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Pontryagin’s Maximum Principle for the
Loewner Equation in Higher Dimensions

Oliver Roth

Abstract. In this paper we develop a variational method for the Loewner equation in higher dimen-
sions. As a result we obtain a version of Pontryagin’s maximum principle from optimal control theory
for the Loewner equation in several complex variables. Based on recent work of Arosio, Bracci, and
Wold, we then apply our version of the Pontryagin maximum principle to obtain first-order necessary
conditions for the extremal mappings for a wide class of extremal problems over the set of normalized
biholomorphic mappings on the unit ball in Cn.

1 Introduction

Let Bn := {z ∈ Cn : ‖z‖ < 1} denote the unit ball of Cn with respect to the euclidean
norm ‖ · ‖ and let Hol(Bn,Cn) be the vector space of all holomorphic maps from Bn

into Cn. The set

Sn := { f ∈ Hol(Bn,Cn) : f (0) = 0, d f0 = id, f univalent}

of normalized biholomorphic mappings on Bn was introduced by H. Cartan [9].
One of the main problems when dealing with univalent mappings in the class Sn in
dimensions n > 1 is the fact that there is no Riemann mapping theorem available. In
particular, this makes it fairly difficult to construct variations of a given map in the
class Sn.

The aim of this paper is to develop a variational method that works effectively for
univalent mappings that can be obtained as solutions of Loewner-type differential
equations. We present the details only for the class S0

n ⊂ Sn of all mappings that
admit a so-called parametric representation by means of the Loewner equation. This
class was introduced by I. Graham, G. Kohr et al. (see e.g., [18, 20]) and is obtained
in a most natural way by generalizing the classical one-dimensional Loewner equa-
tion(see [24]) to higher dimensions. We note that the approach of this paper can also
be used for other more general Loewner-type equations, e.g., for the class of map-
pings that have a so-called A-parametric representation (see [12,18,19]) and also for
the various Loewner equations in the unit disk and complete hyperbolic manifolds,
which have recently been studied intensively (see [1–7]).

We now give a short account of the results of this paper and start by introducing
some notation.

Received by the editors April 2, 2014.
Published electronically September 24, 2014.
AMS subject classification: 32H02, 30C55,49K15.
Keywords: Univalent functions, Loewner’s equation.

942

https://doi.org/10.4153/CJM-2014-027-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-027-6


Pontryagin’s Maximum Principle for the Loewner Equation 943

Definition 1.1 Let

Mn :=
{

h ∈ Hol(Bn,Cn) : h(0) = 0, dh0 = − id, Re〈h(z), z〉 ≤ 0 for all z ∈ Bn
}
.

Here, 〈 · , · 〉 denotes the standard Euclidean inner product of Cn. Let

R+ := {t ∈ R : t > 0}.

A Herglotz vector field in the class Mn is a mapping G : Bn × R+ → Cn such that

(i) G(z, · ) is measurable on R+ for every z ∈ Bn, and
(ii) G( · , t) ∈Mn for almost every t ∈ R+.

It is not difficult to show that a mapping h ∈ Hol(Bn,Cn) satisfying h(0) = 0
and dh0 = − id belongs to Mn if and only if Re〈−h(z), z〉 > 0 for all z ∈ Bn\{0};
see [8, Remark 2.1]. In particular, the set Mn is exactly the class −M as defined
e.g., in [20, p. 203]. Hence, Mn is a compact subset of Hol(Bn,Cn) (see [20, Theorem
6.1.39]). This fact will play an important role in this paper.

Definition 1.2 (The Loewner Equation on the unit ball Bn) Let G(z, t) be a Her-
glotz vector field in the class Mn. We denote by ϕG

t the unique solution ϕt of the
Loewner ODE

ϕ̇t (z) = G(ϕt (z), t) for a.e. t ≥ 0,

ϕ0(z) = z ∈ Bn.

(1.1)

For any Herglotz vector field G(z, t) in the class Mn, the limit

f G := lim
t→∞

etϕG
t

exists locally uniformly in Bn and belongs to Sn; see [20, Thm. 8.1.5]. We can there-
fore define

S0
n :=

{
f ∈ Hol(Bn,Cn) | f =

f G for some Herglotz vector field G in the class Mn

}
.

The class S0
n is exactly the class of mappings in Hol(Bn,Cn) which have a parametric

representation as introduced by Graham, Hamada, and Kohr [17, Definition 1.5]; see
also [20, 21]. It is known that the class S0

n is compact (see [20, Corollary 8.3.11]) and
that etϕG

t ∈ S0
n for all t ∈ R+

0 := {t ∈ R : t ≥ 0} and every Herglotz vector field G
in the class Mn (see [32, Lemma 2.6]). Hence one may think of S0

n as the “reachable
set” of the Loewner equation (1.1).

Theorem 1.3 (A variational formula in S0
n) Let f ∈ S0

n. Suppose that G(z, t) is a
Herglotz vector field in the class Mn such that f = f G. Then for almost every t ≥ 0 and
any h ∈Mn there exists a family of mappings f ε ∈ S0

n such that

f ε(z) = f (z) + ε d( f )z ·
[

d(ϕG
t )z

]−1[
h
(
ϕG

t (z)
)
− G

(
ϕG

t (z), t
)]

+ rε(z).

Here, the error term rε ∈ Hol(Bn,Cn) has the property that rε/ε→ 0 locally uniformly
in Bn as ε→ 0+.
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The variations f ε in Theorem 1.3 will be constructed with help of “spike varia-
tions”. This is a well-known method in control theory and the calculus of variations
that goes back at least to Weierstraß. In proving Theorem 1.3 we shall show that it is
possible to modify this technique in such a way that it can be applied for the infinite-
dimensional Fréchet space Hol(Bn,Cn) (endowed with the standard compact-open
topology). We note that a different variational technique in S0

n has recently been de-
veloped by Bracci, Graham, Hamada, and Kohr [8]. Theorem 1.3 has the advantage
that it works for any mapping f ∈ S0

n, while the method of [8] is restricted to those
mappings in S0

n which can be embedded in a so-called “geräumig” Loewner chain;
see [8] for details.

One main field of application of the variational formula of Theorem 1.3 is the
study of extremal problems in the class S0

n. We call a mapping F ∈ S0
n an extremal

mapping for a functional Φ : S0
n → C if Re Φ( f ) ≤ Re Φ(F) for every f ∈ S0

n. Here
and henceforth we assume that the functional Φ : S0

n → C is complex differentiable
in the sense of R. Hamilton’s Fréchet space calculus as developed in [23] (see Defini-
tion 4.1 for details).

Theorem 1.4 Let F ∈ S0
n be an extremal mapping for a functional Φ : S0

n → C with
complex derivative L at F. Suppose that G(z, t) is a Herglotz vector field in the class
Mn such that F = f G. For each t ≥ 0 let Lt be the continuous linear functional on
Hol(Bn,Cn) defined by

Lt (h) := L
(

d(F)z ·
[

d(ϕG
t )z

]−1 · h(ϕG
t )
)
, h ∈ Hol(Bn,Cn).

Then for almost every t ≥ 0,

Re Lt (h) ≤ Re Lt (G( · , t)) for all h ∈Mn.

Theorem 1.4 is in fact a version of Pontryagin’s maximum principle for the case of
the Loewner equation in higher dimensions. It generalizes earlier well-known work
on control theory of the Loewner equation in one dimension which has been initiated
by Goodman [16], Popov [27] and Friedland and Schiffer [14, 15], and which has
been developed into a powerful theory by D. Prokhorov [28–30], see also [31].

At first sight it is not clear that Pontryagin’s maximum principle (Theorem 1.4)
carries any useful information about the Herglotz vector field G( · , t) at all, simply
because the linear functionals Lt in Theorem 1.4 might be constant on the class Mn.
In particular, Theorem 1.4 alone is not sufficient to deduce that G( · , t) is a support
point (see Definition 4.5) in the class Mn. However, referring to a deep result of Doc-
quier and Grauert [10], it has recently been observed by Arosio, Bracci, and Wold [5]
that all domains ϕG

t (Bn) are Runge domains. Using this Runge property we will show
in Proposition 4.6 that if L is not constant on S0

n, then Lt is never constant on Mn. In
combination with Pontryagin’s maximum principle in the form of Theorem 1.4, we
are therefore led to the following necessary condition for extremal problems in the
class S0

n.

Theorem 1.5 Let F ∈ S0
n be an extremal mapping for a functional Φ : S0

n → C with
complex derivative L at F. Suppose that L is not constant on S0

n. If G(z, t) is a Herglotz
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vector field in the class Mn such that F = f G, then G( · , t) is a support point in the class
Mn for almost every t ≥ 0.

Roughly speaking, Theorem 1.5 says that if a Herglotz vector field G(z, t) generates
an extremal mapping in the class S0

n via the Loewner equation, then for almost every
t ≥ 0 the mapping G( · , t) ∈ Mn itself has to be extremal in the class Mn. As an
illustration of the use of Theorem 1.5, we prove in Corollary 4.9 a generalization of a
recent result due to Bracci, Graham, Hamada, and Kohr [8] about support points in
S0

n.
Finally, we point out another consequence of Theorem 1.3.

Theorem 1.6 Let F ∈ S0
n be an extremal mapping for a functional Φ : S0

n → C with
complex derivative L at F. Then

max
h∈Mn

Re L(d(F)z · h) = −Re L(F).

Theorem 1.6 extends a result of Pommerenke (see [26, p. 185]), which deals with
the case of dimension n = 1 (and functionals of finite degree), to the cases n > 1
and arbitrary complex differentiable functionals. We note that the case n = 1 allows
a fairly elementary proof, which is based on the “lucky accident” (see [11, p. 231])
that the Koebe functions

kζ(z) :=
z

(1 + ζz)2
, ζ ∈ ∂B1,

generate the set extM1 of extreme points of M1 via

extM1 =
{
−z

ζ + z

ζ − z
: ζ ∈ ∂B1

}
=
{
−
[

d(kζ)z

]−1 · kζ(z) : ζ ∈ ∂B1
}
.

For n > 1, however, the set extMn of extreme points of Mn is not known (see [33]
for recent results in this direction), so we employ a completely different approach for
the proof of Theorem 1.6.

This paper is organized in the following way. We start in Section 2 by constructing
variations of evolution families for the Loewner equation in higher dimensions. In
Section 3 we generalize this result to produce variations in the class S0

n and prove
Theorem 1.3. We also produce variations of normal Loewner chains, which partly
extend the recent results in [8]. In Section 4 we apply the results of Sections 2 and 3
to study extremal problems in the class S0

n, and we prove Theorems 1.4, 1.5, and 1.6.

2 Variations of Evolution Families

In this section, we construct variations of Loewner evolution families.

Definition 2.1 Let G(z, t) be a Herglotz vector field in the class Mn. For fixed s ≥ 0
denote by ϕG

s,t the solution to

ϕ̇s,t (z) = G(ϕs,t (z), t) for a.e. t ≥ s,

ϕs,s(z) = z ∈ Bn.

(2.1)

We call (ϕG
s,t )0≤s≤t the evolution family generated by G(z, t).
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Lemma 2.2 Let G(z, t) be a Herglotz vector field in the class Mn. Then there exists a
set EG ⊆ R+ of zero measure such that for all t ∈ (0,∞)\EG the condition

(2.2) G(z, t) = lim
ε→0+

1

ε

∫ t

t−ε
G(z, τ ) dτ

holds locally uniformly with respect to z ∈ Bn.

Proof We fix z ∈ Bn. Since G( · , t) ∈ Mn for almost every t > 0 and Mn is a
compact subset of Hol(Bn,Cn), the measurable function t 7→ G(z, t) is (essentially)
bounded on the interval (0,∞). Therefore, there exists a set EG(z) ⊆ R+ of zero
measure such that condition (2.2) holds for all t ∈ R+\EG(z). Now choose a dense
countable set A ⊆ Bn and set EG := ∪a∈AEG(a). Then EG has zero measure and (2.2)
holds for every t ∈ R+\EG and every point z in the dense subset A ⊆ Bn. Since Mn is
a normal family and G( · , t) ∈Mn for a.e. t ≥ 0, this implies that (2.2) holds locally
uniformly in Bn for every fixed t ∈ R+\EG by Vitali’s theorem.

Remark 2.3 We call the set RG := R+\EG the regular set of the Herglotz vector
field G(z, t), and every T ∈ RG is called a regular point for G(z, t). Note that if T is a
regular point for G(z, t) and ϕs,t := ϕG

s,t , then Lemma 2.2 implies that for any s < T,

G(ϕs,T(z),T) = lim
ε→0+

1

ε

∫ T

T−ε
G(ϕs,τ (z), τ ) dτ

locally uniformly with respect to z ∈ Bn, since ϕs, · (z) is absolutely continuous on
compact intervals of R+

0 locally uniformly with respect to z ∈ Bn.

We can now state the main result of this section.

Theorem 2.4 Let G(z, t) be a Herglotz vector field in the class Mn with associated
evolution family ϕs,t := ϕG

s,t and let T ∈ RG be a regular point. Then for any h ∈ Mn

and any ε ∈ (0,T) there exists an evolution family (ϕεs,t )0≤s≤t such that

ϕεs,t = ϕs,t + ε αh
s,t + oεs,t ,

where

αh
s,t =

{
0 if s ≤ t < T − ε or T ≤ s ≤ t,

d(ϕt )z · [d(ϕT)z]−1 · [h(ϕT)− G(ϕT ,T)] if s < T ≤ t.

Here, oεs,t ∈ Hol(Bn,Cn) indicates a term such that

lim
ε→0+

oεs,t
ε

= 0 locally uniformly in Bn

for any fixed s, t such that s < T ≤ t.

In order to prove Theorem 2.4 we are going to adapt the standard method of needle
or spike variations for the particular case of the Loewner equation (2.1).
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Definition 2.5 (Needle variations) Let G(z, t) be a Herglotz vector field in the class
Mn, h ∈Mn and T > 0. For each ε ∈ (0,T) let

Gε( · , t) := Gε,h,T( · , t) :=

{
G( · , t) if t ∈ R+\(T − ε,T),

h if t ∈ (T − ε,T).

Mn

T − ε T

Figure 1: The graphs of G( · , t) (solid) and Gε( · , t) (dashed).

We call the Herglotz vector fields Gε(z, t) in the class Mn the needle variations of
G(z, t) with data (T, h). We also call the evolution families (ϕεs,t ) := (ϕGε

s,t ) the needle
variations of the evolution family (ϕG

s,t ) with data (T, h).

Remark 2.6 Let G(z, t) be a Herglotz vector field in the class Mn, h ∈ Mn and let
T > 0. Since Gε( · , t) = G( · , t) for any t 6∈ (T − ε,T), we immediately get that

ϕεs,t = ϕs,t if s ≤ t ≤ T − ε or T ≤ s ≤ t.

In particular, we have

(2.3) ϕεs,t (z) = ϕεs,T−ε(z)+

∫ t

T−ε
Gε(ϕ

ε
s,τ (z), τ ) dτ = ϕs,T−ε(z)+

∫ t

T−ε
h
(
ϕεs,τ (z)

)
dτ

if s ≤ T − ε ≤ t ≤ T.

In what follows we use the notation B
n
r := {z ∈ Cn : ‖z‖ ≤ r}.

Lemma 2.7 (Convergence of needle variations) Let G(z, t) be a Herglotz vector
field in the class Mn, h ∈ Mn and T > 0. Denote by (ϕεs,t ) the needle variations of
(ϕs,t ) := (ϕG

s,t ) with data (T, h). Then for fixed s ≥ 0, we have

lim
ε→0+

ϕεs,t (z) = ϕs,t (z)

uniformly for (z, t) ∈ B
n
r × [s,∞) for any r ∈ (0, 1).
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Proof In view of Remark 2.6, we may assume s < T. Fix r ∈ (0, 1). Since Mn

is compact, there is a constant Lr > 0 such that ‖g(z) − g(z′)‖ ≤ Lr‖z − z′‖ for
any g ∈ Mn and every z, z′ ∈ B

n
r , see [20, p. 298]. For every t ∈ [s,T] we have

‖ϕs,t (z)‖ ≤ ‖z‖, and therefore we get the following estimate from identity (2.3) and
the fact that ϕs,t is a solution to the evolution equation (2.1):

‖ϕεs,t (z)− ϕs,t (z)‖

=
∥∥∥ϕs,T−ε(z) +

∫ t

T−ε
h(ϕεs,τ (z)) dτ − ϕs,T−ε(z)−

∫ t

T−ε
G(ϕs,τ (z), τ ) dτ

∥∥∥
=
∥∥∥∫ t

T−ε
h(ϕεs,τ (z))− G(ϕs,τ (z), τ ) dτ

∥∥∥
≤
∫ t

T−ε
‖h(ϕεs,τ (z))− G(ϕεs,τ (z), τ )‖ dτ +

∫ t

T−ε
‖G(ϕεs,τ (z), τ )− G(ϕs,τ (z), τ )‖ dτ

≤ 2Lr‖z‖(t − T + ε) + Lr

∫ t

T−ε
‖ϕεs,τ (z)− ϕs,τ (z)‖ dτ .

Using the well-known Gronwall lemma (see [13, p. 198]), this implicit estimate for
‖ϕεs,t (z)− ϕs,t (z)‖ leads to the explicit estimate

(2.4) ‖ϕεs,t (z)− ϕs,t (z)‖ ≤ 2Lrε‖z‖(1 + LrεeLrε) for every t ∈ [s,T].

In view of the semigroup property ϕεT,t ◦ ϕεs,T = ϕεs,t , we therefore get that for all
t > T,

(2.5) ‖ϕεs,t (z)−ϕs,t (z)‖ = ‖ϕT,t (ϕ
ε
s,T(z))−ϕT,t (ϕs,T(z))‖ ≤ Cr‖ϕεs,T(z)−ϕs,T(z)‖,

where Cr > 0 is a constant such that ‖ϕs,t (z) − ϕs,t (z′)‖ ≤ Cr‖z − z′‖ for all t ≥ s
and all z, z′ ∈ B

n
r . If we combine (2.5) with (2.4), we finally have

(2.6) ‖ϕεs,t (z)− ϕs,t (z)‖ ≤ γrε for all ‖z‖ ≤ r and all t ≥ s,

where γr depends only on r. This completes the proof of Lemma 2.7.

Lemma 2.7 says that the needle variations (ϕεs,t ) of (ϕs,t ) with data (T, h) form a
“continuous deformation” of the evolution family (ϕs,t ). If T ∈ RG is in addition
a regular point of G(z, t), then this deformation is actually “differentiable” in the
following sense.

Theorem 2.8 Let G(z, t) be a Herglotz vector field in the class Mn, let T ∈ RG and
h ∈ Mn. For fixed s ∈ [0,T] denote by ϕεs,t the needle variations of ϕs,t := ϕG

s,t with
data (T, h). Then

ϕεs,t = ϕs,t + ε d(ϕs,t )z ·
[

d(ϕs,T)z

]−1 ·
[

h(ϕs,T)− G(ϕs,T ,T)
]

+ oεs,t

for any t ≥ T. Here, oεs,t indicates a term, which divided by ε, tends to 0 locally uniformly
in Bn for each fixed t ≥ T as ε→ 0+.
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Proof Using (2.3), we have

ϕεs,T(z)− ϕs,T(z)

ε
=
ϕεs,T(z)− ϕs,T−ε(z)

ε
− ϕs,T(z)− ϕs,T−ε(z)

ε

=
1

ε

∫ T

T−ε
h(ϕεs,τ (z)) dτ − 1

ε

∫ T

T−ε
G(ϕs,τ (z), τ ) dτ .

Since T ∈ RG, we see by using Remark 2.3 and Lemma 2.7 that

∂+ϕεs,T(z)

∂ε

∣∣∣∣
ε=0

:= lim
ε→0+

ϕεs,T(z)− ϕs,T(z)

ε
= h(ϕs,T(z))− G(ϕs,T(z),T),

where the limit exists locally uniformly in Bn. This proves the claim for t = T. We
can now handle the general case t ≥ T. By what we have just proved, we know that
ϕεs,t is a solution to

ϕ̇εs,t (z) = G(ϕεs,t (z), t), for t ≥ T

ϕεs,T(z) = ϕs,T(z) + ε
[

h(ϕs,T(z))− G(ϕs,T(z),T)
]

+ rε(z),

(2.7)

where rε ∈ Hol(Bn,Cn) such that rε/ε → 0 locally uniformly in Bn as ε → 0+.
We now make use of a standard result from ODE-theory about “differentiability with
respect to initial conditions” and differentiate (2.7) with respect to ε; see [25, Theo-
rem 1A, p. 57]. This way, we find that

ψt (z) :=
∂+ϕεs,t (z)

∂ε

∣∣∣
ε=0

is a solution to the initial value problem

ψ̇t (z) =
∂G

∂z
(ϕs,t (z), t) · ψt (z), t ≥ T,

ψT(z) = h(ϕs,T(z))− G(ϕs,T(z),T).

(2.8)

On the other hand, by differentiating the evolution equation (2.1) with respect to z,
it is easy to see that

t 7→ d(ϕs,t )z ·
[

d(ϕs,T)z

]−1 ·
[

h(ϕs,T(z))− G(ϕs,T(z),T)
]

is also a solution to (2.8). By uniqueness, we deduce that for every t ≥ T,

∂+ϕεs,t (z)

∂ε

∣∣∣
ε=0

= d(ϕs,t )z ·
[

d(ϕs,T)z

]−1 ·
[

h(ϕs,T(z))− G(ϕs,T(z),T)
]
.

We have hence shown that for fixed t ≥ T,

ϕεs,t (z) = ϕs,t (z) + ε d(ϕs,t )z ·
[

d(ϕs,T)z

]−1 ·
[

h(ϕs,T(z))− G(ϕs,T(z),T)
]

+ oεs,t (z),

where

lim
ε→0+

oεs,t (z)

ε
= 0 for every z ∈ Bn.

It is not difficult to prove that this limit actually exists locally uniformly with respect
to z ∈ Bn. In fact, note that for fixed 0 < r < 1, ϕεs,t (z) ∈ B

n
r for every z ∈ B

n
r and all
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0 ≤ s ≤ t . Again using the compactness of Mn, we see that there is a constant Lr > 0
such that ‖g(z)− g(z′)‖ ≤ Lr‖z − z′‖ for all g ∈Mn and all z, z′ ∈ B

n
r . Therefore,

‖ϕεs,t (z)− ϕs,t (z)‖ =
∥∥∥ϕεs,T(z)− ϕs,T(z) +

∫ t

T

(
G(ϕεs,τ (z), τ )− G(ϕs,τ (z), τ )

)
dτ
∥∥∥

≤ ‖ϕεs,T(z)− ϕs,T(z)‖ + Lr

∫ t

T
‖ϕεs,τ (z)− ϕs,τ (z)‖ dτ .

Now, Gronwall’s lemma implies that∥∥∥ ϕεs,t (z)− ϕs,t (z)

ε

∥∥∥ ≤ ∥∥∥ ϕεs,T(z)− ϕs,T(z)

ε

∥∥∥ eLr(t−T)

=
∥∥∥h(ϕs,T(z))− G(ϕs,T(z),T) +

rε(z)

ε

∥∥∥ eLr(t−T).

Hence, oεs,t (z)/ε is uniformly bounded on B
n
r as ε → 0+. Since we have already

proved that oεs,t (z)/ε → 0 pointwise in Bn, Vitali’s theorem shows that actually
oεs,t/ε→ 0 locally uniformly in Bn.

3 Variations in S0
n and Variations of Normal Loewner Chains

By definition, every f ∈ S0
n has the form

f = lim
t→∞

etϕG
0,t

for some Herglotz vector field G(z, t) in the class Mn. Therefore the following result
for s = 0 and t = ∞ is exactly the statement of Theorem 1.3 and provides us with a
variational formula in the class S0

n.

Theorem 3.1 Let G(z, t) be a Herglotz vector field in the class Mn, let T ∈ RG, and
let h ∈ Mn. For fixed s ∈ [0,T] consider the needle variations (ϕεs,t ) of (ϕs,t ) := (ϕG

s,t )
with data (T, h). Then

(3.1) etϕεs,t = etϕs,t + ε d(etϕs,t )z ·
[

d(eTϕs,T)z

]−1 · eT
[

h(ϕs,T)− G(ϕs,T ,T)
]

+ rεs,t

for any t ∈ [T,∞]. Here, the error term rεs,t ∈ Hol(Bn,Cn) has the property that
rεs,t/ε→ 0 locally uniformly in Bn for every fixed t ∈ [T,∞] as ε→ 0+.

Remark 3.2 Note that Theorem 3.1 holds in particular for t =∞, where we have
used the convenient notation

etϕεs,t := lim
τ→∞

eτϕεs,τ for t =∞ .

In this case, we define the error term rεs,∞ ∈ Hol(Bn,Cn) as

rεs,∞ := lim
t→∞

rεs,t .

This limit clearly exists locally uniformly in Bn in view of (3.1).

Proof of Theorem 3.1 Let rεs,t be defined by (3.1). We need to show that rεs,t/ε → 0
locally uniformly in Bn for every fixed t ∈ [T,∞] as ε → 0+. The cases t < ∞
follow directly from Theorem 2.8, so we only need to deal with the case t =∞.
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(i) In order to handle the error term rεs,∞ we first derive a convenient expression
for the error term rεs,t for all 0 ≤ s ≤ t < ∞. Let vεs,t (z) := etϕεs,t (z) and v0

s,t (z) :=

etϕs,t (z). If we set G̃(z, t) := z + et G(e−t z, t), then

(3.2)
v̇εs,t (z) = G̃(vεs,t (z), t) for t ≥ T,

vεs,T(z) = v0
s,T(z) + εeT

[
h(ϕs,T(z))− G(ϕs,T(z),T)

]
+ rεs,T(z),

where rεs,T/ε → 0 locally uniformly in Bn as ε → 0+ by applying Theorem 2.8 for
t = T. For t ≥ T let

Eεs,t (z) :=

∫ 1

0

∂G̃

∂z

(
v0

s,t (z) + α
(

vεs,t (z)− v0
s,t (z)

)
, t
)

dα, E0
s,t (z) =

∂G̃

∂z

(
v0

s,t (z), t
)
,

so that the difference Ψε
s,t (z) := vεs,t (z)− v0

s,t (z) has the property

(3.3)
Ψ̇ε

s,t (z) = Eεs,t (z) ·Ψε
s,t (z) for t ≥ T,

Ψε
s,T(z) = εeT

[
h(ϕs,T(z))− G(ϕs,T(z),T)

]
+ rεs,T(z).

In order to analyze the behaviour of Ψε
s,t as t → ∞, we consider the linear matrix-

ODE

(3.4)
Ẏ ε

s,t (z) = Eεs,t (z) · Y ε
s,t (z) for t ≥ T,

Y ε
s,T(z) = I.

The motivation for doing so comes from the observation that in view of (3.3) we can
write

Ψε
s,t (z) = Y ε

s,t (z) ·Ψε
s,T(z)

= Y ε
s,t (z) ·

{
εeT
[

h(ϕs,T(z))− G(ϕs,T(z),T)
]

+ rεs,T(z)
}
.

(3.5)

In a similar way, since differentiating (3.2) for ε = 0 with respect to z shows that

d

dt

[
d(v0

s,t )z

]
=
∂G̃

∂z

(
v0

s,t (z), t
)
·
[

d(v0
s,t )z

]
= E0

s,t (z) ·
[

d(v0
s,t )z

]
, t ≥ T,

we get

(3.6) d(v0
s,t )z = Y 0

s,t (z) · d(v0
s,T)z, for t ≥ T.

Now, formulas (3.5) and (3.6) and the definition of the error term rεs,t show that

(3.7) rεs,t (z) = εeT
[

Y ε
s,t (z)− Y 0

s,t (z)
]
·
[

h(ϕs,T(z))− G(ϕs,T(z),T)
]

+ Y ε
s,t (z)rεs,T(z).

(ii) We now examine Y ε
s,t with the help of the linear matrix-ODE (3.4) and show

that for any r ∈ (0, 1) there exists a constant Mr > 0 such that

(3.8) ‖Y ε
s,t (z)− Y 0

s,t (z)‖ ≤ Mrε and ‖Y ε
s,t (z)‖ ≤ Mr for all ‖z‖ ≤ r and all t ≥ T.

In view of (3.7) this then implies that rεs,∞(z)/ε→ 0 uniformly in ‖z‖ ≤ r as ε→ 0+.
It therefore remains to prove (3.8). We fix r ∈ (0, 1). In the following, Cr always
denotes a constant, which depends only on r, but the value of Cr may be different at
each occurence. We first note ‖ id +d(h)z‖ ≤ Cr · ‖z‖ for all ‖z‖ ≤ r and all h ∈
Mn. This follows from the compactness of Mn and the normalization d(h)0 = − id.
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Moreover, ‖ϕs,τ (z)‖ ≤ Cre−τ for all τ ≥ T and all ‖z‖ ≤ r; see [20, Lemma 8.1.4].
Hence, from the definition of Eεs,τ (z) we infer that

‖Eεs,τ (z)‖ ≤
∫ 1

0

∥∥∥ id +
∂G

∂z

(
ϕs,τ (z) + α

(
ϕεs,τ (z)− ϕs,τ (z)

)
, τ
)∥∥∥dα

≤ Cr

∫ 1

0

∥∥ϕs,τ (z) + α
(
ϕεs,τ (z)− ϕs,τ (z)

)∥∥dα

≤ Cr e−τ for all ‖z‖ ≤ r and all τ ≥ T.

(3.9)

In a similar way, we can deduce

‖Eεs,τ (z)− E0
s,τ (z)‖ ≤ Cr‖ϕεs,τ (z)− ϕs,τ (z)‖

= Cr‖ϕT,τ (ϕεs,T(z))− ϕT,τ (ϕs,T(z))‖
≤ Cre

−τ‖ϕεs,T(z)− ϕs,T(z)‖
≤ Cre

−τε for all ‖z‖ ≤ r and all τ ≥ T.

(3.10)

The last estimate comes from (2.6). We are now prepared to prove (3.8). Since t 7→
Y ε

s,t (z) is a solution to (3.4), we get

‖Y ε
s,t (z)− Y 0

s,t (z)‖ =
∥∥∥∫ t

T
Eεs,τ (z)Y ε

s,τ (z) dτ −
∫ τ

T
E0

s,τ (z)V 0
s,τ (z) dτ

∥∥∥
≤
∫ t

T
‖Eεs,τ (z)‖ · ‖Y ε

s,τ (z)− Y 0
s,τ (z)‖dτ

+

∫ t

T
‖Eεs,τ (z)− E0

s,τ (z)‖‖Y 0
s,τ (z)‖ dτ .

Now (3.6) shows

Y 0
s,τ (z) = eτd

(
ϕs,τ

)
z
·
[

d(eTϕs,T)z

]−1
,

so the inequality ‖ϕs,τ (z)‖ ≤ Cre−τ holds for all ‖z‖ ≤ r and all τ ≥ T, which leads
to ‖d(ϕs,τ )z‖ ≤ Cre−τ , therefore implies that ‖Y 0

s,τ (z)‖ ≤ Cr for all τ ≥ T. Hence,
in combination with (3.9) and (3.10), we get the implicit estimate

‖Y ε
s,t (z)− Y 0

s,t (z)‖ ≤ Cr

∫ t

T
e−τ‖Y ε

s,τ (z)− Y 0
s,τ (z)‖dτ + Crε

∫ t

T
e−τ dτ ,

which is valid for all ‖z‖ ≤ r and all t ≥ T. Again using Gronwall’s lemma, we obtain
‖Y ε

s,t (z)−Y 0
s,t (z)‖ ≤ Crε and then also ‖Y ε

s,t (z)‖ ≤ ‖Y ε
s,t (z)−Y 0

s,t (z)‖+‖Y 0
s,t (z)‖ ≤ Cr

for all ‖z‖ ≤ r and all t ≥ T. This proves (3.8) and finishes the proof of Theorem 3.1
for the case t =∞.

Theorem 3.1 enables us to construct variations for a certain class of Loewner
chains. We first recall the basic concepts.

Definition 3.3 A normalized Loewner chain ( ft )t≥0 is a family of univalent map-
pings ft : Bn → Cn such that ft (0) = 0, d( ft )0 = et id for all t ≥ 0 and such that for
every 0 ≤ s ≤ t there exists a holomorphic map ϕs,t : Bn → Bn with fs = ft ◦ ϕs,t .
A normalized Loewner chain ( ft )t≥0 is called a normal Loewner chain if the family
{e−t ft} is normal.

https://doi.org/10.4153/CJM-2014-027-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-027-6


Pontryagin’s Maximum Principle for the Loewner Equation 953

Remark 3.4 We note the following well-known facts; see [20].

(i) If ( ft ) is a normalized Loewner chain, then there is a unique Herglotz vector
field G(z, t) in the class Mn such that the Loewner–Kufarev PDE

(3.11)
∂ ft
∂t

(z) = −d( ft )z · G(z, t)

holds.
(ii) If G(z, t) is a Herglotz vector field in the class Mn, we define

f G
s := lim

t→∞
etϕG

s,t .

Then ( f G
t )t≥0 is a normal Loewner chain. In fact, ( f G

t )t≥0 is the unique normal
Loewner chain such that f G

t is a solution to (3.11) for the Herglotz vector field
G(z, t). The Loewner chain ( f G

t ) is called the canonical solution of the Loewner
PDE (3.11).

(iii) It follows from part (ii) that the class S0
n consists precisely of all normalized uni-

valent mappings f ∈ Hol(Bn,Cn) for which there is a normal Loewner chain
( ft )t≥0 with f0 = f .

We now construct for a given normal Loewner chain ( ft )t≥0 a differentiable family
of deformations ( f ε)t≥0 that coincide with ( ft )t≥0 from a certain time on.

Theorem 3.5 (Variations of normal Loewner chains) Let ( ft )t≥0 be a normal Loew-
ner chain with associated Herglotz vector field G(z, t) in the class Mn. Let (ϕs,t )0≤s≤t

denote the evolution family generated by G(z, t). Then for any T ∈ RG, any h ∈ Mn

and any ε ∈ (0,T) there exists a normal Loewner chain ( f εt )t≥0 such that

f εt =

{
ft if t ≥ T,

ft + ε d( ft )z · [d(eTϕt,T)z]−1 · eT[h(ϕt,T)− G(ϕt,T ,T)] + oεt if t < T.

Here, oεt indicates a term, which divided by ε, tends to 0 locally uniformly in Bn as
ε→ 0+.

Proof Let G(z, t) denote the Herglotz vector field in the class Mn such that the
Loewner PDE (3.11) holds, so ft = limτ→∞ eτϕt,τ for any t ≥ 0 in view of Re-
mark 3.4(ii). Denote by ϕεs,t the needle variations of ϕs,t with data (T, h). Define
f εt = limτ→∞ eτϕεt,τ for any t ≥ 0. Since ϕεt,τ = ϕt,τ for T ≤ t ≤ τ , we have f εt = ft
for any t ≥ T. Now let t < T and choose τ ≥ T. Then Theorem 3.1 shows that

eτϕεt,τ = eτϕt,τ + ε d(eτϕt,τ )z ·
[

d(eTϕt,T)z

]−1 · eT
[

h(ϕt,T)− G(ϕt,T ,T)
]

+ oεt,τ .

Here, oεt,τ/ε→ 0 as ε→ 0+ locally uniformly in Bn. The proof is finished by letting
τ =∞.

As we have already pointed out in the introduction, Theorem 3.5 is related to
the recent work [8], where variations of a specific class of Loewner chains (so-called
geräumig Loewner chains) have been introduced; see, in particular, [8, Theorem 3.1].
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4 Extremal Problems on S0
n

In order to apply our variational formulas, we need to consider a suitable class of
“differentiable nonlinear functionals” on the Fréchet space Hol(Bn,Cn). We use the
Fréchet space calculus as developed by R. Hamilton [23]. This approach is more
general than the one used in the standard monographs [26] or [11].

Definition 4.1 (Complex derivative, [23, p. 73]) Let U ⊆ Hol(Bn,Cn) be an open
set and let Φ : U → C be continuous. We call Φ : U → C differentiable at f ∈ U
along h ∈ Hol(Bn,Cn), if the limit

Λ( f ; h) := lim
C3δ→0

Φ( f + δh)− Φ( f )

δ

exists. In this case, Λ( f ; h) is called the directional derivative of Φ at f along h. We say
that Φ : U → C is complex differentiable at F ∈ U if there is an open neighborhood
V ⊆ U of F such that Φ is differentiable at any f ∈ V along any h ∈ Hol(Bn,Cn)
and if the map Λ : V × Hol(Bn,Cn) → C is continuous. In this case, L := Λ(F, ·) is
called the complex derivative of Φ at F.

Lemma 4.2 Let U ⊆ Hol(Bn,Cn) be an open set and let Φ : U → C be complex
differentiable at F ∈ U with complex derivative L = Λ(F; · ).

(i) The continuous functional L : Hol(Bn,Cn)→ C is linear.
(ii) If h ∈ Hol(Bn,Cn) and f ε = F + εh + rε, where rε/ε → 0 locally uniformly in

Bn as ε→ 0+, then

lim
ε→0+

Φ( f ε)− Φ(F)

ε
= L(h).

Proof (i) See [23, pp. 76–77].
(ii) Let U ⊆ Hol(Bn,Cn) be an open neighborhood of F such that

Λ : U ×Hol(Bn,Cn)→ C

is continuous. We may assume that U is convex. Lemma 3.3.1 in [23] shows that
there is a continuous mapping L̂ : U ×U ×Hol(Bn,Cn)→ C so that h 7→ L̂( f1, f2, h)
is linear and such that Φ( f2)−Φ( f1) = L̂( f1, f2, f2− f1) for all f1, f2 ∈ U . In addition,
L̂( f1, f1, h) = Λ( f1, h) for every f1 ∈ U and every h ∈ Hol(Bn,Cn). Therefore,

Φ( f ε)− Φ(F)

ε
=

L̂(F, f ε, f ε − F)

ε
=

L̂( f ε, F, εh + rε)

ε
→ L̂(F, F, h) = L(h)

as ε→ 0+.

Corollary 4.3 Let G(z, t) be a Herglotz vector field in the class Mn, let T ∈ RG

and h ∈ Mn. Consider the needle variations (ϕεt ) of (ϕt ) := (ϕG
t ) with data (T, h).

Suppose that Φ is a complex functional with complex derivative L at eτϕτ for some fixed
τ ∈ (T,∞]. Then

lim
ε→0+

Φ(eτϕετ )− Φ(eτϕτ )

ε
= L
(

d(eτϕτ )z ·
[

d(eTϕT)z

]−1 · eT
[

h(ϕT)−G(ϕT ,T)
])
.

Proof This follows from Theorem 3.1 for s = 0 and Lemma 4.2(ii).
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Theorem 4.4 Let Φ be a complex functional with complex derivative L at F ∈ S0
n and

suppose that F maximizes Re Φ over S0
n. Let G(z, t) be a Herglotz vector field in the class

Mn with (ϕt ) := (ϕG
t ) such that F = eτϕτ for some τ ∈ (0,∞]. Then the following

hold.

(i) For every t ∈ (0, τ ) ∩ RG, the mapping G( · , t) ∈ Mn maximizes the real part of
the continuous linear functional

Lt (h) := L
(

d(F)z · [d(ϕt )z]−1 · h(ϕt )
)

over Mn, that is,

max
h∈Mn

Re Lt (h) = Re Lt (G( · , t)).

(ii) The function t 7→ maxh∈Mn Re Lt (h) is constant on [0, τ ).

Theorem 1.4 is the special case τ = ∞ of Theorem 4.4(i). Theorem 4.4(i) for
τ <∞ and n = 1 is exactly [31, Theorem 4.1].

Proof of Theorem 4.4 (i) Let h ∈ Mn, T ∈ (0, τ ) ∩ RG and let (ϕεt ) denote the
needle variations of (ϕt ) with data (T, h). Since F maximizes Re Φ on S0

n, we have
Re Φ(F) ≥ Re Φ(eτϕετ ) for every ε > 0. Corollary 4.3 therefore implies

Re L
(

d(F)z ·
[
d(eTϕT)z

]−1 ·
[

h(ϕT)− G(ϕT ,T)
])
≤ 0 .

(ii) Let H(t, h) := Lt (h) = L
(
d(F)z · [d(ϕt )z]−1 · h(ϕt )

)
and

m(t) := max
h∈Mn

Re H(t, h).

In order to show that m is constant on [0, τ ) we proceed in several steps.

Step 1 We first show that m : [0, τ ) → R is locally Lipschitz continuous. Since L
is a continuous linear functional on the Fréchet space Hol(Bn,Cn), there are finite
complex Borel measuresµ1, . . . , µn that are supported on compact subsets E1, . . . , En

of Bn such that

(4.1) L(h) =

n∑
k=1

∫∫
Ek

hk(z) dµk(z), h = (h1, . . . , hn) ∈ Hol(Bn,Cn);

see e.g., [22, p. 65]. Let E be a closed ball in Bn centered at the origin such that Ek ⊂ E
for k = 1, . . . , n. Since ‖ϕt (z)‖ ≤ ‖z‖ for every z ∈ Bn and every t ≥ 0, it follows
that

(4.2) ϕt (z) ∈ E for all z ∈ E and all t ≥ 0.

As Mn is a compact subset of Hol(Bn,Cn), we see as before that there exists a constant
γ > 0 such that

(4.3) ‖h(z)‖ ≤ γ‖z‖ and ‖h(z)− h(z′)‖ ≤ γ‖z − z′‖ for all z, z′ ∈ E, h ∈Mn;
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see e.g., [20, formula (8.1.2)]. Since ϕt (z) is a solution to (1.1) and G( · , t) ∈Mn for
a.e. t ≥ 0, the estimate (4.3) combined with (4.2) implies

‖ϕβ(z)− ϕα(z)‖ =
∥∥∥∫ β

α

G(ϕt (z), t) dt
∥∥∥(4.4)

≤ γ · |β − α| for all α, β ≥ 0, z ∈ E.

In a similar way, since t 7→ [d(ϕt )z]−1 has the property that

d

dt

(
[d(ϕt )z]−1

)
= −[d(ϕt )z]−1 · ∂G

∂z
(ϕt (z), t) for a.e. t ≥ 0,

an application of Gronwall’s lemma leads to∥∥ [d(ϕβ)z]−1
∥∥ ≤ eγβ for all β ≥ 0, z ∈ E,(4.5)

and ∥∥ [d(ϕβ)z]−1 − [d(ϕα)z]−1
∥∥ ≤ |eγβ − eγα| for all α, β ≥ 0, z ∈ E.(4.6)

We can now prove that m : [0, τ )→ R is locally Lipschitz continuous. Let α, β ≥
0 be given. Since Mn is a compact subset of Hol(Bn,Cn), there is a mapping hβ ∈Mn

such that m(β) = Re H(β, hβ). In view of m(α) ≥ Re H(α, hβ) it follows that

m(β)−m(α)

≤ Re H(β, hβ)− Re H(α, hβ)

= Re L
(

d(F)z · [d(ϕβ)z]−1 · hβ(ϕβ)
)
− Re L

(
d(F)z · [d(ϕα)z]−1 · hβ(ϕα)

)
= Re L

(
d(F)z · [d(ϕβ)z]−1 · (hβ(ϕβ)− hβ(ϕα))

)
+ Re L

(
d(F)z · ([d(ϕβ)z]−1 − [d(ϕα)z]−1) · hβ(ϕα)

)
= Re

n∑
k=1

∫∫
Ek

(
d(F)z · [d(ϕβ)z]−1 · (hβ(ϕβ(z))− hβ(ϕα(z)))

)
k

dµk(z)

+ Re
n∑

k=1

∫∫
E

(
d(F)z ·

(
[d(ϕβ)z]−1 − [d(ϕα

)
z
]−1
)
· hβ(ϕα(z))

)
k

dµk(z),

where we have used the representation formula (4.1). In view of the estimates (4.2)–
(4.6), we now see that for every compact subintervall I of [0, τ ) there is a constant
C = CI such that m(β) − m(α) ≤ C|β − α| for all α, β ∈ I. This shows that
m : [0, τ )→ R is locally Lipschitz.

Step 2 We next show that

∂H

∂t
(t,Gt ) = 0 for a.e. t ≥ 0.

As above, using the fact that ϕt is a solution of the Loewner equation (1.1), we first
see that there is a set E ⊆ R+ of measure 0 such that for any t ∈ R+\E,

d

dt

(
[d(ϕt )z]−1

)
= −[d(ϕt )z]−1·∂G

∂z
(ϕt (z), t) locally uniformly with respect to z ∈ Bn.
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Now, for any t, t∗ ∈ R+, we have

[d(ϕt )z]−1G(ϕt (z), t∗)− [d(ϕt∗)z]−1G(ϕt∗(z), t∗)

t − t∗
=

[d(ϕt )z]−1 − [d(ϕt∗)z]−1

t − t∗
G(ϕt (z), t∗) + [d(ϕt∗)z]−1 G(ϕt (z), t∗)− G(ϕt∗(z), t∗)

t − t∗
,

and this expression converges for t → t∗ ∈ R+\E to

− [d(ϕt∗)z]−1 · ∂G

∂z
(ϕt∗(z), t∗)G(ϕt∗(z), t∗)

+ [d(ϕt∗)z]−1 ∂G

∂z
(ϕt∗(z), t∗)G(ϕt∗(z), t∗) = 0

locally uniformly with respect to z ∈ Bn. Hence, by definition of H,

lim
t→t∗

H(t,G( · , t∗))−H(t∗,G( · , t∗))

t − t∗
= 0.

for every t∗ ∈ R+\E.

Step 3 Next note that m(t) = Re H(t,Gt ) for every t ∈ (0, τ ) ∩ RG by part (i).
Therefore, we obtain for all t, t∗ ∈ (0, τ ) ∩ RG such that t∗ < t ,

Re H(t,Gt∗)− Re H(t∗,Gt∗)

t − t∗
≤ m(t)−m(t∗)

t − t∗
≤ Re H(t,Gt )− Re H(t∗,Gt )

t − t∗
.

Since m : [0, τ )→ R is locally Lipschitz continuous, it is differentiable for a.e. t ≥ 0,
so

d

dt
m(t) =

∂ Re H

∂t
(t,Gt ) for a.e. t ∈ (0, τ ).

By what we have proved in (b2), we see that

d

dt
m(t) = 0 for a.e. t ∈ (0, τ ).

Therefore, the locally Lipschitz continuous function m : [0, τ ) → R is constant on
[0, τ ).

Proof of Theorem 1.6 Since Mn is compact and h(0) = 0, dh0 = − id for every
h ∈Mn, there exists for every 0 < r < 1 a constant Mr > 0 such that

‖h(z) + z‖ ≤ Mr‖z‖2 for all ‖z‖ ≤ r and every h ∈Mn.

By [20, formula (8.1.11)] this implies

‖h(ϕt (z)) + ϕt (z)‖ ≤ Mr‖ϕt (z)‖2 ≤ Mre
−2t ‖z‖2

(1− ‖z‖)4

for all ‖z‖ ≤ r and every h ∈Mn. Therefore,

et h(ϕt (z)) = −etϕt (z) + et
(

h(ϕt (z)) + ϕt (z)
)
→ −F(z) (t →∞)

locally uniformly for z ∈ Bn and uniformly for h ∈ Mn. Since we also have
[d(etϕt )]−1 → [d(F)z]−1 locally uniformly in Bn as t →∞, we get

Lt (h) = L
(

d(F)z · [d(ϕt )z]−1h(ϕt )
)

= L
(

d(F)z · [d(etϕt )z]−1et h(ϕt )
)
→ −L(F)
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uniformly for h ∈Mn, so

m(t) = max
h∈Mn

Re Lt (h)→ −Re L(F) (t →∞).

On the other hand,

m(0) = max
h∈Mn

Re L0(h) = max
h∈Mn

Re L(d(F)z · h).

Therefore, Theorem 4.4(ii) completes the proof of Theorem 1.6.

We next show that under the condition that L is not constant on S0
n, the continu-

ous linear functionals Lt in Theorem 4.4 are support points of Mn. First we recall the
following definition.

Definition 4.5 Let A ⊆ Hol(Bn,Cn). A mapping G ∈ A is called a support point
of A, if there exists a continuous linear functional L : Hol(Bn,Cn) → C such that
Re L(h) ≤ Re L(G) for every h ∈ A and L is not constant on A. We denote by suppA

the set of all support points of A.

Proposition 4.6 Let Φ be a complex functional with complex derivative L at F ∈ S0
n

and suppose that F maximizes Re Φ over S0
n. Let G be a Herglotz vector field in the class

Mn with (ϕt ) := (ϕG
t ) such that F = eτϕτ for some τ ∈ (0,∞]. Suppose that L is not

constant on S0
n. Then for any t ∈ [0, τ ], the continuous linear functional

h 7→ Lt (h) := L
(

d(F)z · [d(etϕt )z]−1 · h(ϕt )
)

is not constant on Mn.

Proof We show that if Lt is constant on Mn for some t ∈ [0, τ ], then L is constant
on S0

n. Hence, let t ∈ [0, τ ] such that Lt (h) is constant on Mn. Let P : Cn → Cn

be a polynomial mapping with P(0) = 0 and d(P)0 = 0. Then there is a number
δ > 0 such that −z + εP(z) ∈ Mn for every ε ∈ C with |ε| < δ, so Lt (−z + εP) =
−Lt (z)+εLt (P) is constant in ε. This implies that Lt (P) = 0. Now let g ∈ Hol(Bn,Cn)
with g(0) = 0 and d(g)0 = 0. Since ϕt (B) is Runge (see [5]), g is the locally uniform
limit of (Pk ◦ ϕt )k for a sequence of polynomials Pk with Pk(0) = 0 and d(Pk)0 = 0.
Hence

0 = lim
k→∞

Lt (Pk) = L
(

d(F)z · [d(etϕt )z]−1 · g
)

for all g ∈ Hol(Bn,Cn) with g(0) = 0 and d(g)0 = 0. This clearly implies L(g) = 0
for all such g. Since we can take g = f − id for any f ∈ S0

n, we get L( f ) = L(id),
f ∈ S0

n, so L is constant on S0
n.

Definition 4.7 A mapping F ∈ S0
n is called extremal if there exists a complex

functional Φ with complex derivative L at F such that

(i) Re Φ( f ) ≤ Re Φ(F) for all f ∈ S0
n, and

(ii) L is not constant on S0
n.

Theorem 4.8 Let G(z, t) be a Herglotz vector field in the class Mn. Let eτϕG
τ be

extremal for some τ ∈ (0,∞]. Then G( · , t) ∈ suppMn for every t ∈ RG ∩ (0, τ ].
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Proof This follows immediately from Theorem 4.4(i) and Proposition 4.6.

Theorem 1.5 now follows directly from Corollary 4.9 for τ =∞ and Lemma 2.2,
which shows that the set RG of regular points of any Herglotz vector field G(z, t) in
the class Mn has full measure.

Corollary 4.9 Let G(z, t) be a Herglotz vector field in the class Mn and assume that

sup
z∈Bn\{0}

Re〈G(z,T), z/‖z‖2〉 < 0

for some T ∈ RG. Then etϕt ∈ S0
n is not extremal for any t ∈ (T,∞].

Proof In view of Theorem 4.8, it suffices to show that h := G( · ,T) cannot be a
support point of the class Mn on Bn. By assumption, there is a constant a > 0 such
that Re〈G(z,T), z〉 ≤ −a‖z‖2 for all z ∈ Bn. This implies that for any polynomial
mapping P : Cn → Cn with P(0) = 0 and d(P)0 = 0, there is a number δ > 0
such that h + εP ∈ Mn for every ε ∈ C with |ε| < δ. If h ∈ suppMn, there is a
continuous linear functional L on Hol(Bn,Cn) such that maxg∈Mn Re L(g) = Re L(h)
and L is not constant on Mn. We can now argue as in the proof of Proposition 4.6. In
particular, Re L(h + εP) ≤ Re L(h) for any |ε| < δ, so L(P) = 0 for every polynomial
mapping P : Cn → Cn with P(0) = 0 and d(P)0 = 0. Hence L = 0 on the set of
mappings g ∈ Hol(Bn,Cn) with g(0) = 0 and d(g)0 = 0, so L is constant on Mn, a
contradiction.

We end with a remark that extends [8, Lemma 4.3].

Remark 4.10 Corollary 4.9 shows that if ( ft )t≥0 is a normal Loewner chain such
that

inf
z∈Bn\{0}

Re
〈

[d( ft )z]−1 ∂ ft
∂t

(z),
z

‖z‖2

〉
> 0

for all t ∈ E, where E ⊆ R+ is a set of positive measure, then f0 is not extremal (in
particular, f0 6∈ supp S0

n).
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