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ABSTRACT

Optimal reinsurance indemnities have widely been studied in the literature, yet
the bargaining for optimal prices has remained relatively unexplored. Therefore,
the key objective of this paper is to analyze the price of reinsurance contracts.
We use a novel way to model the bargaining powers of the insurer and reinsurer,
which allows us to generalize the contracts according to the Nash bargaining
solution, indifference pricing and the equilibrium contracts. We illustrate these
pricing functions by means of inverse-S shaped distortion functions for the in-
surer and the Value-at-Risk for the reinsurer.
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1. INTRODUCTION

This paper analyzes optimal reinsurance design and its pricing when firms
are endowed with comonotonic additive utility functions. Comonotonic addi-
tive preferences are such that the utilities are additive for comonotonic risks.
It gained particular interest after Schmeidler (1986) characterized a class of
comonotonic additive preferences as Choquet integrals. As a special case, we
focus on dual utilities (Yaari, 1987), that which are equivalent with minimizing
distortion risk measures (Wang et al., 1997). Broadly speaking, there are two re-
cent streams of literature that consider risk sharing with dual utility functions.
Both streams study roughly the same objective function in mathematical terms,
but with different motivations. First, several authors study optimal risk sharing
and Pareto equilibria (see, e.g., Heath and Ku, 2004; Barrieu and El Karoui,
2005; Filipović and Kupper, 2008; Jouini et al., 2008; Ludkovski and Young,
2009; Boonen, 2015). Second, there is a stream in the literature that studies op-
timal (re)insurance contract designwith a given premiumprinciple (see, e.g., Chi
and Tan, 2011; Asimit et al., 2013; Cui et al., 2013; Chi and Meng, 2014; Assa,
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2015; Boonen et al., 2015; Cheung and Lo, 2015). The problem is often formu-
lated from the point of view of the insurer by optimizing its own utility given
the fact that the reinsurance premium is given by a distortion premium prin-
ciple and does not impose any Pareto optimality condition. Instead, a moral
hazard constraint is typically included that states that reinsurance contracts
are increasing, but not more increasing than the underlying losses. This paper
combines both settings in the sense that we use a bargaining approach for op-
timal risk sharing in the context of optimal reinsurance contract design. We
model the preferences of the insurer and reinsurer by a distortion risk measure
under the Pareto optimality framework under a moral hazard constraint. To
the best of our knowledge, we are the first to explicitly combine both streams of
literature.

Pricing of insurance and reinsurance contracts is typically done by assum-
ing indifference. In other words, the price is set such that the reinsurer or in-
surer is indifferent to selling the contract or not. In this way, one determines the
zero-utility premium. A second approach is introduced by Zhou et al. (2015a)
focussing on a competitive equilibrium approach (also called a tâtonnement ap-
proach). If the reinsurer uses an additive utility function, this method yields in-
difference prices. A feature that is common to both approaches is that both firms
benefit from trading. Moreover, there is a stream in the literature that focuses
on empirical data on insurance prices, and tries to derive the implied pricing
functions. The problem with such approach is that the number of transactions
in reinsurance is typically limited. Our approach is different from these three
approaches. We determine the prices via a cooperative bargaining process.

Kihlstrom and Roth (1982), Schlesinger (1984), and Quiggin and Chambers
(2009) all use the Nash bargaining solution for an insurance contract between a
client and an insurer. Moreover, Aase (2009) uses the Nash bargaining problem
to price reinsurance risk as well. Specifically for longevity risk, Boonen et al.
(2012) and Zhou et al. (2015b) use Nash bargaining solutions to price longevity-
linked Over-The-Counter contracts. All these authors focus on firms that
maximize Von Neumann–Morgenstern expected utility. We use a cooperative
bargaining approach to derive optimal reinsurance contracts and their corre-
sponding prices via the Nash bargaining solutions. Moreover, we let firms max-
imize a comonotonic additive utility function. In contrast to indifference pric-
ing, bargaining solutions allow us to share the benefits from trading, leading
to profits for both parties. We provide a unique mechanism that allows us to
generalize optimal contracts even if there is asymmetric bargaining power such
as for the asymmetric Nash bargaining solution (Kalai, 1977). This mechanism
includes indifference pricing as well, which leads to the extreme case that one
firm is indifferent from trading, and the other firm gains maximally. This as-
sumption is popular in the economic and actuarial literature, dating back from
the concept of Bertrand equilibria (Bertrand, 1883).

This paper contributes to the literature in the following ways. We charac-
terize the optimal hedge benefits (alternative interpreted as welfare gains) from
bilateral bargaining for reinsurance. In the special case in which the preferences
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are given by a distortion risk measure, we derive a simple expression of the
hedge benefits. Moreover, we derive bounds on the individual rational prices
of a specific Pareto optimal contract, and provide to any price a corresponding
bargaining power for the asymmetric Nash bargaining solution. To highlight
our results, we illustrate the construction of the premium principle under the
special case that the insurer is endowed with preferences given by an inverse-S
shaped distortion risk measure, and the reinsurer optimizes a trade-off between
the expected value and the Value-at-Risk (VaR). This leads to a discontinuous
pricing function. Inverse-S shaped distortion risk measures are getting more
popular to use as preferences since Quiggin (1982, 1991, 1992) and Tversky and
Kahneman (1992).

Risk sharing and optimal reinsurance with expected utilities is discussed by,
e.g., Borch (1960, 1962), Wilson (1968), Raviv (1979), Lemaire (1990), Tay-
lor (1992a,b) and Aase (1993a,b, 2002). This paper focuses on preferences
that are monotone and comonotonic additive. This includes convex risk mea-
sures (Föllmer and Schied, 2002; Frittelli and Rossaza-Gianin, 2002) that are
comonotonic additive. Risk sharing under convex risk measures is first stud-
ied by Barrieu and El Karoui (2005), and later extended by, e.g., Burgert and
Rüschendorf (2006), Filipović and Kupper (2008), and Jouini et al. (2008). In
the more specific context of coherent risk measures, this problem is studied by,
e.g., Heath and Ku (2004) and Burgert and Rüschendorf (2008). In this paper,
we study bargaining for optimal reinsurance contracts. We derive conditions on
Pareto optima in the context of reinsurance contract design, where a contract is
an indemnity function on the insurer’s risk and a price. The use of comonotonic
additive preferences helps us to disentangle the characterization of the indem-
nity function and a method to determine the price. A special case of our pref-
erences are distortion risk measures, as introduced and characterized by Wang
et al. (1997). Distortion risk measures are related to coherent risk measures (see
Wang et al., 1997; Artzner et al., 1999), as well as ambiguity aversion. Based
on Schmeidler (1989), ambiguity is typically modeled by distorted probabilities
(see, e.g., Chateauneuf et al., 2000; Werner, 2001; Tsanakas and Christofides,
2006; De Castro and Chateauneuf, 2011).

This paper is set out as follows. Section 2 provides all general results on bar-
gaining with comonotonic additive utility functions. Section 3 shows how these
results translate to preferences given by a distortion risk measure. Section 4
provides important insight on the premium principle for the class of inverse-
S shaped distorted preferences and the well-known VaR. Section 5 concludes
the paper.

2. MODEL FORMULATION

We consider a one-period model involving two firms, with one firm representing
an insurer (I) and the other firm representing the reinsurer (R). Let (�,F, P) be
a probability space, and L∞(�,F, P) be the class of bounded random variables
on it.When there is no confusion, we simply write L∞ = L∞(�,F, P). The total
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insurance liabilities that the insurer faces are given by the non-negative, bounded
risk X ∈ L∞. Here, we assume that the insurer is interested in transferring a part
of this risk to a reinsurer. Let us denote M = esssup X = inf{a ∈ R : P(X >

a) = 0}. The reinsurance contract is given by the tuple ( f, π), where f (X) is
the indemnity paid by the reinsurer to the insurer and π ∈ IR is the price (or
premium) paid by the insurer to the reinsurer. It is natural to assume that f ∈ F ,
where

F = { f : IR+ → IR+ |0 ≤ f (x) − f (y) ≤ x− y, ∀x ≥ y ≥ 0, f (0) = 0 } , (1)

i.e., we assume that the indemnity f ∈ F is non-decreasing and 1-Lipschitz. The
assumption that f ∈ F is often used in the literature on reinsurance contract de-
sign and its importance is highlighted in Chi and Tan (2011). More specifically,
using the criterion of minimizing the VaR of the total risk of the insurer, Chi
and Tan (2011) demonstrate that if we do not impose non-decreasing constraint
on the indemnity f , the truncated stop-loss reinsurance is optimal. This form of
reinsurance has the peculiar property that if losses exceed a certain threshold,
the amount that is indemnified from the reinsurer to insurer is reduced to zero.
Reinsurance treaty with such structure is perceived to be undesirable in that it
encourages the insurer to under report its losses. See also Denuit and Verman-
dele, 1998; Young, 1999; Asimit et al., 2013; Chi and Meng, 2014; Assa, 2015;
Xu et al., 2015. On the other hand, if f were to increase more rapidly than losses
increase, then the insurer would have an incentive to create incremental losses.
Both of these cases trigger the so-called moral hazard in the sense that they
create opportunity for the insurer to mis-report its actual losses to the reinsurer.
The assumption that f ∈ F also makes sure that the indemnity function is
continuous.

By denoting Wk as the deterministic initial wealth for firm k, where k ∈
{I, R}, and πI as the premium received by the insurer for accepting risk X, then
without the reinsurance the wealth at a pre-determined future time for the in-
surer and reinsurer areWI + πI − X andWR, respectively. If the insurer were to
transfer part of its risk to a reinsurer using f (X) with corresponding price π ,
then the wealth at a pre-determined future time for the insurer becomes

WI + πI − X+ f (X) − π. (2)

Similarly, the wealth for the reinsurer changes to

WR − f (X) + π. (3)

To assess if there should be a risk transfer between both firms, we need to
make additional assumption on how firms evaluate such preference. In particu-
lar, we next define the preferences that we discuss in this paper.

Definition 2.1. The preference relations Vk, k ∈ {I, R} are such that
• it is monotone with respect to the order of L∞;
• it satisfies the normalization conditions Vk(0) = 0 and Vk(1) = 1;
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• it is comonotonic additive, i.e., Vk(−Y) = Vk(−Y+ f (Y))+Vk(− f (Y)) for all
Y ∈ L∞ and all f ∈ F .

Note that the normalizations and comonotonic additivity imply that Vk has the
cash-invariance property, i.e., Vk(X + a) = Vk(X) + a for every X ∈ L∞ and
a ∈ IR. Note that comonotonic additivity and the monotonicity assumption
on Vk together with a regularity assumption on continuity imply the Choquet
representation of Vk (Schmeidler, 1986; Wang et al., 1997). Providing an ex-
ample of a Choquet representation is tedious, so we relegate the constructive
examples to Sections 3 and 4, where we consider more specific preferences. It
is well-known that the initial wealth and πI are irrelevant for preferences given
by cash-invariant utility functions, and therefore we set without loss of gen-
erality WI = πI = WR = 0. Since we consider non-decreasing 1-Lipschitz
indemnities, we have that −X + f (X) and − f (X) are comonotonic for all
f ∈ F . By focussing on contracts ( f, π) ∈ F × IR, the comonotonic addi-
tivity of Vk implies that the utility function Vk is additive (and hence concave)
on the subdomain. Note that Jouini et al. (2008) and Filipović and Kupper
(2008) use monetary utility functions that are, in addition to the properties in
Definition 2.1, concave. For instance, the riskmeasure VaR that wewill formally
define in Section 4 is not concave in general, and so not a convex risk measure.
It is however comonotonic additive, and so concave (in fact additive) on the
subdomain of comonotonic risks.

We call a reinsurance contract ( f, π) ∈ F × IR Pareto optimal if there
does not exist a contract ( f̂ , π̂) ∈ F × IR such that VI(−X + f̂ (X) − π̂) ≥
VI(−X+ f (X) − π) and VR(− f̂ (X) + π̂) ≥ VR(− f (X) + π), with at least one
strict inequality. The problem of finding an optimal contracts ( f, π) ∈ F × IR
is analogous to the problem of finding optimal comonotonic risk sharing con-
tracts. Jouini et al. (2008, Theorem 3.1 therein) characterize Pareto optimal risk
sharing contracts for the class that contains also non-comonotonic risk sharing
contracts. We extend this to the case where we restrict f ∈ F .

Proposition 2.2. Let Vk, k ∈ {I, R} as in Definition 2.1. It holds that ( f, π) ∈
F × IR is Pareto optimal if and only if f is an element of

argmax
f∈F

VI(−X+ f (X)) + VR(− f (X)), (4)

where F is defined in (1).

Proof. First, we prove for “only if” part. We suppose that ( f, π) ∈ F × IR is
Pareto optimal, but f is not an element of the set (4). Then, there exists an f̂ ∈ F
such that VI(−X+ f (X)) + VR(− f (X)) < VI(−X+ f̂ (X)) + VR(− f̂ (X)). By
defining π̂ := VR(− f (X) + π) − VR(− f̂ (X)) and the cash-invariance property
of VR, we have VR(− f (X)+π) = VR(− f̂ (X)+ π̂). Note that VI(−X+ f (X)−
π) + VR(− f (X) + π) < VI(−X + f̂ (X) − π̂) + VR(− f̂ (X) + π̂), as π and π̂

will cancel out due to cash-invariance of VI and VR. Therefore, it follows that
VI(−X+ f (X)−π) < VI(−X+ f̂ (X)−π̂) asVR(− f (X)+π) = VR(− f̂ (X)+π̂),
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which is a contradiction with ( f, π) ∈ F × IR being Pareto optimal. Hence, f
is an element of the set (4).

For the “if” part, it also follows easily from the cash-invariance property of
VI and VR. The proposition is thus proved.

Note that π does not appear in the above objective function due to the
cash invariance property of Vk, k ∈ {I, R}: the π ’s cancel out each other.
Proposition 2.2 asserts that the Pareto optimality of a reinsurance contract
( f, π) depends only on the indemnity contract f ∈ F . It is important to note
that this property holds under the assumption of comonotonic additive utility
functions, and it does not necessary apply for general utility functions, with no-
table exception is the exponential utility (Bühlmann and Jewell, 1979; Gerber
and Pafumi, 1998).

The following proposition asserts the existence of Pareto optimal reinsur-
ance contracts.

Proposition 2.3. Let Vk, k ∈ {I, R} as in Definition 2.1. Under the assumption
that Vk(X) < ∞, k ∈ {I, R}, there exists a Pareto optimal reinsurance contract
( f, π) ∈ F × IR, i.e., there exists an f solving (4).

Proof. First, it follows from Vk(X) < ∞ for k ∈ {I, R} that problem (4) is
well-posed, i.e., the supremumof the objective in (4) is finite. Functions in f ∈ F
are 1-Lipschitz, and therefore any sequence fn ∈ F for n ∈ IN is equicontinuous.
By defining the norm d( f 1, f 2) = maxt∈[0,M] | f 1(t)− f 2(t)|, for any f 1, f 2 ∈ F ,
then the set F is compact under this norm d by Arzela-Ascoli’s theorem.

Next, we show that Vk, k ∈ {I, R}, are 1-Lipschitz continuous in f under the
norm d. Let ε > 0, and d( f̂ , f ) ≤ ε. Then, we have f (t)−ε ≤ f̂ (t) ≤ f (t)+ε for
any t ∈ [0,M]. From this, we get −ε = Vk( f (X)− ε)−Vk( f (X)) ≤ Vk( f̂ (X))−
Vk( f (X)) ≤ Vk( f (X) + ε) − Vk( f (X)) = ε holds by monotonicity and cash-
invariance property. This implies that |Vk( f̂ (X)) − Vk( f (X))| ≤ ε. Hence, by
the Weierstrass extreme value theorem, the optimal solution to (4) exists.

We now consider the benefits of reinsurance to both firms. Recall that with-
out reinsurance, the utility of the insurer for insuring risk X is VI(−X) and the
utility of the reinsurer is simply 0. If both firms agree to an indemnity func-
tion f (X) with corresponding price π , then the resulting utility of the insurer
changes to VI(−X+ f (X) − π) so that the difference

VI(−X+ f (X) − π) − VI(−X) = −VI(− f (X)) − π (5)

can be interpreted as the hedge benefit to the insurer using the indemnity f ∈ F .
The right-hand side of the above equation follows from comonotonic additivity
and cash invariance of VI . Similarly, from the perspective of the reinsurer its
hedge benefit is

VR(− f (X) + π) − VR(0) = VR(− f (X)) + π. (6)
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Positive differences imply that there are incentives for reinsurance due to the
gains in (monetary) utility. By denoting HB( f ) as the aggregate hedge benefits
or the aggregate utility gains in the market for exercising the indemnity f ∈ F ,
then we have

HB( f ) = VR(− f (X)) − VI(− f (X)).

Note that HB( f ) is simply the sum of the hedge benefit of both insurer and
reinsurer and hence for brevity we refer HB( f ) as the (aggregate) hedge benefit
for a given indemnity f ∈ F . Note also that HB( f ) can be positive, negative
or zero, depending on f (X) and the heterogeneous preferences of insurer and
reinsurer. Since the utility functions are cash-invariant, the hedge benefit HB( f )
is expressed in monetary terms.

If the contract ( f ∗, π) is Pareto optimal, then this implies the achievable
hedge benefit of the market is maximal. By setting HB∗ ≡ HB( f ∗), we have

HB∗ = HB( f ∗) = VR(− f ∗(X)) − VI(− f ∗(X)) ≥ 0. (7)

Note that the maximum achievable hedge benefit cannot be negative since
f (X) = 0 is a feasible strategy in F . If VI = VR, then the comonotonic ad-
ditivity of Vk leads to HB∗ = 0; i.e., there is no gain in welfare in the market
regardless of the indemnity f ∈ F .

Depending on the market conditions, the hedge benefit HB∗ will be shared
among both firms. Particularly, we require that the following two conditions are
satisfied:

• Pareto optimality,
• individual rationality, or both firms are weakly better off than when they do

not trade: VI(−X+ f (X) − π) ≥ VI(−X) and VR(− f (X) + π) ≥ 0.

Recall that Pareto optimality of the contract ( f, π) ∈ F × IR does not de-
pend on the price π . The following proposition establishes the lower and upper
bounds of individual rational prices corresponding to f . The key to derive these
bounds is based on the minimum acceptable price that a reinsurer is willing to
accept the risk from an insurer and the maximum price that an insurer is willing
to pay to transfer its risk to a reinsurer.

Proposition 2.4. Let Vk, k ∈ {I, R} as in Definition 2.1, and let ( f, π) ∈ F × IR
be Pareto optimal and individual rational. Then, f solves (4), and

π ∈ [−VR(− f (X)), −VI(− f (X))].

Proof. For any π ∈ IR, the solution f solving (4) is Pareto optimal (see
Proposition 2.2). Note that due to the cash-invariance of V, we obtain that
VI(−X+ f (X)−π) is strictly decreasing and continuous in π , and VR(− f (X)+
π) is strictly increasing and continuous in π . Hence, the set of individual ra-
tional pricing is given by an interval, where the lower bound is such that
VR(− f (X)+π) = VR(0), and the upper bound is such thatVI(−X+ f (X)−π) =
VI(−X). The lower bound follows directly from cash-invariance and VR(0) = 0,
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and the upper bound follows directly from cash-invariance, comonotonic ad-
ditivity, and the fact that −X + f (X) and − f (X) are comonotonic. Finally,
−VR(− f (X)) ≤ −VI(− f (X)) follows from (7). This concludes the proof.

Note that for any Pareto optimal and individual rational contract ( f, π), we
have π ≥ 0.

For a given indemnity function f , we now define a pricing principle. Given
that both firms are individual rational, the hedge benefit HB( f ) is to be allotted
among both firms. Then, the problem writes as a problem to “share a dollar”
(see, e.g., Osborne and Rubinstein, 1990; Binmore, 1998), i.e., we aim to allocate
a monetary amount among two firms. Define α ∈ [0, 1] as the proportion of
the hedge benefit that is allocated to the insurer; i.e., αHB( f ) hedge benefit is
assigned to the insurer and the remaining (1 − α)HB( f ) hedge benefit to the
reinsurer. Corresponding to the hedge benefit allocation α and the indemnity
function f , it is of our interest to determine the resulting price of the reinsurance
contract. To do this, it is useful to interpret the price π as a function of both
α and f , so that π ≡ π(α, f ) represents the price of indemnity f (X), where
the insurer receives αHB( f ) hedge benefit and reinsurer receives the remaining
(1 − α)HB( f ) hedge benefit.

Definition 2.5. Let Vk, k ∈ {I, R} as in Definition 2.1. For a given α ∈ [0, 1] and
f ∈ F , the price π(α, f ) is defined as the unique solution to

VI(−X+ f (X) − π(α, f )) = VI(−X) + α · HB( f ).

The above relation, together with the cash invariance property of VI , lead to

π(α, f ) = VI(−X+ f (X)) − VI(−X) − α · HB( f ). (8)

Moreover, the posterior utility of the reinsurer is given by (1 − α)HB( f ).
For a given f ∈ F , the function VI(−X + f (X) − π) is continuous

and strictly decreasing in π , and the function VR(− f (X) + π) is continu-
ous and strictly increasing in π . Therefore, the pricing function for a given
α and f ∈ F can be defined as the solution to the following optimization
problem:

π(α, f ) = argmax
π

VI(−X+ f (X) − π) (9)

s.t. VR(− f (X) + π) ≥ (1 − α)HB( f ). (10)

The following proposition explicitly provides an expression for determining
the price π(α, f ).

Proposition 2.6. Let Vk, k ∈ {I, R} as in Definition 2.1. For all f ∈ F and α ∈
[0, 1], we have

π(α, f ) = −(1 − α)VI(− f (X)) − αVR(− f (X)), (11)

where π(α, f ) is defined in Definition 2.5.
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Proof. It follows from (8) that

π(α, f )

=VI(−X+ f (X)) − VI(−X) − αHB( f )

=VI(−X+ f (X)) − VI(−X) − α[−VI(− f (X)) + VR(− f (X))]

=VI(−X) − VI(− f (X)) − VI(−X) − α[−VI(− f (X)) + VR(− f (X))]

= − (1 − α)VI(− f (X)) − αVR(− f (X)).

Here, the second last equation follows from comonotonic additivity of VI and
the fact that −X + f (X) and − f (X) are comonotonic since f ∈ F . This con-
cludes the proof.

Note that HB( f ) can be negative, but it is bounded from above by HB( f ∗)with
f ∗ solving (4).Moreover, by using the property thatVk is monotone andVk(0) =
0, we can see that π(α, f ) is always non-negative even when HB( f ) is negative.
Note that if HB( f ) is negative, any contract ( f, π) is not individual rational.

Amore interesting situation to analyze is the Pareto optimal casewith ( f, π),
where f is the optimal solution to (4). Recall that the resulting HB∗ gives the
highest attainable hedge benefit among the insurer and the reinsurer and that α

captures the proportion of HB∗ that is assigned to insurer. As α increases from
0 to 1, the portion of the hedge benefit that is allocated to the insurer increases
until α = 1 with the insurer receives the entire hedge benefit. Consequently, the
parameter α measures the bargaining power of the insurer; the higher the α, the
greater the bargaining power of the insurer. The extreme cases α = 0, 1 reflect
cases of indifference pricing: all hedge benefits in the market are shifted to one
party. It is easy to show that the competitive equilibrium outcome, also called
tâtonnement outcome (see, e.g., Zhou et al., 2015a), corresponds to α = 1 when
the reinsurer uses a comonotonic additive utility function.

Next, we provide a characterization of our mechanism which is well-studied
in the classical economic literature. In particular, the asymmetric Nash bargain-
ing solution (Kalai, 1977) with asymmetry parameter α is given by

argmax
( f,π)∈F×IR+

[VI(−X+ f (X) − π) − VI(−X)]αVR(− f (X) + π)1−α (12)

s.t. VI(−X+ f (X) − π) ≥ VI(−X), (13)

VR(− f (X) + π) ≥ 0. (14)

Kalai (1977) characterizes this rule for convex bargaining problems as intro-
duced by Nash (1950). A convex bargaining problem is given a convex and
compact set A ⊂ IR2 of feasible utility levels, and a disagreement point
d ∈ IR2 that is in our case the vector d = (VI(−X), 0). According to
Proposition 2.2, we can write the set of all utility levels corresponding to the
Pareto optimal and individually rational reinsurance contracts ( f, π) ∈ F × IR
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as A= {(VI(−X+ f ∗(X) − π),VR(− f ∗(X) + π)) : π ∈ IR} ∩ {x ∈ IR2 : x ≥ d}
with f ∗ solving (4). This set is a line in IR2, and so it is convex. As the asym-
metric Nash bargaining solution yields Pareto optimal and individually rational
contracts (Kalai, 1977), we can restrict the feasible set in (12) to the utility levels
in the set A.

Then, the asymmetric Nash bargaining rule is characterized by means of
twomore properties by Kalai (1977). One property is independent of equivalent
utility representatives, which implies that affine transformations of the utility
functions do not affect the outcome. The other property is independent of irrel-
evant alternatives (IIA). This property resembles a gradual elimination of other
contracts from the feasible set, where eliminated contracts have no effect on
the bargaining solution. Non-cooperative characterizations of the asymmetric
Nash bargaining solution are provided by, e.g., Britz et al. (2010) andMiyakawa
(2012). The Nash bargaining solution gained popularity in pricing reinsurance
risk as well (see, e.g., Aase, 2009; Boonen et al., 2012; Zhou et al., 2015b;
Boonen, 2016).

Proposition 2.7. Let Vk, k ∈ {I, R} as in Definition 2.1. If HB∗ > 0 and f ∈ F
solves (4), then the price π(α, f ) with α ∈ (0, 1), defined in Definition 2.5, coin-
cides one-to-one with the asymmetric Nash bargaining solution with asymmetry
parameter α, as defined in (12)–(14).

Proof. It is well-known that the asymmetric Nash bargaining solution is
Pareto optimal (see, e.g., Kalai, 1977).

For any Pareto optimal contract ( f, π), Proposition 2.2 implies that f ∈ F
solves (4). It follows from (5) and (6) that the objective in (12), with constraints
(13) and (14), can be reformulated as

argmax
a∈[0,1]

[aHB∗]α · [(1 − a)HB∗]1−α. (15)

Obviously, the solution of (15) does not depend on HB∗ > 0. Then, we derive
straightforwardly that the solution a is given by a = α. Finally, π = π(α, f )
follows by definition. This concludes the proof.

The case α = 1
2 corresponds to equal sharing of the hedge benefits, and corre-

sponds to the Nash bargaining solution (Nash, 1950). The following proposi-
tion characterizes the pricing rule π(α, f ) in a way that is commonly used in
economic theory as well.

Proposition 2.8. Let Vk, k ∈ {I, R} as in Definition 2.1. For every f ∗ ∈ F solving
(4), π as defined in Definition 2.5 and α ∈ [0, 1], we have that the reinsurance
contract ( f ∗, π(α, f ∗)) is an element of

argmax
( f,π)∈F×IR+

VI(−X+ f (X) − π)

s.t. VR(− f (X) + π) ≥ (1 − α) · HB∗,

}
(16)

where HB∗ is fixed, and given by (7).
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Proof. First, we show that every solution to (16) is Pareto optimal. Let
( f, π) ∈ F × IR+ solve (16) and suppose that it is not Pareto optimal. Then,
there exist ( f̂ , π̂) such that VI(−X + f̂ (X) − π̂) ≥ VI(−X + f (X) − π) and
VR(− f̂ (X)+ π̂) ≥ VR(− f (X)+π) with one strict inequality. Since ( f, π) solve
(16), we get that VI(−X + f̂ (X) − π̂) = VI(−X + f (X) − π), and, hence,
VR(− f̂ (X) + π̂) > VR(− f (X) + π). The function VI(−X+ f (X) − π) is con-
tinuous and strictly decreasing in π , and the function VR(− f (X)+π) is contin-
uous and strictly increasing in π . Hence, there exist ( f̂ , π̃), with π̃ < π̂ such that
VI(−X+ f̂ (X)−π̃) > VI(−X+ f (X)−π) and VR(− f̃ (X)+π̂) > VR(− f (X)+
π). This is a contradiction. Hence, ( f, π) is Pareto optimal. Hence, according to
Proposition 2.2, f solves (4). For all Pareto optimal ( f, π) ∈ F × IR, we get due
to Proposition 2.2 and cash-invariance that VI(−X+ f (X)−π)VR(− f (X)+π)

is the same. So, if ( f, π) solves (16), then for every f̂ solving (4) there exists a
π̂ ∈ IR such that ( f̂ , π̂) solves (16) as well.

The result that π = π(α, f ) follows from the (9), (10). This concludes the
proof.

In Proposition 2.8, we characterize a pricing rule such that the insurer maxi-
mizes its profit under a participation constraint. This participation constraint
might incorporate a reservation utility, which is non-negative. This approach
coincides with, e.g., the approach (Filipović et al., 2015) to price insurance ar-
rangements under limited liability.

The preference relations Vk is called law-invariant when we have Vk(X) =
Vk(Y) for all X,Y ∈ L∞ that have the same distribution with respect to P. To
conclude this section, we point out that if the reinsurance contracts f are al-
lowed to have any shape, i.e., f : [0,M] → [0,M] with f (0) = 0, and not
restricted to the set F , and if the preferences are concave and law-invariant,
then Propositions 2.2, 2.3 and 2.7 still hold. It is important to note that Lands-
berger and Meilijson (1994) and Ludkovski and Rüschendorf (2008) show in
risk sharing that there exists a Pareto optimal contract ( f, π) such that f ∈ F .

3. DISTORTION RISK MEASURES

In this section, we assume that insurer I and reinsurer R are endowed with a
particular type of comonotonic additive utility function.More specifically, their
preferences are given by a distortion risk measure. Wang et al. (1997) show that
distortion risk measures satisfy the properties of Section 2, and are in addition
law-invariant and satisfy a regularity condition on continuity.

Definition 3.1. Preference relation Vk, k ∈ {I, R} is given by a distortion risk mea-
sure when we have for every random variable W ∈ L∞ that

Vk(W) := −Egk [−W] =
∫ 0

−∞
[1 − gk(S−W(z))] dz−

∫ ∞

0
gk(S−W(z)) dz, (17)
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where k ∈ {I, R}, S−W(z) = 1 − F−W(z) is the survival function of −W, and
gk : [0, 1] → [0, 1] is a non-decreasing function such that gk(0) = 0 and gk(1) = 1.

A non-decreasing function g : [0, 1] → [0, 1] with g(0) = 0 and g(1) = 1 is
called a distortion function. As a special case, when Y ≥ 0, we have

Egk [Y] =
∫ ∞

0
gk(SY(z)) dz. (18)

Moreover, distortion risk measures are convex if the distortion functions are
concave. Distortion risk measures are popular as it is related to the dual
theory (Yaari, 1987) and the coherent risk measures (Artzner et al., 1999).
Maximizing dual utility is equivalent to minimizing a distortion risk mea-
sure. Risk-aversion for distortion risk measures is equivalent to using a con-
cave distortion function (Yaari, 1987). The VaR and all coherent risk mea-
sures satisfying law-invariance and comonotonic additivity are distortion risk
measures (see Wang et al., 1997). Also, maximizers of a risk-reward trade-off
Vk(W) = (1 − γ )E[W] − γρk(W), γ ∈ [0, 1], are captured by this prefer-
ence relation if ρk is a distortion risk measure. Here, γ reflects the aversion to-
wards risk (see, e.g., De Giorgi and Post, 2008). Note that we do not require
the distortion functions gk, k ∈ {I, R} to be concave or continuous. For in-
stance, the distortion risk measure might be VaR, which we will specify later in
Section 4.

Pareto optimal reinsurance contracts ( f ∗, π) ∈ F × IR for distortion risk
measures follow from Cui et al. (2013) and Assa (2015). Every optimal in-
demnity function f ∗, so that solves (4), can be shown to satisfy the following
relationship:

f ∗ ′
(z) =

⎧⎪⎨⎪⎩
1 if gI(SX(z)) > gR(SX(z)),

β(z) if gI(SX(z)) = gR(SX(z)),
0 otherwise,

(19)

for all z ≥ 0 almost surely, where β(z) ∈ [0, 1]. Note that the indemnities f ∈ F
are 1-Lipschitz, and therefore absolutely continuous. Hence, the derivative of f
exists almost everywhere. The indemnities in (19) are given by specific tranching
of the insurer’s risk. Every tranche is allocated to the firm that is endowed with
the smallest distortion function on this quantile. This is interpreted as the locally
least risk-averse firm (Boonen, 2015).

It is here important to remark that the contract in (19) is analogous to Pareto
optimal risk sharing contracts with distortion risk measures. In the risk shar-
ing context, Ludkovski and Young (2009, Theorem 2 therein) characterize the
same structure of Pareto optimal risk allocations for concave distortions. Our
class of distortion risk measures allow also for non-concave distortion func-
tions. Ludkovski and Young (2009) explicitly require the admissible set of risk
sharing contracts to be such that the risks are comonotonic with the aggregate
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risk. This condition is analogous to requiring reinsurance indemnities to be non-
decreasing and 1-Lipschitz as we impose in F , and the price be any element of
IR. In risk sharing, assuming contracts to be comonotonic is unrealistic if there
might not exist Pareto optimal risk sharing contracts that are comonotonic
when distortion functions are not concave (see Ludkovski and Rüschendorf,
2008). In reinsurance contract design, however, focussing on non-decreasing
and 1-Lipschitz indemnities contracts is popular.

An interesting consequence of using the distortion risk measure to capture
the comonotonic additive utility function is that the hedge benefit HB∗ can be
determinedwithout knowing the Pareto optimal contract ( f, π). This is asserted
in the following proposition, of which the proof is trivial.

Proposition 3.2. Suppose VI and VR are both distortion risk measures, defined in
Definition 3.1. Then, it holds that

HB∗ =
∫ ∞

0
	g+(SX(z)) dz,

where 	g+ = (gI − gR)+, (y)+ = max{y, 0}, and where HB∗ is defined in (7).

Corollary 3.3. Let VI and VR are both distortion risk measures, defined in Defini-
tion 3.1, and let X have a compact support [0,M]. It holds that HB∗ = 0 if and
only if the Lebesgue measure of the set {z ∈ [0,M] : gI(SX(z)) − gR(SX(z)) > 0}
is zero. Furthermore, if X has a positive density on its support [0,M], then it holds
that HB∗ = 0 if and only if the Lebesgue measure of the set {z ∈ [0,M] :
gI(z) − gR(z) > 0} is zero.

Recall that HB∗ = 0 signifies the situation that both firms are not able to
strictly benefit from risk sharing. Corollary 3.3 provides an explicit characteri-
zation for this situation. In the economic literature on risk sharing, this situation
is also called no-trade (De Castro and Chateauneuf, 2011).

We next derive a pricing function associated with the distortion risk
measures.

Proposition 3.4. Suppose VI and VR are both distortion risk measures, defined in
Definition 3.1. For any α ∈ [0, 1] and f ∈ F satisfying (19), we obtain

π(α, f ) = E(1−α)gI+αgR[ f (X)].

Proof. Let f ∈ F solves (4). The fact that f ∈ F implies f (X) ≥ 0. IfVk, k ∈
{I, R}, are distortion risk measures, then by substituting (18) in Proposition 2.6,
we obtain

π(α, f ) = (1 − α)EgI ( f (X)) + αEgR( f (X))

= (1 − α)

∫ ∞

0
gI(Sf (X)(z)) dz+ α

∫ ∞

0
gR(Sf (X)(z))] dz
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=
∫ ∞

0
[(1 − α)gI(Sf (X)(z)) + αgR(Sf (X)(z))]dz

= E(1−α)gI+αgR[ f (X)].

This concludes the proof.

Suppose the state space is finite; let � = {ω1, . . . , ωp}, P(ω) > 0 for all ω ∈ �,
and X(ω1) > · · · > X(ωp). Then, we get by direct calculations for g := (1 −
α)gI + αgR and Y := f (X) that

Eg(Y) =
∑
ω∈�

Y(ω)[g(P(X ≥ X(ω))) − g(P(X > X(ω)))] (20)

=
p−1∑
k=1

[Y(ωk) − Y(ωk+1)]g(P(X ≥ X(ωk))) + Y(ωp),

where we interpret g(P(X ≥ X(ω))) − g(P(X > X(ω))), ω ∈ � as state prices
that we characterized in Proposition 3.4. If the function g is strictly increasing,
the state prices are positive. Because f ∈ F , we get thatY(ωk) ≥ Y(ωk+1) ≥ 0 for
all k. So, if Y(ω1) > 0, we get that Eg(Y) ≥ Y(ω1)g(P(ω1)) > 0 if the function
g is strictly increasing. Hence, we then get Y(ω1) > 0 if and only if Eg(Y) > 0,
i.e., a non-negative risk with positive realizations has a positive price, and so the
prices do not allow arbitrage opportunities. Note that we here do not need to
restrict the pricing function g to be continuous.

By assuming that g is absolutely continuous and the state space is con-
tinuous, we have Eg(Y) = Eg( f (X)) = ∫ M

0 f (z)g′(1 − FX(z))dFX(z) =
E[ f (X)g′(1 − FX(X))] = E[Yg′(1 − FX(X))], where we used the fact that
f ∈ F . Here, g′(1 − FX(X)) is the pricing kernel that we characterized in
Proposition 3.4. So, the prices reflect the preferences of a “representative” agent;
namely the preferences of an agent who is endowed with distortion function g.
In risk sharing with expected utilities, a representative agent model is also char-
acterized by, e.g., Aase (1993a).

Proposition 3.4 establishes that the pricing function is a distortion premium
principle. The use of distortion premium principles to price risk has gained pop-
ularity in the actuarial literature (see, e.g., DeWaegenaere et al., 2003; Cui et al.,
2013; Assa, 2015). Note that these authors all assume that the distortion pre-
mium principles are given, whereas we derive it from cooperative bargaining.

To conclude this section, we point out that suppose the insurer is a risk-
averse distortion risk measure minimizer (i.e., gI is concave), and the reinsurer is
risk-neutral, then it is optimal to reinsure all risk to the reinsurer, i.e., f (X) = X.
This follows from EgI [Y] ≥ E[Y] for all Y ∈ L∞ (see, e.g., Boonen, 2015). How-
ever, the reinsurer might ask for a mark-up above the expected value premium
if α < 1, i.e., when the reinsurer has some bargaining power. Therefore, the pre-
mium is always larger than the expected value of a risk, which is also typically
observed in reinsurance.
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4. AN ILLUSTRATION: INVERSE-S SHAPED DISTORTED PREFERENCES AND
VAR

The objective of this section is to provide explicitly the pricing function under
some additional assumptions on the preferences of insurer and reinsurer.We as-
sume that the utility function for the insurer is dictated by an inverse-S shaped
distortion function while the reinsurer relies on the VaR. We consider inverse-S
shaped distortion risk measures because of their desirable properties in model-
ing human behavior and their popularity in recent years (Quiggin 1982, 1991,
1992; Tversky and Kahneman 1992; Tversky and Fox 1995; Wu and Gonza-
lez, 1999; Abdellaoui, 2000; Rieger and Wang, 2006; Jin and Zhou, 2008; He
and Zhou, 2011; Xu and Zhou, 2013; Bernard et al., 2015). Similarly, we adopt
VaR in our example because it is a prominent measure of risk among finan-
cial institutions and insurance companies. It is also a regulatory risk measure
adopted by the Solvency II regulations for insurance companies in European
Union.

We first focus on the insurer’s utility function and then followed by the rein-
surer’s. For the insurer, we additionally assume that the adopted distortion func-
tion gI is continuously differentiable so that for every random variableW ∈ L∞,
(17) can be written as

VI(W) =
∫ 1

0
F−1
W (s)g′

I(s)ds, (21)

where F−1
W (s) = inf{z ∈ IR : FW(z) ≥ s}, s ∈ [0, 1]. The above representa-

tion demonstrates the role of the shape of the distortion function on evaluating
wealth. If the function gI is strictly concave; i.e., g′

I(0) > 1 and g′
I(1) < 1,

then (21) implies that the good outcomes receive higher weights and the bad
ones get smaller weights. If the function gI is strictly convex; i.e., g′

I(0) < 1 and
g′
I(1) > 1, then the good outcomes get smaller weights and the bad ones receive

higher weights. On the other hand, inverse-S shaped preferences (g′
I(0) > 1

and g′
I(1) > 1) are such that both bad outcomes and good outcomes are heav-

ily weighted. This is consistent with numerous psychological experiments con-
ducted to study individual’s risk aversion (Tversky and Kahneman, 1992; Tver-
sky and Fox, 1995). Therefore, we consider an inverse-S shaped function in our
example.

We now formally provide the definition of an inverse-S shaped distortion
function.

Definition 4.1. A distortion function g is called inverse-S shaped if:

• it is continuously differentiable;
• there exists b ∈ (0, 1) such that g is strictly concave on the domain (0, b) and
strictly convex on the domain (b, 1);

• it holds that g′(0) = lims↓0 g′(s) > 1 and g′(1) = lims↑1 g′(s) > 1.
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FIGURE 1: The solid line is the inverse-S shaped distortion function gζ , defined in (22), with ζ = 0.5. The
point a will be explained later in Lemma 4.3.

The point b in the above definition is the inflection point such that the g changes
from locally concave to locally convex.Many distortion functions used in the lit-
erature are inverse-S shaped. For example, let us consider the function proposed
by Tversky and Kahneman (1992), which is parameterized by

gζ (s) = sζ

(sζ + (1 − s)ζ )
1
ζ

for all s ∈ [0, 1], (22)

where ζ > 0. Figure 1 plots (22) using ζ = 0.5. Rieger and Wang (2006) point
out that (22) is increasing and inverse-S shaped for ζ ∈ (0.279, 1).

Recall that Proposition 3.4 formally establishes that the distortion func-
tion in premium principle is given by a convex combination of both func-
tions gI and gR. If the distortion functions gI and gR are inverse-S shaped,
the pricing function is a distortion premium principle with an increas-
ing distortion function. Any shape can be generated by a choice of α, gI
and gR.

Remark. If the functions gI and gR are concave, thenπ is a concave distortion
premium principle.1 If the functions gI and gR are convex, then π is a convex
distortion premium principle. If the functions gI and gR are inverse-S shaped
and the inflection points of gI and gR are the same, then π is an inverse-S shaped
distortion premium principle.
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We now discuss the reinsurer’s utility function, which is based on the VaR.
Formally, the VaR of the random variable W ∈ L∞ at a confidence level
β ∈ (0, 1) is given by VaRβ(W) = Eg(−W) with g(s) = 1s>β . It is popu-
lar in insurance industry due to regulations (see, e.g., Pritsker, 1997). This risk
measure is connected to the quantile function via VaRβ(W) = −F−1

W (β). We
assume that the reinsurer is risk-neutral, but bears the costs of holding capital.
We further assume that the amount of capital towithhold is captured by theVaR
risk measure, with the corresponding cost given byCoC · (VaRβ(W)−E[−W]),
where CoC ∈ [0, 1] is the cost of holding capital and β ∈ (0, 1). Then,
maximizing the expected value of future wealth is equivalent to maximizing
E[W]−CoC · (VaRβ(W) − E[−W]), which in turn leads to the following pref-
erences of the reinsurer:

VR(W) = γ E[W] − (1 − γ )VaRβ(W), (23)

for all W ∈ L∞, where γ := 1 − CoC ∈ [0, 1] and β ∈ (0, 1). The above rep-
resentation implies that firms optimize a trade-off between expected return and
risk, where risk is measured by VaR.2 By construction, the price incorporates
an expected value as well. In the literature, this is also called the risk-adjusted
value of the liabilities (for more detailed information, see Chi, 2012; Chi and
Weng, 2013; Cheung and Lo, 2015).

The preference relation (23) is a distortion risk measure, which corresponds
to setting the distortion function gR as a weighted average of g(s) = s and
g(s) = 1s>β :

gR(s) =
{

γ s if s ≤ β,

γ s + (1 − γ ) if s > β.

The VaR is criticized for being discontinuous in the sense that small changes
in the risk leads to disproportional changes in the VaR. Therefore, it leads to
undesirable outcomeswhen used for risk sharing. In this paper, we focus on non-
decreasing, 1-Lipschitz indemnities f , as defined in (1).We next show thatVaRβ

is continuous in f on the domain F under the norm d(X,Y) = ‖X − Y‖1 :=
E[|X− Y|].3
Proposition 4.2. The preference relation VR is continuous in f on the domain F
under the norm d(X,Y) = ‖X− Y‖1 := E[|X− Y|], where VR is defined in (23)
with a given β, γ ∈ (0, 1) × [0, 1].

Proof. We show that for all ε > 0, there exists a δ > 0, such that for any
f1, f2 ∈ F satisfying E[| f1(X)− f2(X)|] < δ, we have |VR( f1(X))−VR( f2(X))| <

ε.
We first show this result for VR = VaRβ , i.e., when γ = 0. If VaRβ(X) =

0, then the result holds trivially as |VaRβ( f1(X)) − VaRβ( f2(X))| =
| f1(VaRβ(X)) − f2(VaRβ(X))| = 0. Therefore, we assume that VaRβ(X) > 0.
For all ε > 0, we denote by Aε := P(F−1

X (β) − ε
2 ≤ X ≤ F−1

X (β) + ε
2 ) ≥

https://doi.org/10.1017/asb.2016.8 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.8


524 TIM J. BOONEN, KEN SENG TAN AND SHENG CHAO ZHUANG

FX(F−1
X (β) + ε

2 ) − FX(F−1
X (β) − ε

2 ) ≥ FX(F−1
X (β)) − FX(F−1

X (β) − ε
2 ) ≥

β − FX(F−1
X (β) − ε

2 ) > 0, where we use the facts that FX(F−1
X (β)) ≥ β and

β > FX(F−1
X (β) − ε

2 ). Let ε > 0, and let E[| f1(X) − f2(X)|] < δ := ε
2Aε.

Suppose we have |VaRβ( f1(X)) − VaRβ( f2(X))| ≥ ε. Then, due to the fact
that f1 and f2 are non-decreasing, we get |VaRβ( f1(X)) − VaRβ( f2(X))| :=
|−F−1

f1(X)(β)−(−F−1
f2(X)(β))| = | f2(F−1

X (β))− f1(F
−1
X (β))|. From | f2(F−1

X (β))−
f1(F

−1
X (β))| ≥ ε and 1-Lipschitz continuity of f1 and f2, we get | f1

(
F−1
X (β) +

z
) − f2

(
F−1
X (β) + z

)| ≥ ε
2 for all z ∈ [− ε

2 ,
ε
2 ]. Therefore, we have E[| f1(X) −

f2(X)|] > ε
2P(F−1

X (β) − ε
2 ≤ X ≤ F−1

X (β) + ε
2 ) = ε

2Aε = δ. This is a contradic-
tion. Hence, we have |VaRβ( f1(X)) − VaRβ( f2(X))| < ε. This concludes the
result that VaRβ is continuous for f on the domain F .

It follows from |E[ f1(X)]− E[ f2(X)]| ≤ E[| f1(X) − f2(X)|] that E[ f (X)] is
continuous in f . Hence, it follows directly that VR, defined in (23), is continuous
for f on the domain F .

Next, we show the Pareto optimal reinsurance contracts. It turns out that for
the construction of the optimal indemnity function f , the following function for
inverse-S shaped distortion functions plays a crucial rule:

p(s) = 1 − gI(s)
1 − s

, for all s ∈ [0, 1). (24)

This function is introduced by Bernard et al. (2015). The following lemma fol-
lows from Xu et al. (2015).

Lemma 4.3. The function p, defined in (24), is continuous. Moreover, there exists
a ∈ (0, b) such that p is strictly decreasing on [0, a] and strictly increasing on
[a, 1).

The point a in the above lemma is illustrated in Figure 1. While it is difficult to
provide an economic interpretation of a, we will see shortly that the inflection
point a is useful for differentiating different cases of the indemnity contract. If
γ < 1, there are five cases to consider for the Pareto optimal insurance contracts
given by (19). These five cases are illustrated in Figure 2.

Case 4.1. In Figure 2, we have (β, γβ) ∈ A and (β, γβ + 1 − γ ) ∈ 1, i.e.,
gI(β) ≥ γβ + 1 − γ . Then, there exists c ∈ [β, 1) such that gR(s) < gI(s) for
s ∈ (0, c) and gR(s) > gI(s) for s ∈ (c, 1). The optimal solution in (19) is given
by

f ∗(z) =
{
0 if 0 ≤ z ≤ VaRc(−X),

z− VaRc(−X) if z > VaRc(−X),
(25)

or, equivalently, f ∗(X) = (X− VaRc(−X))+.
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FIGURE 2: The solid line is an inverse-S shaped distortion function gI . The five different cases are indicated
via the areas A, B, 1, 2, 3, 4.

Case 4.2. In Figure 2, we have (β, γβ) ∈ A and (β, γβ + 1 − γ ) ∈ 2, i.e.,
γβ < gI(β) < γβ + 1 − γ , γ > p(a) and β ≥ a. Then, we have gR(s) < gI(s)
for s ∈ (0, β) and gR(s) > gI(s) for s ∈ (β, 1). The optimal solution in (19) is
given by f ∗(X) = (X− VaRβ(−X))+.

Case 4.3. In Figure 2, we have (β, γβ) ∈ A and (β, γβ + 1 − γ ) ∈ 3, i.e.,
γβ < gI(β) < γβ + 1 − γ and γ ≤ p(a). The optimal solution coincides with
the solution of Case 4.2.

Case 4.4. In Figure 2, we have (β, γβ) ∈ A and (β, γβ + 1 − γ ) ∈ 4, i.e.,
γβ < gI(β) < γβ + 1 − γ , γ ≤ p(a) and β ≥ a. Then, there exist two points
c ∈ (0, a) and d ∈ (a, 1) such that gR(s) < gI(s) for s ∈ (0, β), gR(s) > gI(s)
for s ∈ (β, c), gR(s) < gI(s) for s ∈ (c, d) and gR(s) > gI(s) for s ∈ (d, 1). The
optimal solution in (19) is given by

f ∗(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 0 ≤ z ≤ VaRd(−X),

z− VaRd(−X) if VaRd(−X) < z ≤ VaRc(−X),

VaRc(−X) − VaRd(−X) if VaRc(−X) < z ≤ VaRβ(−X),

z− VaRβ(−X) + VaRc(−X) − VaRd(−X) if z > VaRβ(−X),

or, equivalently, f ∗(X) = min{(X−VaRd(−X))+,VaRc(−X)−VaRd(−X)}+
(X− VaRβ(−X))+.
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FIGURE 3: We graphically display the premium principle. The distortion function of the insurer
is inverse-S shaped (the solid line) and the preferences of the reinsurer are given in (23), with γ = 0.9
and β = 0.1 (the dotted line). The optimal reinsurance contract is derived from Case 4.1, and is given
by f ∗(X) = (X− VaRc(−X))+ for c ≈ 0.45 in this figure. The line of crosses is the distortion function

that serves as a premium principle after bargaining with α = 0.5.

Case 4.5. In Figure 2, we have (β, γβ) ∈ B, i.e., gI(β) ≤ γβ. Then, there exists
e ∈ [β, 1) such that gR(s) < gI(s) for s ∈ (0, e) and gR(s) > gI(s) for s ∈ (e, 1).
The optimal solution in (19) is given by f ∗(X) = (X− VaRe(−X))+.

The case γ = 1 is analogue to Case 4.1, where, without loss of generality, we set
β = 0.

In Figure 3, we graphically illustrate the pricing premiumprinciple of Propo-
sition 3.4 for Case 4.1. We observe that the pricing distortion function is dis-
continuous and piecewise concave. This function is then used for the optimal
stop-loss reinsurance contract given in (25). If the state space is countable, we
get from (20) that the state price at the quantile β of the VaR is very high due
to this discontinuity.

5. CONCLUSION

This paper studies bargaining for optimal reinsurance contracts with comono-
tonic additive preferences. In classical economics, one often assume that all prof-
its from trading in economic markets are borne by one party. This leads to no
profits for the other parties. Very few papers in the literature consider the fact in
Over-The-Counter trades, benefits from sharing risk are shared between the two
parties. Some exceptions are Kihlstrom and Roth (1982), Schlesinger (1984),
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Aase (2009), Boonen et al. (2012), Zhou et al. (2015b), and Boonen (2016). All
these authors consider the Nash bargaining solution.

If firms have comonotonic additive preferences and use the Nash bargaining
solution, the profits are shared equally between the two parties. We generalize
this concept by parameterizing the share of the hedge benefits that are assigned
to the insurer. We derive an implicit premium principle, which is analogue to a
comonotonic additive utility function.
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NOTES

1. A concave distortion premium principle follows from bargaining between two firms that
both use a concave distortion risk measure. Concave distortion risk measures resemble risk-averse
preferences (Yaari, 1987).

2. We emphasize that the preferences are similar to mean-variance preferences of Markowitz
(1952), but with the risk captured by VaR, instead of variance.

3. Note that continuity under the norm ‖X−Y‖1 is much stronger than the regularity condition
on continuity by Schmeidler (1986), who requires continuity under the norm d(X,Y) = ‖X −
Y‖∞ := supω∈� |X(ω) − Y(ω)|.

REFERENCES

Aase, K.K. (1993a) Equilibrium in a reinsurance syndicate; existence, uniqueness and characteri-
zation. ASTIN Bulletin, 23(2), 185–211.

Aase, K.K. (1993b) Premiums in a dynamicmodel of a reinsurancemarket. Scandinavian Actuarial
Journal, 1993(2), 134–160.

Aase, K.K. (2002) Perspectives of risk sharing. Scandinavian Actuarial Journal, 2002(2), 73–128.
Aase, K.K. (2009) The Nash bargaining solution vs. equilibrium in a reinsurance syndicate. Scan-

dinavian Actuarial Journal, 2009(3), 219–238.
Abdellaoui, M. (2000) Parameter-free elicitation of utility and probability weighting functions.

Management Science, 46(11), 1497–1512.
Artzner, P., Delbaen, F., Eber, J. and Heath, D. (1999) Coherent measures of risk. Mathematical

Finance, 9(3), 203–228.
Asimit, A. V., Badescu, A.M. and Verdonck, T. (2013) Optimal risk transfer under quantile-based

risk measurers. Insurance: Mathematics and Economics, 53(1), 252–265.
Assa, H. (2015) On optimal reinsurance policy with distortion risk measures and premiums. In-

surance: Mathematics and Economics, 61(1), 70–75.
Barrieu, P. and El Karoui, N. (2005) Inf-convolution of risk measures and optimal risk transfer.

Finance and Stochastics, 9(2), 269–298.

https://doi.org/10.1017/asb.2016.8 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.8


528 TIM J. BOONEN, KEN SENG TAN AND SHENG CHAO ZHUANG

Bernard, C., He, X., Yan, J.-A. and Zhou, X.Y. (2015) Optimal insurance design under rank-
dependent expected utility.Mathematical Finance, 25(1), 154–186.
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