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EXTREME POSITIVE LINEAR MAPS

BETWEEN JORDAN BANACH ALGEBRAS

CHo-Ho CHu AnD NieceL P.H. JEFFERIES

Let A and B be unital JB-algebras. We study the extremal
structure of the convex set S(4,B) of all identity preserving
positive linear maps from A to B . We show that every unital
Jordan homomorphism from 4 to B is an extreme point of S(4,B) .
An extreme point of S(4,B) need not be a homomorphism and we show
that, given A , every extreme point of S(4,B) is a homomorphism
for any B 1if, and only if, dim 4 £ 2 . We also determine when

S(A,B) is a simplex.

1. Introduction

Let A and B be unital JB-algebras. In this paper, we study the
extreme points of the convex set S(4,B) of all identity preserving

positive linear maps from 4 to B

Motivated by the results in C*-algebras [2, 4, 10], we begin by
showing that every unital Jordan homomorphism from A to B is an
extreme point of S(A,B) . We then focus our attention on the natural
question of the converse. We study conditions under which the extreme
points of S(A,B) are Jordan homomorphisms. If A and B are associative,

it is known that the extreme points of S(4A,B) are exactly the unital
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homomorphisms from A to B . In the nonassociative case, however, our
results indicate that only in very special situations can one expect that
every extreme point of S(4,B) is a homomorphism, For instance, given
A , every extreme point of S(4,B) is a homomorphism for any B if, and
only if, dim A < 2 . Also, if B is the self-adjoint part of a finite-
dimensional nonabelian C(*-algebra, then every extreme point of S(A4,B)

is a homomorphism if, and only if, dim 4 < 2

When B is the real field IR, the set S(4,IR) is the state
space of A and in this case, every extreme point of S(A,R) is a
homomorphism if any only if S(4,JR) is a (Choquet) simplex. It is
natural to ask whether this is still true for any B . The answer is
negative. In fact, we will show that S(4,B) is a simplex if and only if

either A =1IR or A is associative with B = IR .

2. JB-algebras and extreme maps

We will use [8] as our main reference for JB-algebras. In the
sequel, by a JB-algebra we mean a real Jordan algebra A , with identity
1, which is also a Banach space where the Jordan product and the norm

are related as follows

A

lta o bl] < llal]-112]]

Nal1? = 11211 < 1142 + p211

A

for a, b € 4 . We note that A is partially ordered by the cone

2 : a€ A} and that A is an order-unit normed Banach space with

order-unit 1. Moreover, the second dual A** of 4 1is a JBW-algebra
and A embeds into A** as a subalgebra. The self-adjoint part of a
unital (*-algebra is a JB-algebra with the usual Jordan product and

the self-adjoint part of a von Neumann algebra is a JBW-algebra.

Let A and B be JB-algebras and let L{(4,B) be the real Banach
space of bounded linear maps from 4 to B . A linearmap ¢ : A > B is

positive if ¢(A+) B, . Let S(A,B) be the set of all positive linear
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maps ¢ : A B such that ¢(1) =1 . Then S(4A,B) is a convex subset
of L(A,B) . BAn extreme point of S(4,B) will be called an extreme map.
We note that S(4,B) always contains extreme points. Indeed

S(A,R) = {f e A* : f(1) =1 = ||f||} is the state space of 4 and it can
be embedded as a convex subset of S(4,B) via the map

f e S(A,IR) b oo S(4,B) where op

since the states of B separate points of B , by composing with the

(a) = f(a)lB for ae A . Moreover,

states of B , it is easy to see that if f is a pure state of A4 , then
q;f is an extreme point of S(4,B) . If A and B are the self-adjoint

parts of (*algebras 4 and B respectively, we let [L(4,B) be the
space of bounded (complex) linear maps from 4 to B and let

S(A,B) = {¢ ¢ L(A,B) : ¢
S5(A,B) satisfies ¢(a*)

restriction map ¢ e S(4,B) » ¢|A € S(A,B) 1is a real affine isomorphism

v

0 , ¢(1) = 1} where each map ¢ in
$fa)* for a e 4 . It follows that the

and in particular, the two sets S(4,B) and S(4,B) have the same

extremal structure.
The following lemma has been proved in [12].

LEMMA 1. Let A be a JB-algebra. Then an element p in A <is
an extreme point of the positive wunit ball {a e A : 0 s a< 1} if and
only 1f p <8 a projection, that is, p2 = p.

A linear map ¢ : A » B 1is called a (Jordan) homomorphism if

2 .
¢(a”) = ¢(a)2 for all a in A . Plainly, every unital Jordan

homomorphism is a positive linear map. In fact, it is even an extreme map.

THEOREM 2. If ¢: A +~ B 4is a wnital Jordan homomorphism, then ¢

is an extreme point of S(A,B) .

Proof. as the second dual map ¢** : 4%%* > B** is weakly continuous,
it is a Jordan homomorphism by density of A4 in A** . Suppose that
¢ =%(p +¢) with p , ¢ € S(A,B), then ¢** = F(p** + P**) | 1et e

be a projection in A** . Then ¢**(e) is a projection in B** and hence
an extreme point of the positive unit ball in B** , by Lemma 1. Now
o**(e) = Zp*t(e) + BW**(e) ana 0 < p**(e), P**(e) £ 1 imply that
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¢**(e) = p*t(e) = Y**(e) . Let a be any element in A** and let ¢ > 0 .

By [&; 4. 2. 3], there exist projections eqr - 1 €, in A#** and real

numbers A An such that

g7 v

n
[a - E Ajej|| <e.

So we have

[[¢**(a) - p**(a) || = ||(¢** - p**)(a - & Ajej) + (¢**% - pAA) (% xjej)ll

Ak _ A% - e.
(o p**)(a - % AJeJ)II

IA

e [le** - o*#]] .

This shows that ¢**(a) = p**(a) for every a in A** | Hence ¢ = p

and ¢ is an extreme point of S(4,B) .

In general, not every extreme map is a homomorphism as the following

lemma shows.

LEMMA 3. Let A be a JB-algebra. The following conditions are

equivalent:

(i) A 1is associative;
(1) A 1is isometric isomorphic to the self-adjoint part of an abelian
C*-algebra;

(ii1) the dual cone A*+ of A, 1is a lattice;

+
(tv) the state space S(A,IR) <is a (Choquet) simplex;
(v) every extreme point of S(A,IR) <s a Jordan homomorphism.

Proof. (i) = (ii) see [§; 3. 2. 2.].

(iii) = (iv). S(A,IR) 1is a base of the lattice cone A*+ and hence is a

simplex (see [3; p.138]).
(iv) = (v). Llet f be an extreme point of S{A,IR) . Then {f} is a

split face of S(A,IR) (see [3]) and so the kernel frZ(O) is a Jordan
ideal in A (see [7; Theorem 2.3], [5; Corollary 3.41). So f is a

Jordan homomorphism.
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(v) = (i). This follows from the fact that the extreme points of S(4,IR)
separate points in A and that for each extreme point f in S(4,IR) , we

have f((¢ o b) o e¢) = f(a) f(b) fle) = fla o(b o e)) for a, b, c e A .

Now we study conditions under which the extreme maps are Jordan

homomorphisms. As in [§], we define the centre ZA of a JB-algebra A

to be the set of all elements in A4 which operator commute with every
other element in A where two elements @ and b are said to operator

commute if ao(ecob) = (aoe)ob for all ¢ in A . We note that Z“1 is

an associative JB-subalgebra of A . The following theorem is a
straightforward extension of a result of Stgrmer in [10; Theorem 3.1]. We

sketch a proof for the sake of completeness.

THEOREM 4. et ¢ be an extreme point of S(A,B) . If a e Z,

and ¢$la) € 2, , then ¢(aob) = ¢(a) o $(b) for all b e A .

B

Proof. we may assume [lall <%, then |lo(a)|| < % . By spectral

theory, %I - a and %1 - ¢(a) are positive and invertible in Z‘4 and
ZB respectively, with %I -¢fa) 2 A1 for some X > 0 . Define

v : A>B by
w(b) = o(b okl - a)) o (51 - ¢(a))”]

for beA . Then ¢ € S(A4,B) and Ay < ¢ . As ¢ is extreme, we have
Y = ¢ which gives

o(b) = w(b) = &(b o(}¥1 - @) okl - ¢(a))”?

and hence ¢(a o b) = ¢(a) o ¢(b) .

Since B is associative if and only if B = ZB , the following

result follows immediately from Theorem 2 and Theorem 4.

COROLLARY 5. If B <is associative and if ¢ 1is an extreme point
of S(A,B) , then the restriction ¢|ZA 18 an extreme point of S(ZA,B) .

We note that the above result need not be true if B is not
associative. We refer to [10; 4.14] for an example. Theorem 2 and

Theorem 4 also imply the following corollary (see [1, 6, 9, 10]).
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COROLLARY 6. Let A and B be associative JB-algebras. Then
the extreme points of S(A,B) are exactly the unital Jordan homomorphisms
from A to B.

Let Sl,: be the 7n-dimensional abelian C(*-algebra of (complex)
finite sequences with the minimal projections e, = (1, 0, ... , 0),
62 =(0, 1, 0, «.. , O0)y ... , e, = (0, ... , 0, 1). We will denote by L
the self-adjoint part of 2: . Let Mh be the C(*-algebra of 7 x n

complex matrices and let Hn be its self-adjoint part consisting of

(complex) hermitian matrices. Let B(H) be the full operator algebra on

a (complex) Hilbert space H . For any projections Pgs -+ 5 Py, in

B(H) , we say that they are weakly independent if their ranges

pl(H), cee s pn(H) are weakly independent subspaces of H as defined in
[Z; p.165], this is equivalent to saying that for any tl, cee tn € B(H) ,

Z p.t.p.=0 implies p.tp,=0 for jJ=1,... , n (see [11; p.102]).
J=1 73733 J33

We note that if p is a minimal projection in B(H) , then for any

t € B(H) , ptp = \p for some complex number X\ . Therefore, if

Pys «e- pn are minimal projections, then they are weakly independent if
and only if they are linearly independent. It has been shown in [2, 4, 11]
that a map ¢ in §{£:, Mh) is an extreme point if and only if the range
projections ran ¢(61), ees 5 ran ¢(en) are weakly independent in Mh .

PROPOSITION 7. Let B be a JB-algebra. Then the extreme points of

S(%,, B) are precisely the unital Jordan homomorphisms from L, to B .

2’
Proof. Let ¢ be an extreme point of S(22,B) . To show that ¢ is
a homomorphism, it suffices to show that ¢(e1) and ¢(ez) are projections

in B since 1 = ¢$(1) = ole;) + ¢(62) . Equivalently, we show that

¢(e1) and ¢(e2) are extreme points of the positive unit ball of B .
Suppose ¢(el) =4%b + %¢ with 0 < b, e <1 in B . Define two linear

maps ¢, p : L, > B by \p(el) = b, \l’(ez) = 1-b; p(el) = ¢ and
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p(ez) =1 - ¢ . Then clearly 1V, p € S(ZZ,B) and ¢ = %(y + p) . By
extremality of ¢ , we have ¢ = $ = p which gives b = w(el) = p(el) =c.

This proves that ¢(e1) is an extreme point in the positive unit ball of

B, so ¢(el) is a projection. Likewise ¢(22) is also a projection.
The above result is false for En with n 23 .

Example 1. Define a unital positive (complex) linear map

©

$ : %z > M, by
A A 1
9 ~ 9 g "9
¢(61)= » ¢(62)= 3
2 1 _2 4
79 9 9 9
- ‘ i-
9 9
¢(e3) =
4 4
= 9 9—

As ¢(el), ¢(82), ¢(63) are linearly independent and also each

¢(ej) is a scalar multiple of a minimal projection in M, , it follows

2
that the range projections ran ¢(el) , ran ¢(22), ran ¢(e3) are linearly

independent minimal projections which are therefore weakly independent.

(-]
So ¢ 1is an extreme point of §K23 ’ M2) by the previous remark. But

clearly ¢ is not a Jordan homomorphism.

We now consider S(zn,B) for n 2 3 . We note that a map
¢ € S(ln,B) is a Jordan homomorphism if and only if ¢(ej) is a

projection in B for gj=1, ... ,n . 1f ¢ 1is an extreme point of

S(ln,B) , the following result shows when ¢(ej) is 'almost' a

projection.
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PROPOSITION 8. Let ¢ be an extreme point of S(R,n,B). Then
¢(ej)2 € ¢(2n) 1f and only if ¢(ej) 18 a scalar multiple of a projection

in B.
. . 2
Proof. It suffices to prove the necessity. Suppose ¢(ej) € qb(ln) s

n
then cb(ej)g = 1Ly A ¢(ek) where X, ¢ R . Without loss of generality

we may assume j = 1 . Define ¢ : & + B by

n
yla) = al(xl 1y - ¢(e1)) o ¢(e1) * Lo Ay ¢(ek)

where g = (al, e an) €L, . Then (1) = 0 and we have - pd < ¢ < péd

where u = max {H}‘Z - ¢(e1)|[, I)\2|, cee s |>‘n|} . Choose t > 0 such
that tu s 1. Let ¢1=¢-tw and ¢2=¢+t1p . Then we have ¢1 ’
¢y € S(!Ln,B) and also ¢ = %¢1 + 52'¢2 . As ¢ is an extreme map, we have
$ = 6, which gives (A, - ¢(e))o d(e;) = 0 , that is, ¢(e))” = A ble,)

So ¢(el) is a scalar multiple of a projection.

From the above result we see that if ¢ is an extreme map in
5(2,,B) and if each ¢(ej)2 is in ¢(zn) with ||¢(ej)|| =1 (oxr 0) ,
then ¢ is a homomorphism. One might conjecture that if an extreme map
¢ @ ‘Q'n -+ B is such that ¢»(2n) is a Jordan algebra, then ¢ is a

homomorphism. This is false as the following example shows.

Example 2. Define a positive linear map ¢ : 24 > H2 by

[ 4 -2 1 -2
_ 1 _ 1
$ley) = 57773 s dley) =g s
-2 1] | -2 g |
(V2 1+ ] Fv2 1-1 ]
2 2
olez) = 57473 s ¥ley = w73 :
1~ V2 ] | 124 Y2
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Then each ¢(ej) is a scalar multiple of a minimal projection and as in
Example 1, ¢ is an extreme point of S(2.4, H2) . Moreover ¢(E4) = H,

is a Jordan algebra but ¢ is not a Jordan homomorphism.

Actually, if A 1is a 'nontrivial' JB-algebra, then there is

always an extreme map ¢ : A > H, which is not a homomorphism. We have

2
the following result.

THEOREM 9. Let A be a JB-algebra. The following conditions are
equivalent:

(i) For any JB-algebra B , every extreme point of S(A,B) 1is a
Jordan homomorphiem;

(i1)  Every extreme point of S(4, HZ) is a Jordan homomorphism;
(i21) dim A < 2, that is, A =R or Ly

Proof. (ii) = (iii). Let f be a pure state of A . Then, as

remarked before, the map ¢f 2 a > fla) Z j is an extreme map in
S(A, H2) and is therefore a Jordan homomorphism. It follows that f is
a homomorphism on A . Thus, by Lemma 3, A4 is associative and we may
assume that A is the self-adjoint part of the C(*-algebra C((X) of
continuous functions on a compact Hausdorff space X . If dim4 2 3 ,
then X contains three distinct points x, y, 2 say. Define a (complex)

linear map ¢ : C(X) ->M2 by

¢ 2 i 2 4 4
9 7 9 ] 9 9
¢(a) = alx) + afy) + alz)
2 1 2 4 4 4
°3 g ) ) 9 9

for a e C(X) . Then ¢ is an extreme point of S(C(X), M2) by weak

independence as in Example 1 and by Arveson's theorem in (2; 1. 4. 10].
Now the restriction of ¢ to the self-adjoint part 4 of ((X) is an

extreme point of S(A,Hz) and it is not a homomorphism. So dim 4 < 2 .
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(iii) = (i). If dim 4 < 2 , then 4 is associative and so 4 = IR

or f,. If A =1IR , then S(A,B) is a singleton {¢} and ¢ is a

homomorphism. If A = &, , then Proposition 7 concludes the proof.

2

Remark. wWe see in the above proof that if every extreme point of
S(A,B) 1is a homomorphism, then A4 is associative. Therefore, if B is
associative, then every extreme point of S(A,B) is a homomorphism if and

only if A is associative.

To prove our next theorem, we will use the following lemma of which

the proof is routine and is omitted.

LEMMA 10. Let A4, B and C be JB-algebras. Suppose ¢ is an
extreme map in S(A,B) and  an extreme map tn S(4,C). Let
®:A+>B@C bedefined by ¢(a) = ¢(a) ® Y(a) for aeA. Then ¢ 1is
an extreme map in S(A,B & C).

We recall that a type I factor is isomorphic to the full operator
algebra B(H) on some Hilbert space H . Let B(H)sa be the self-adjoint

part of B(H) . We will consider JB-algebras with a direct summand of

B(H)sa . We note that an atomic von Neumann algebra is a direct sum of

type I factors and a finite-dimensional C(*-algebra is a finite direct
sum of matrix algebras. Moreover, if a von Neumann algebra has a pure
normal state, then it contains a direct summand of a type I factor
(see (&; 7. 5. 13]) .

THEOREM 11. Let A and B be JB-algebras. Suppose B contains
a direct summand of B(H)sa with dim H 2 2 . Then every extreme point of

S(A,B) is a Jordan homomorphism if and only 1f dim A < 2 .

Proof. The sufficiency follows from Theorem 9. We prove the
necessity. So suppose every extreme point in S(4,B) is a homomorphism.
By the Remark following Theorem 9, A is associative and we may assume it
is the self-adjoint part of some C((X) . We need to show dim 4 < 2 . If
dim A 2 3 , then X contains three distinct points z, ¥y and 2z say.

We deduce a contradiction. By assumption, B contains a direct summand of

B(H)sa with dim H = 2. So we have B = B(H)sa ® C for some JB-algebra
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C . We first show that there is an extreme point ¢ in S(A,B(H)sa) which

is not a homomorphism. If dim H = 2 , such an extreme map exists by

Theorem 9. Suppose dim H 2 3 . Define the following positive operators
in B(H)
[ ¢ 2| ] 1 21 )
9 791 g "9l
10 ! 0
2 11 2 41
9 91 9 g1
| |
T1 =|l-——=—— r———| s T2 = |l-———-= r————| >
| |
| |
0 I I g | 0
l |
L ! i L | |
[ 4 g1 T
9 91
| 0
4 4
9 9:
TS e e B »
|
|
0 { 0
t
e I vt

where I 1is the identity operator on a subspace of H . Then

T, + Ty + T; is the identity in B(H) and using Example 1, it can be

1

verified that the range projections ran T1, ran TZ' ran TS are weakly
independent in B(H) . Therefore the linear map & : C(X) » B(H) defined

by

o(a) = a(x)T1 + a(y)Tb + a(z)T3 (a € C(X))
is an extreme point of S(C(X), B(H)) by Arveson's theorem and its proof in
[2; 1. 4. 10]. Evidently ¢ is not a Jordan homomorphism. Hence the

restriction of ¢ to the self-adjoint part 4 of C(X) gives an extreme

map ¢ in S(A,B(H)sa) which is not a homomorphism. Now let p be any
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extreme point of S(4,C) . Then by Lemma 10, the map Y(.) = ¢(.) ® p(.)
is an extreme point of S(A,B(H)sa ® C) = S(A,B) and also ¢ 1is not a

homomorphism. This is a contradiction. So dim 4 < 2 . The proof is

complete.

Remark. wWe do not know if the above theorem is true for every

non-associative JB-algebra B .

3. Simplexes

We recall that a (non-empty) convex set S in a vector space FE 1is
a simplex if for x ¢ F and a > 0 , the intersection S n(z + aS) is
either empty or of the form y + BS for some y ¢ £ and B 2 0 . It is
well-known that if S 1is a base of a cone K , then S 1is a linearly

compact simplex if and only if K is a lattice (see [3; p.138]).

Trivially S(IR,B) is a simplex for any JB-algebra B since it
reduces to a singleton. On the other hand, Lemma 3 shows that S(4,IR) is

a simplex if and only if A is an associative JB-algebra.

THEOREM 12. ILet A and B be JB-algebras. The following

conditions are equivalent:
(Z) S(A,B) 1is a simplex;
(1) Either A =IR or A 1is associative with B = IR.

Proof. we only need to prove (i) = (ii). We first show that 4 is
associative. Let K = 2o AS(A,B) be the cone generated by S(4,B) . Then
K 1is a lattice. We show that the duval cone A*+ of A+ is a lattice.
let f, g € A*+. Define ¢f, ¢g : A+ B by ¢f(a) = f(a)lB and
¢g(a) = g(a)ZB for a e A . Then ¢f., ¢g € K . So the supremum
¢=¢fv¢g exists in K . let %k be a state of B . We show that % o0 ¢
is the lattice supremum of f and g . Indeed, for a ¢ A+ , we have
(h o ¢$)(a) = h((¢f v ¢g)(a)) 2 h(¢f(a)), h(¢g(a)) where h(¢f(a)) = fla)

and h(.¢g(.a)) =gla) . so ho¢=f, g. Let keA* be such that
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k=2f, g. Let ¢, ¢ A > B Dbe the map ¢k(-)=k(.)lB. Then we have
2 which implies > v . This in turn implies

¢k ¢fr ¢g mp ¢k ¢f ¢’g

k>ho¢ . So the supremum [ Vv g exists in A*+ . Hence A*+ is a

lattice and A is associative by Lemma 3.

We may now assume that A is the algebra of real continuous functions
on some compact Hausdorff space X . Suppose B # IR . Then there exists
be€B such that 0 £ b <1 and b is not a scalar multiple of the
identity 1. We show that A = IR . Suppose, for contradiction, that

A # R , then there are two distinct points x and y in X . The unit

masses € and ey are pure states of A and can be identified as

extreme points of S(A,B) as before. Define ¢, ¢ ¢ S(A,B) by

6(.) = sm(-)b + sy(-)(l - b)

¥(.) ey(-)b+ex(-)(1 -b) .

The we have %¢ + ¥ = %Ex + %’Ey

Since S(A,B) is a linearly compact simplex, {ex} and {ey} are split
faces of S(A,B) (see [3; 8. 1]) and so the convex hull co {Ex’ ey} is
a (split) face of S(A,B) . Now % + 3 =% €, * % Ey € co {Ex’ sy} but
¢ ¢ co {E:c"ey} since b ¢ ¢(4) # lRlB . This contradicts the fact that

co {ex,ey} is a face. Hence A = IR . The proof is complete.

Remark. The above arguments clearly extend to order-unit normed

Banach. spaces.

Thus, for example, S(JLZ_, 22) is not a simplex while every extreme

point of S(ZZ, 22) is a Jordan homomorphism.
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