

)∣∣∣∣∣ < NM
ε

3NM
=
ε

3
if n ≥ N0.

Thus, given ε > 0, there exists N0 such that∣∣∣∣∣Kn(x, 1)
Bn(q)

− f (x)
∣∣∣∣∣ < ε on Γ, if n ≥ N0.

That is, Kn(x, 1)/Bn(q) converges to f (x) uniformly on Γ.

P (M ). In Theorem 2.5 let X = T, E = Γ × {1} and B = Sp{Kn : n =

0, 1, 2, . . . , }. Replace x0 = eiθ0 with x1 = eiθ1 and let x1, C and H be as in Lemma 3.2.
Let fn(x) = Kn(x, 1)/Bn(q) in Lemma 3.3 and choose a relatively open neighborhood
W of (x1, 1) in Γ × {1}. Finally, let

Hn(x, y) = −x1K1(x, y) −C
n∑

i=0

bni

Bn+i(q)
Kn+i(x, y)

= −x1(q − px)y −Cyn
n∑

i=0

bni fn+i(x)yi,

and normalize H and Hn with H̃ = H/Re H(x1, 1) and H̃n = Hn/Re n(x1, 1). We verify
that the hypotheses of Theorem 2.5 are satisfied with the functions H̃n and H̃:∣∣∣∣∣ n∑

i=0

bni fn+i(x)yi
∣∣∣∣∣ ≤ ∣∣∣∣∣ n∑

i=0

bni ( fn+i(x) − fn(x))yi
∣∣∣∣∣ +

∣∣∣∣∣ n∑
i=0

bni y
i fn(x)

∣∣∣∣∣
=

∣∣∣∣∣ n∑
i=0

bni ( fn+i(x) − fn(x))yi
∣∣∣∣∣ +

∣∣∣∣∣(1 + y
2

)n

fn(x)
∣∣∣∣∣.

By Lemma 3.4, fn converges to (1 − x)p uniformly on Γ. It follows that there exists
M ≥ 1 such that ‖H̃n‖ < M for all n. From Lemma 3.3, H̃n converges to H̃ uniformly on
Γ × {1}. The normalization yields Re H̃n(x1, 1) = Re H̃(x1, 1) = 1. From Lemma 3.2,
Re H̃(x, 1) < Re H̃(x1, 1), x , x1, and there exists c such that sup Re H̃(x, y) < c <
1 = Re H̃(x1, 1) on Γ × Γ \ {1}. From Lemma 3.3, H̃n converges to H̃ uniformly on
compact subsets of Γ × Γ \ {1}. Thus all of the hypotheses of Theorem 2.5 are fulfilled
and there exists G ∈ B such that

K =

{
(x, y) ∈ T : Re G(x, y) = max

(x′,y′)∈T
Re G(x′, y′)

}
⊆W.
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If one considers the generalized functional LG corresponding to G and the set of
generalized support points

Σ =

{
kx,y : Re LG(kx,y) = max

kx′ ,y′∈F
Re LG(kx′,y′)

}
,

then fµ ∈ Σ if and only if the closed support of µ is contained in K. According to
our Remark 2.1, there exist extreme points in Σ and, hence, pairs (x0, 1) ∈W such
that kx0,1 is an extreme point of F. Moreover, since W is an arbitrary relatively
open neighborhood of (x1, 1), x1 = eiθ1 , and |θ1| < π(p − 1)/(p + 1), there exist
extreme points kx0,1, x0 = eiθ0 , with x0 arbitrarily close to x1 and satisfying
|θ0| < π(p − 1)/(p + 1) as claimed. �

C 3.5. For p > 1 and q > 0 there exist δ > 0 and a dense subset Je of J =

{x = eiθ : π(p − 1)/(p + 1) − δ < |θ| < π(p − 1)/(p + 1)} such that kx,1 is an extreme
point of F for each x ∈ Je.

P. By the symmetry of the curve (1 − x)p, the arguments in the proof of
Lemma 3.2 demonstrate that:

(i) if x0 = eiθ0 satisfies Lemma 3.2, then so does x0 = e−iθ0 ;
(ii) if (1 − x0)p is sufficiently close to the turning point (1 − x∗)p, then x0 and x0 both

satisfy Lemma 3.2.

Therefore we can choose δ so that, if x0 ∈ J as defined above, then x0 satisfies
Lemma 3.2. The proof of the main theorem then shows that any relatively open
neighborhood of a point in J contains a point x such that kx,1 is an extreme point
of F. Take Je = {x ∈ J : kx,1 is an extreme point of F}. �

R 3.6. According to Remarks 2.1 and 2.6, if the functions Hn in Theorem 2.5
actually peak on E, then there is no need to consider relatively open neighborhoods
and one could conclude that there is an interval beyond each turning point that yields
extreme points of F. This is actually the case when p is an integer, p = m ≥ 2.

T 3.7. Fix q > 0 and p = m (m = 2, 3, 4, . . .). Then there exist functions Hn ∈

Sp{Kn : n = 0, 1, 2, . . . , } such that:

(i) Hn(x, 1) = H(x, 1) = −x0(q − mx) −C(1 − x)m;
(ii) Hn(x, y) converges to H(x, y) = −x0(q − mx)y uniformly on compact subsets of

Γ × Γ \ {1}.

(See the function H(x, y) in Lemma 3.2.)

We will need the following lemma in the proof of Theorem 3.7.

L 3.8. Fix q > 0 and p = m. Let n∗ = min(n, m). Then

Kn(x, 1) =

n∗∑
l=0

(
m
l

)
Bn−l(q − m + l)(1 − x)l.
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P. We have
(1 − xz)m

(1 − z)q
=

∞∑
n=1

Kn(x, 1)zn.

Let t = 1 − x, x = 1 − t.

(1 − xz)m = (1 − (1 − t)z)m = (1 − z + tz)m =

m∑
l=0

(
m
l

)
tlzl(1 − z)m−l.

So

(1 − xz)m

(1 − z)q
=

m∑
l=0

(
m
l

)
tlzl(1 − z)m−l−q

=

m∑
l=0

(
m
l

)
tlzl

∞∑
k=0

Ak(m − l − q)zk

=

m∑
l=0

(
m
l

)
tl
∞∑

k=0

Ak(m − l − q)zk+l.

When m − l − q is a nonnegative integer, this series is a finite sum.
Let n = k + l, k = n − l. Then

(1 − xz)m

(1 − z)q
=

m∑
l=0

(
m
l

)
tl
∞∑

n=l

An−l(m − l − q)zn

=

∞∑
n=0

[ n∗∑
l=0

(
m
l

)
An−l(m − l − q)tl

]
zn.

Since An−l(m − l − q) = Bn−l(q − m + l),

Kn(x, 1) =

n∗∑
l=0

(
m
l

)
Bn−l(q − m + l)(1 − x)l. �

P  T 3.7. For fixed n ≥ m, let

Hn(x, y) =

m−1∑
j=0

D j(n)K j(x, y) −C
n∑

i=0

bni

Bn+i−m(q)
Kn+i(x, y),

where bni is as in Lemma 3.3 and where D0(n), D1(n), . . . , Dm−1(n) are to be
determined. Since K j(x, y) = K j(x, 1)y j for all j = 0, 1, 2, . . ., by Lemma 3.8,

Hn(x, y) =

m−1∑
j=0

D j(n)
[ j∑

l=0

(
m
l

)
B j−l(q − m + l)(1 − x)l

]
y j

−C
n∑

i=0

bni

Bn+i−m(q)

[ m∑
l=0

(
m
l

)
Bn+i−l(q − m + l)(1 − x)l

]
yn+i.
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Let

α j,l =

(
m
l

)
B j−l(q − m + l), j = 0, 1, 2, . . . , m − 1, l = 0, 1, 2, . . . , j,

and

βn,l(y) =

(
m
l

) n∑
i=0

bni Bn+i−l(q − m + l)
Bn+i−m(q)

yi.

Then

Hn(x, y) =

m−1∑
j=0

D j(n)
[ j∑

l=0

α j,l(1 − x)l
]
y j

−Cyn
m−1∑
l=0

βn,l(y)(1 − x)l −Cyn(1 − x)m
(1 + y

2

)n

and

Hn(x, 1) =

m−1∑
j=0

D j(n)
[ j∑

l=0

α j,l(1 − x)l
]
−C

m−1∑
l=0

βn,l(1)(1 − x)l −C(1 − x)m.

To achieve (i) in Theorem 3.7, we want to choose D0(n), . . . , Dm−1(n) so that

Hn(x, 1) = −x0(q − m) − x0m(1 − x) −C(1 − x)m.

This generates the following system of equations to be satisfied:

m−1∑
j=0

D j(n)α j,0 = −x0(q − m) + Cβn,0(1).

m−1∑
j=1

D j(n)α j,1 = −x0m + Cβn,1(1).

m−1∑
j=l

D j(n)α j,l = Cβn,l(1), l = 2, 3, . . . , m − 1.

Note that the coefficient matrix associated with the variables D0(n), D1(n), . . . , Dm−1

(n) is a triangular matrix with entries down the main diagonal given by

αl,l =

(
m
l

)
B0(q − m + l) =

(
m
l

)
, l = 0, 1, . . . , m − 1.

Hence this system of equations has unique solutions D j(n), j = 0, 1, 2, . . . , m − 1.
With these choices in the definition of Hn, we obtain (i) in Theorem 3.7. It remains
to show that Hn(x, y) converges to −x0(q − mx)y uniformly on compact subsets
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of Γ × Γ \ {1}. We first note that (1 + y)n/2n converges to 0 uniformly on compact
subsets of Γ × {1}. Also,

βn,l(y) =

(
m
l

)[ n∑
i=0

bni Bn+i−l(q − m + l)
Bn+i−m(q)

yi
]

=

(
m
l

)[ n∑
i=0

bni (q − m + l)(q − m + l + 1) · · · (q − 1)
(n + i − l)(n + i − l − 1) · · · (n + i − m + 1)

yi
]

=

(
m
l

)
r(m, q, l)

[ n∑
i=0

bni

(n + i − l)(n + i − l − 1) · · · (n + i − m + 1)
yi
]
,

where r(m, q, l) = (q − m + l)(q − m + l + 1) · · · (q − 1). Then

|βn,l(y)| ≤
(
m
l

)
|r(m, q, l)|

n∑
i=0

bni

(n + i − l)(n + i − l − 1) · · · (n + i − m + 1)

≤

(
m
l

)
|r(m, q, l)|

1
n − m + 1

n∑
i=0

bni

=

(
m
l

)
|r(m, q, l)|

n − m + 1
.

Therefore βn,l(y) converges to 0 uniformly on |y| = 1 for l = 0, 1, 2, . . . , m − 1. If
we let n→∞ in our system of equations, then D j = limn→∞ D j(n) exists for each
j = 0, 1, 2, . . . , m − 1 and

m−1∑
j=0

D jα j,0 = −x0(q − m),

m−1∑
j=1

D jα j,1 = −x0m

and
m−1∑
j=l

D jα j,l = 0, l = 2, 3, . . . , m − 1.

Since

α1,1 =

(
m
1

)
B0(q − m + 1) = m,

α0,0 =

(
m
0

)
B0(q − m) = 1,

α1,0 =

(
m
0

)
B1(q − m) = q − m,
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solving these equations yields D j = 0, j = 2, 3, . . . , m − 1, D1 = −x0 and D0 = 0.
Therefore the first sum of Hn(x, y) converges uniformly to −x0(q − mx)y and the
second sum converges to 0 uniformly on compact subsets of Γ × Γ \ {1}. This
establishes (ii) in Theorem 3.7. �

C 3.9. For fixed q > 0 and p = m (m = 2, 3, . . .), there exists δ > 0 such that,
if

x ∈ J = {eiθ : π(m − 1)/(m + 1) − δ < |θ| < π(m − 1)/(m + 1)},

then kx,1 is an extreme point of F.

P. Theorem 3.7, the proof of Lemma 3.2 and Remark 3.6 yield the result. �

It is almost certainly the case that, for any p > 1 and q > 0, there is an interval
J, as in Corollary 3.9, with kx,1 extreme when x ∈ J. The success of the argument
when p = m (m = 2, 3, . . .) depends on Lemma 3.2 and the ability to ‘capture’ the term
(1 − x)m in the functions Hn as shown in Theorem 3.7. When p is not an integer, one
probably needs a version of Lemma 3.2 involving partial sums of (1 − x)p.

Of course the ultimate goal is to precisely determine all extreme points for any p
and q. In conclusion, we make the following conjecture.

C 3.10. For fixed p and q, there exists an angle θ̃ = θ̃(p, q) separating
extreme points from nonextreme points as follows.

(a) If 0 < p ≤ 1, then θ̃ = 0, kx,1 is extreme if x , 1 and k1,1 is not extreme.
(b) If p > 1, then 0 < θ̃ < π(p − 1)/(p + 1) and, for x = eiθ, kx,1 is extreme if θ̃ ≤ |θ| ≤

π and kx,1 is not extreme if 0 ≤ |θ| < θ̃.

In the special case p = 2, q = 1, further analysis suggests that the critical angle θ̃
should yield an extreme point. According to (ii) in Section 1, for 0 < p ≤ 1 the kernel
function kx,1 is extreme if x , 1, independent of q. It is also well known that k1,1 is not
extreme for any p and q, provided q ≥ p. Thus part (a) of Conjecture 3.10 is correct if
0 < p ≤ 1 and q ≥ p. Recent work on identifying kernel functions that are not extreme
shows that k1,1 is not extreme if q ≥ 1, independent of p. Moreover, if q ≥ 1 and p = m
(m = 2, 3, 4, . . .), not only is k1,1 not extreme but kx,1 is also not extreme for values
of x near 1. Paired with Corollary 3.9 we thus have extreme points corresponding
to values of x beyond the turning points and nonextreme points in intervals near the
origin, providing strong evidence for the validity of part (b) of Conjecture 3.10, at least
in the more tractable case of integer valued p. These nonextreme points results will be
addressed in a planned companion paper.
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