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The Weibel/filamentation instability is known to play a key role in the physics
of weakly magnetized collisionless shock waves. From the point of view of high
energy astrophysics, this instability also plays a crucial role because its development
in the shock precursor populates the downstream with a small-scale magneto-static
turbulence which shapes the acceleration and radiative processes of suprathermal
particles. The present work discusses the physics of the dissipation of this Weibel-
generated turbulence downstream of relativistic collisionless shock waves. It calculates
explicitly the first-order nonlinear terms associated to the diffusive nature of the
particle trajectories. These corrections are found to systematically increase the
damping rate, assuming that the scattering length remains larger than the coherence
length of the magnetic fluctuations. The relevance of such corrections is discussed in a
broader astrophysical perspective, in particular regarding the physics of the external
relativistic shock wave of a gamma-ray burst.

1. Introduction

The physics of collisionless shock waves has drawn wide interest, from pure
theoretical plasma physics, starting with the pioneering work of Moiseev and Sagdeev
(1963), to high energy astrophysics (e.g. Blandford and Eichler 1987), where it plays a
key role in explaining most of the observed non-thermal spectra, and more recently, to
laboratory high energy density physics, where collisionless shock waves are about to
be produced through the interactions of laser beam-generated plasmas (e.g. Drake and
Gregori 2012). At low magnetization — meaning that the unshocked plasma carries
a magnetic field of small energy density compared to the shock kinetic energy — the
physics of these collisionless shock waves is driven by the filamentation instability,
also dubbed Weibel instability: this filamentation instability takes place in the shock
precursor, where the incoming background plasma — as viewed in the reference frame
in which the shock lies at rest — mixes with a population of shock-reflected or
supra-thermal particles. This has been demonstrated by ab initio particle-in-cell (PIC)
simulations, see e.g. Kato and Takabe (2008) for non-relativistic unmagnetized shock
waves and Spitkovsky (2008a) for their relativistic counterparts, of direct interest
to the present work. This filamentation instability and its various branches have
consequently received a great deal of attention (see e.g. for relativistic shock waves
Medvedev and Loeb 1999; Wiersma and Achterberg 2004; Lyubarsky and Eichler
2006; Achterberg and Wiersma 2007; Achterberg et al. 2007; Bret et al. 2010; Lemoine
and Pelletier 2010, 2011; Rabinak et al. 2011; Shaisultanov et al. 2012).
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Further simulations by Spitkovsky (2008b) have shown that, not only can
Weibel/filamentation build up the electromagnetic barrier which gives rise to the
shock transition through the isotropisation of the incoming background plasma, it
also builds up the turbulence which is transmitted downstream of the shock, on plasma
skin depth scales, and which provides the scattering centers for the Fermi acceleration
process. Actually, the excitation of micro-turbulence — meaning a turbulence on scales
smaller than the typical gyro-radius of accelerated particles — is a necessary condition
for a proper relativistic Fermi process (Lemoine et al. 2006; Niemiec et al. 2006).

Additionally, Medvedev and Loeb (1999) have suggested that the filamentation
mode is able to build up the turbulence in which the accelerated particles can lose their
energy to secondary radiation through synchrotron (and possibly synchrotron self-
Compton) processest. In this unified picture, the filamentation instability that develops
in the shock precursor would explain a variety of phenomena, from shock formation,
to shock acceleration and even the non-thermal radiation from powerful astrophysical
sources such as gamma-ray bursts. More particularly, the so-called gamma-ray burst
afterglow radiation is attributed to the acceleration and (synchrotron) radiation of
electrons at the external shock of the gamma-ray burst ultra-relativistic outflow, as it
impinges on the very weakly magnetized circumburst medium. The phenomenological
model of the afterglow provides a satisfactory description of most observed multi-
wavelength afterglow light curves, see e.g Piran (2004).

A notorious problem of the afterglow model remains to explain the origin of
the magnetic field that permeates the blast, in which the electrons are assumed to
radiate. Indeed, the turbulence which is generated through the Weibel/filamentation
instability in the shock precursor and transmitted downstream is expected to decay
rather quickly, on multiples of the skin depth scale (Gruzinov and Waxman 1999),
while the time scales on which the electrons cool through synchrotron is of the order of
108 w," for typical external conditions. This remark has spurred many theoretical and
numerical studies on energy transfer processes to long wavelengths (e.g. Medvedev
et al. 2005; Katz et al. 2007), or alternative instabilities, which might re-amplify
the magnetic field to a fraction of equipartition, from e.g. the interaction of the
shock with an inhomogeneous medium (Sironi and Goodman 2007; Mizuno et al.
2014), or from a Rayleigh-Taylor instability at the contact discontinuity (Gruzinov
2000; Levinson 2009, 2010). How fast the Weibel-generated turbulence decays, thus,
appears to be a key ingredient in shaping the light curves of relativistic blast
waves.

Recent PIC simulations have addressed this dissipation issue. In PIC simulations
of a relativistic collisionless pair shock up to time 5300w, !, Chang et al. (2008)
have observed an isotropic, magneto-static turbulence downstream of the shock,
which decays through phase mixing with a damping rate in rough agreement
with the theoretical linear estimate. However, these authors point out that the
linear calculation is ill-suited to describe the damping of the Weibel-generated
turbulence in relativistic blast waves, since the trajectories of particles deviate from

1 Strictly speaking, the relevant radiative processes in a microturbulence are jitter and jitter
self-Compton, (see e.g. Medvedev et al. 2011; Kelner et al. 2013); however, close to the shock front
of a relativistic collisionless shock wave, the Weibel-generated turbulence is of such strength that the
jitter radiation boils down to the standard synchrotron spectrum in a coherent field of equivalent
strength (Sironi and Spitkovsky 2009). Far from the shock, and in the presence of dissipation, jitter
effects may in principle become significant, depending on how fast the field strength diminishes as
the effective coherence length grows, see the discussion in Lemoine (2013).
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the ballistic regime. This remark has motivated the present study, which proposes
to evaluate the first nonlinear corrections to the damping rate of such Weibel-
generated turbulence, accounting for the deviation of particle trajectories from straight
lines.

The PIC simulations of Chang et al. (2008) have been essentially confirmed by
the more extensive simulations of Keshet et al. (2009), although the latter authors
observe that the acceleration of particles to progressively higher energies back reacts
on the structure of the shock, and more importantly, on the power spectrum of the
downstream turbulence, as suggested independently by Medvedev and Zakutnyaya
(2009). Therefore, the former study concludes that present PIC simulations have
not yet converged to a steady state. Since this longest PIC simulation (~ 10* w, 1
represents only a fraction of a percent of the dynamical timescale of the external
shock wave of an actual gamma-ray burst, while particle acceleration and cooling is
believed to take place on up to this latter timescale, this also means that theoretical
extrapolation is needed to bridge the gap between these simulations and actual
objects. Therefore, the damping rate, which depends on the power spectrum of the
magnetic field, may well differ from that measured in these PIC simulations. This will
be discussed in some detail further on.

In order to evaluate the nonlinear corrections to Landau damping, the present
work calculates the nonlinear susceptibility in a magneto-static turbulence, following
the Dupree-Weinstock description of resonance broadening (Dupree 1966; Weinstock
1969, 1970; Ben-Israel et al. 1975). This picture has been used in many studies to
evaluate the saturation of instabilities through the back-reaction of particle diffusion in
the grown turbulence, see e.g. (Dum and Dupree 1970; Bezzerides and Weinstock 1972;
Weinstock 1972; Weinstock and Bezzerides 1973) and later works, e.g. Pokhotelov
and Amariutei (2011) for the particular case of the Weibel temperature anisotropy.
Here, it is used in a different context: downstream of the shock, the turbulence is
magneto-static and isotropic, therefore the plasma is not subject to any instability, only
to dissipation through phase mixing; the Dupree-Weinstock approach nevertheless
allows to account for the influence of non-ballistic trajectories on the damping rate.
Actually, it will be shown that a complete calculation of the first order nonlinear
corrections is possible, since one can calculate explicitly the trajectory correlators in
a magneto-static small-scale turbulence, following the method developed in Pelletier
(1977) and Plotnikov et al. (2011).

The results obtained indicate a correction of order unity at the first nonlinear order.
However, they also indicate that the correction systematically increases the damping
rate, and that the magnitude of the correction versus the maximal wavenumber of
the turbulence depends on the power spectrum of the magnetic field. These results
are discussed in a broad context in Sec. 4. Section 2 provides the background for
the calculation of the nonlinear damping rate, which is explicitly evaluated in Sec. 3.
The trajectory correlators, which enter the calculation, are discussed in a separate
Appendix B.

2. Nonlinear damping of small-scale magnetostatic turbulence

The initial set-up can be described as follows, in the rest frame of the (downstream)
shocked plasma. Time ¢ = 0 corresponds to the time at which a given plasma element
is advected through the shock towards downstream; while this plasma element has
been crossing the shock precursor, it has been exposed to micro-instabilities which
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have built up a microturbulence to a level characterized by the parameter €p:

_ (8B%)
BT 47yt — D2

(2.1)

with m = m; for an electron-ion shock, m = m, for a pair shock; n represents the
particle density in the downstream plasma rest frame, and y, represents the Lorentz

factor of the upstream plasma in the downstream rest frame; if yy, = (1 — ﬂfh)fl/z
denotes the Lorentz factor of the shock front (and By, its velocity in units of c¢)
relatively to the upstream plasma, . =~ ysh/\/i for a strong relativistic weakly
magnetized shock (Blandford and McKee 1976). PIC simulations yield a value ez ~
10—3-10~2 immediately downstream of the shock (Keshet et al. 2009). The following
calculations describe the microturbulence as aperiodic, i.e. Ro = 0, homogeneous
and isotropic, as indicated by PIC simulations, see in particular Chang et al. (2008).

In this respect, the present set-up differs from that of Mart’yanov et al. (2008)
and Kocharovsky et al. (2010) which derive stationary nonlinear and coherent
magneto-static solutions to the Vlasov—Maxwell system in terms of inhomogeneous
and anisotropic particle distribution functions. Such structures indeed emerge in the
shock precursor in the nonlinear phase of the instability, as a balance between the
anisotropy/inhomogeneity of the particle distribution functions and the magnetic
forces. In the present case, the downstream particle distribution function is assumed
homogeneous and isotropic, therefore the plasma is prone to collisionless damping.
The homogeneity and isotropicity of the distribution function in the downstream
plasma is a direct consequence of the shock transition, as clearly revealed by PIC
simulations.

The present microturbulence also differs from the spontaneous turbulence
associated to the thermal fluctuations of the plasma, as studied recently by Felten
et al. (2013), Felten and Schlickeiser (2013a,b), Ruyer et al. (2013) or Yoon et al.
(2014), since the present turbulence has been sourced in the shock precursor by the
anisotropies of particle distribution functions.

Finally, the present work neglects any background magnetic field; in the case of the
external shock wave of a gamma-ray burst, this is a very good approximation, since
the magnetization parameter o = B4/ [47 (yret — 1) nmc?] expressed in terms
of the downstream frame background field Bigmg is very small compared to eg:
o ~ 107 for typical interstellar conditions. Furthermore, the development of the
relativistic Fermi acceleration process requires 0 < €3 (Pelletier et al. 2009; Lemoine
and Pelletier 2010), i.e. a weakly magnetized shock wave in which the effects of the
background magnetic field can be neglected.

2.1. Damping of magneto-static turbulence
Following Chang et al. (2008), one can use Poynting’s theorem to derive the damping
rate as a function of the transverse susceptibility. For random electric § E and
magnetic fields § B and random current density fluctuations §j with zero spatial
average, Maxwell equations imply
1 98B? 1 98E?
8me 0t 8me Ot
Then, taking the average over space, assuming homogeneous turbulence of strongly
magnetic nature, which implies V - (§E x §B) = 0 and §E*> < §B?, one arrives at
1 d(sB*)
87 dr

1
+-8j-8E+V-(SE x 8B) = 0. (2.2)
C

—(8j - 8E), (2.3)
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1 d(8B? 1 d*k do &k do’ .
(6B%) = / <3ka 8EY +8jiy 8Erw)

87 dr 2] @n)y2r 27) 2
d*k do 5 1
(27[)3 2 W Xkw, T
The last equality uses the relation 8Ex, = i8jko/ (@Xkw.1), Xkwr denoting the
transverse susceptibility in w — k space. It also introduces the power spectrum of
current density fluctuations, through (8ji,8j5,,) = (27)*8 (k — k') (0w — &) S5 (k, ).

The transverse current density fluctuations are related to the transverse magnetic
modes through (Felten et al. 2013)

5j " ke oBy, |14 1 (2.5)
w = —kc © . .
Ik 4 k (ke)*

One can safely neglect the last term in the brackets since |w| = y;, the damping
rate, and y, < kc as demonstrated further on. Therefore, the power spectra
of current fluctuations and magnetic turbulence are related through %;(k, w) =
(kc/4m)* S sp(k, ) and for magneto-static turbulence, Fsz(k, w) = 2m8(w) Fsp(k).
One, thus, finally arrives at

d <8B2> -2 %k Fsp(k), (2.6)
dr 2 2ny Vi 7 B .
with damping rate in k—space (y; is counted as positive for effective damping):
1
Ve = —k*c*3 () ) (2.7)
47Ta)ka$T w—0

Therefore, the bulk of the calculation consists in evaluating the nonlinear
susceptibility. For reference, assuming ballistic trajectories and low frequencies
w <K kc, one has

4
47TkaT ~ —l* Trqa /

where f,(p) represents the homogeneous part of the distribution function of particles
of species «. For a Jiittner—Synge distribution:

Na b e MY

w

{1— ()2] 0, (28)

kv

—_—— 2.9
TP = ook 29)
with o = mc?/(kT), y = [1 + p*/(mc)? }1 and n, the density of particles, one finds
asw — 0
2 2
AT YpoT = I — | e, 2.10
T Xko, T l a)chsz)< +M2>e (2.10)
in terms of the relativistic plasma frequency (squared) a)}%_a = 4mn,qiu/m which
leads to the ultra-relativistic (# — 0) linear damping rate
4 k3c?
Vi = ==, (2.11)
T wy
with a) =>, w . the relativistic plasma frequency of the global plasma. This result

for the linear Landau damping rate in a ultra-relativistic plasma matches previous
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derivations, e.g. Bergman and Eliasson (2001), Chang et al. (2008) and Felten and
Schlickeiser (2013b).

One can generalize very easily the above result to a power-law distribution of
particles with index s and minimum Lorentz factor yu;,:

- nels =1 (y 77
folp) = Ay ( ) Oy = Ymin)- (2.12)
TTMC” Ymin Ymin
One then infers in the ultra-relativistic limit yp;, > 1
4 k33 S
Ve = (2.13)

T (s+2)(s—1)

The damping rate differs from the previous by a factor of order unity only. In
the following, the calculation of the nonlinear damping rate will be carried out for
this power-law distribution function, since it guarantees that there are no particle
with Lorentz factor outside the range of application of the approximation used (see
further below). Furthermore, one expects the distribution function in astrophysical
blast waves to follow such a power-law to a good approximation; notably, Fermi
acceleration at relativistic shock waves predicts a spectral index s ~ 2.3 in the ultra-
relativistic limit for isotropic scattering (e.g. Bednarz and Ostrowski 1998; Kirk et al.
2000; Achterberg et al. 2001; Lemoine and Pelletier 2003 ; Keshet and Waxman 2005).

2.2. Nonlinear susceptibility

The current density fluctuations, from which one can extract the susceptibility, are
defined in terms of the fluctuating part of the distribution function, as:

8j = an/d% V8fu(r, p,1). (2.14)

The full distribution function is written f,(r, p,t) = f,(p.t) + 8f.(r, p,t), with
8f.(r, p,t) the random inhomogeneous part and f,(p,t) the spatial average.
Following Weinstock (1969, 1970); Ben-Israel et al. (1975) this fluctuating part is
given by the solution to the inhomogeneous part of the Boltzmann equation, and it
can be written in terms of a propagator %, as:

df,(p.7)
ey (2.15)

t
v pot) = Ut 3Fulr poto) — [ AT Ufe 1) 8F (D)
fo
The random force operator is 8F (1) = ¢, [6E(r,7)+v x8B(r,t)/c]. In the
following, f, is assumed isotropic in p; then the term associated to the magnetic
Lorentz force vanishes in the above expression.

The properties of % ., are described in details in the above references and its relation
to other propagators is discussed in Birmingham and Bornatici (1971). For the sake
of completeness, their definitions are recalled in Appendix A.

In the following, the initial data will be written init. data out of brevity and clarity.

Going over to Fourier variables,

8far(p,t) = init. data — /d3r & oikr
e - ' e (27()3
I 74 vd-—
X / dT %y/(t, T)e’kfaEk/(f) . 77fa(p, [) (216)
fo vdp
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So far, the treatment has been exact; in particular, the separation of f,(r, p,t) into
an average and a random part does not imply any linearisation procedure. The main
approximation of the present work is to approximate the full propagator %., by
the average propagator %, which corresponds to the truncation to the first term in
a series expansion in powers of the fields, see Appendix A, which summarizes the
properties of these propagators, and see most notably Dupree (1966); Weinstock
(1969, 1970); Birmingham and Bornatici (1971) and Ben-Israel et al. (1975). As
recalled in Appendix A, higher order terms are suppressed relative to this first order
correction by powers of ct./ry, with 7. the correlation time of the electromagnetic
fluctuations, r, the typical gyroradius of the particles in the turbulence, defined
with respect to (§B%)!/2. The present work, thus, makes the explicit assumption
that r, > ct..

In relativistic blast waves, the typical Lorentz factor of a particle downstream
of a relativistic shock wave of Lorentz factor yg, is ys for a pair shock,
or Y (resp. yswmi/m.) for the ion (resp. electron) population in an electron-
ion shock (e.g. Spitkovsky 2008a,b). In the following, this Lorentz factor is
denoted ymin. One then derives the typical ratio ry/ct. for a particle of Lorentz
factor y:

Te o ko v (2.17)

B .
CT¢ @p  Vmin

The typical scale of Weibel turbulence is ct. = k., ~ A c/w, with A ~ 10

close to the shock front (Chang et al. 2008; Spitkovsky 2008a; Keshet et al
2009; Sironi et al. 2013). Given that ez < 1072, this indicates that typically,
ry X T, possibly r, > ct., depending on y/ymin and ep. The expansion used
here should, therefore, be a good approximation away from the shock front, where
€p ,S 1072.

It is instructive to rewrite the above expansion parameter in terms of the ratio of
fluctuating to mean quantities. In particular, using (2.5), which relates the current
fluctuations to the magnetic fluctuations, one can show that, in orders of magnitude,
dn/n ~ kmaxc$8By,, [(nec) ~ e;/ 2km.d,(c/a)p, with én the density of current-carrying
fluctuations. Therefore, the above hierarchy ry/(ct;) > 1 at ymin also implies 6n < n,
i.e. small fluctuations; note that the former constraint ry/(c7;) > 1 is more stringent
than the latter 6n < n, because 4 = 10.

Since §E; (t) depends solely on time, it commutes with %, (see Appendix A).
Equation (2.16) can then be approximated as

Sfur(p,t) = init.data —

31/ t =z
Ga /d3r/ d k3 e—ik-r+ik’-r/ dr SEkf(T) . <eik’-Ars(r) vs(t) dfo:(pv 'L')>
(2m) ,0

Vs dp
The quantities rg(t) and wvg(t) represent the exact orbits of the particles in the
fluctuating fields at time T with boundary conditions r(z) = r, vs(¢) = v; furthermore,
Arg(t) = r¢(r) — r. The average over the exact orbits will be calculated further on in
the limit of a magneto-static turbulence. In this limit, v, and d f,(p)/dp are constant
in time; thus, v, = v in particular and these terms can be extracted from the average.
Of course, dissipation is accompanied by a transfer of energy from the fields to the

(2.18)
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particles. This, however, takes place on a timescale ~ y, ! much larger than the
scattering time of the particles, ;, so that on this latter timescale, energy flow can
indeed be neglected. Furthermore, in relativistic blast waves, the turbulence energy
density contains much less energy than the particles, ez < €, ~ 0.1 (see above
references).

As a result of spatial homogeneity, the average does not depend on r; it only
depends on v and ¢ — t. Therefore,

t J—
Sf.x(p,t) = init.data — g, / dz 8B (1) - (*AnIy (1)) ll,df(fl(,m

Similarly, using the fact that the above expression is written as a convolution in time,
the Laplace-Fourier transform of the fluctuating part of the distribution function
ends up being
1df,

fa(p), (2.19)
dp

8fukw(p) = init.data — g, Ly (2" (1)) - $Ex

v
with Lp the Laplace transform operator; 8Ey, represents the Fourier-Laplace
transform of the fluctuating electric field. Omitting the initial data, from (2.14)
and 8jr, = —iwxre 6 Ere, one then extracts the nonlinear susceptibility

R _
. 9da 3 dfoz Vi ik-Arg(t)

oy = =30 [ @ L ), (2.20)

One is particularly interested in the transverse susceptibility, since the turbulence is

assumed magnetostatic:
1/, Kk
Xko.T = 5 (5” - k2> Xij- (2.21)

3. Analytical approximations and results
3.1. Nonlinear susceptibility

In order to calculate the first-order nonlinear correction to the above damping rate,
one now needs to evaluate the average over the exact orbits in (2.20). This is done in
Appendix B.

Note that Appendix B assumes explicitly that the magnetic field behaves as white
noise, with zero average, with a correlation time 7. assumed to be smaller than the
scattering timescale of the particles ;. Physically, this corresponds to the transport of
particles in a small-scale turbulence, i.e. to the same approximation as above, ct. < 7y,
with r, the typical gyroradius of the particle defined in terms of the rms magnetic
field.

The transport of particles in small-scale magneto-static turbulence is well known,
see in particular Plotnikov et al. (2011) for a recent study. In this configuration, one
can work out exactly the correlators that appear in (2.20), see Appendix B. One, thus,
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derives

1 4 +00
47 Xko T = _E ﬂqa 27'[ f / dr

2

1, .0t 4 3. 1
_3kvts|:l‘s_3+2C1_6C3:|}

x [(1 n ’kvz”‘ts) Cy — ikvtuCs + Zkvz“tsq], (3.1)

using the short-hand notation: C, = exp(—pt/t;). The variable u is defined as the
cosine of the angle between the wave vector k and p. The time integral explicits the
Laplace transform over the correlation function. The above expression represents the
main result of the present paper.

One notes that kvt, ~ t;/t. > 1, since k ~ 1/(ct.) for a magneto-static turbulence
on scale k~!. One can, thus, approximate the above result as follows. First of all,
one notes that the exponential contained in (3.1) is cut off at large times, due to the
decorrelation of the particle trajectories. Introducing the following large parameter:

k = kvt (3.2)

1
X exp{-i—iwt —ikvtsu(1 — Cy) — 3 3

1 1
vt u? {— +C,—Cy+ =C;

which explicitly depends on particle momenta through v and ¢, expanding the terms
in the exponential in the limit + < £, one obtains (B23), which reveals that the
cut-off becomes prominent whenever «%t3/t} < 1,1ie. t < k. Since k > 1, this
justifies the approximation of the above integral in the small-time limit ¢ < f:

1 4 g’ df,
47 Yk 1 —5 _li‘;@ﬂ/dpdupzvdj;”
+o0 1
X i dr exp [Jria)t —ikpt/t =2 (1—u?) K2t3/ts3]
|:<1 + 2) Ci(t) —ikpnCy(t) + 2C3(I):| (3.3)

One can check that in the limit #, — -oc0, one recovers the linear transverse
susceptibility, as expected. This integral is of the Airy type. It can be written and
further approximated by

47[(’102( fa iK . iK
47 Yo 1 = T d 1—1-7 11—1K12+?I3 (1—n?),
(3.4)
with
oo PO T
I, =t dr exp [i (wts — kK +ip)t — ; K2l3:|
0
I
~ (3.9)

i3
—iwt, +ikp+ p+ [1 e 2]

Finally, one can work out the integral over u after dropping the slow dependence
on (1 — u?)'3 in the denominators, i.e. making the substitution (1 — u?)/3 ~ 1; this
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leads to

4 q? df, 1—m
47 Yk, T —ﬂz wZ“ /dpdupzv dj; {(1—m1)21n (—1 1) —2m,

1 1—m 1—m
+ik {2m1(1 —m?)In <—1 —f—m:) —ms(1 —m%)ln<_2>

1 1 —mj
—I—§m3(1 —m3)’In <_1+m3> —m%+2m§—m§} } (3.6)
with the short-hand notation:

o
P ko
In the limit t;, - +o00, k — 400 and m, — w/(kv); (3.6) then reduces to the
standard (linear) expression for the transverse susceptibility of a relativistically hot
plasma. Note that in the limit @ — 0, one can expand wyx, r to lowest order in
negative powers of «, yielding:

m + i (plf1 + 671/3K72/3) . (3.7

4mg? df
AT w Xk 1!, & —T “/d du pPv—-
ko, Tl 0 ; A pau p dp

X [im =237 Pic R 4 i67 P - (3.8)

The im term within the brackets corresponds to the linear result; the lowest order
term in « % indicates that the nonlinear effects tend to increase the damping rate.
This will be confirmed in the full calculation below.

3.2. Nonlinear damping rate versus k

In order to evaluate the above integrals and recast them in a proper context, one
needs to explicit the dependence of ¥ on wavenumber and momenta; since #; oc ré
and k = kvt,, k oc y? of course. One now assumes that the power spectrum of
magnetic turbulence in Fourier space takes on a power-law shape and peaks at
some maximum wavenumber kyax, S sp(k) oc (k/kpax)™®, with np > —2 to guarantee
T. ~ 1/(kmaxc). Linear theory predicts a damping rate y;, oc k°, indicating that
damping is much faster on the smaller spatial scales, as expected. Therefore, behind
the shock front, the turbulent power spectrum is built up at some initial time, then gets
eroded as time goes on, smaller scales being dissipated first. In short, the maximum
wavenumber, at which there remains net power, becomes time-dependent. At a given
time, one should, therefore, evaluate the damping rate of the turbulence at the (time-
dependent) maximum wavenumber kp,«(f), since modes with smaller wavenumbers
will be damped on much longer timescales. One can relate the magnetic power at time
t to the initial power through (§B(t)*) =~ (8B(0)*) [kmax(t)/kmax(0)]"**>. In this way,
recalling that t; = (3/2)y’m?c?/ (w.e*(8B?)) (see Appendix B), with 7 ~ [kmax(t)c] ™",

one finds
o Thkea®]T v Y
K=k [kmax(m} (ymm ’ (3)

with kg the value of x at t = 0, at kyax(0) and at ypin.

Interestingly, depending on the shape of the power spectrum of magnetic
fluctuations, one can find situations where « increases or decreases as a function
of k; in the limiting case np = —1, x becomes independent of the (time-dependent)
maximum wavenumber behind the relativistic shock wave, meaning that « does not
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Kinax 1)/ kmax (0)
FIGURe 1. Damping rate versus wavenumber: in thick gray, the linear calculation; in thick
red, the damping rate at first nonlinear order, assuming xo = 1 and ng = 0, calculated

through (3.1); in dashed blue, the same damping rate calculated with the approximation (3.6);
in dash-dotted orange, the scattering frequency 7! in units of w, at Yimin.

o
4]
T

Yi/ Yk, tin—1

1072 107" 100

Kmax 1)/ Kmax ()

FIGURE 2. Evaluation of the nonlinear correction to the linear damping rate (yx1n) versus
wavenumber: in thick red, the correction calculated using (3.1); in dashed blue, the correction
calculated with the approximation (3.6). As Fig. 1, this figure assumes xo = 1 and ng = —1.

depend on time (since injection through the shock) or, equivalently, on distance
to the shock front in the downstream plasma rest frame (the shock front moving
away at velocity ¢/3 in that frame). However, if ny < —1, « decreases with decreasing
wavenumber, because erosion leaves enough power at low k—modes, while the effective
coherence length increases, thereby leading to the eventual trapping of particles,
k < 1. Since the present calculations rely on the approximation x > 1, the following
assumes ng > —1. The PIC simulations of Chang et al. (2008) further suggest that
indeed ny is closer to zero, although this ignores the influence of high-energy particles
on the turbulence, as discussed in Keshet et al. (2009) and Medvedev and Zakutnyaya
(2009).

Figures 1 and 2 show a numerical evaluation of the damping rate y;, obtained
through a full calculation of (3.1) and of its approximation (3.6), as a function of the
time-dependent k., assuming ny = 0 and xy = 1.
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Figure 1 also shows the evolution of the scattering frequency #;! versus
wavenumber: this allows to verify that, at all kp,y, one has k™! < t, < y,!, which
validates the assumptions inherent to the present approach.

These figures show that the nonlinear calculation modifies the linear calculation by
a factor of order unity at kp.(0), then converges to the linear calculation at smaller
kmax; indeed, np = 0 implies K oc k.l : « increases with decreasing values of k. at a
same ymin, therefore the importance of nonlinear effects, which is quantified by inverse
powers of «, becomes weaker as k. decreases. As mentioned above, for ng = —1,
one would find a correction at all k., equal to the correction calculated at k. (0).

These calculations also indicate that the nonlinear terms systematically lead to an
increased damping rate, although the correction is modest. This goes contrary to the
discussion in Chang et al. (2008), which conjectured that the deflection of particles
by magnetic turbulence might lead to a weaker damping rate.

4. Discussion and conclusions

The present work studies the damping rate of the micro-turbulence which has
been excited through e.g. Weibel/filamentation instabilities in the precursor of a
weakly magnetized relativistic collisionless shock wave then transmitted downstream.
As mentioned in Sec. 1, such calculations are directly relevant to the physics of
collisionless shock waves, but also to high energy astrophysics, since the damping of
the turbulence governs the strength of the magnetic field in which electrons radiate
(and, therefore, the frequency at which they radiate the bulk of their energy).

In the standard afterglow model for gamma-ray burst, the canonical value for the
equipartition fraction of magnetic energy density in the blast is taken as ez ~ 1072,
on the basis on afterglow observations in various wavebands, see e.g. Waxman (1997),
Wijers and Galama (1999) for early determinations, and Panaitescu and Kumar
(2001) for a compilation of results, which however reveals a large scatter in this
parameter. Such a value would fit nicely the results of PIC simulations in the absence
of dissipation, since these simulations find ez ~ 1072 immediately downstream of the
blast; the fact that €5 remains that large up to the long time scales on which electrons
can radiate gives rise to the notorious problem of the origin of these magnetic fields.

Recent detections of gamma-ray burst afterglows at high-energy > 100 MeV may
have shed a new light on this issue. If this high-energy emission indeed corresponds
to the synchrotron afterglow, e.g. Kumar and Barniol Duran (2009), Ghisellini et al.
(2010) and Kumar and Barniol D. (2010), these detections offer another observational
constraint to pin down € beyond the degeneracies inherent to most of the previous
studies, see the discussion in Lemoine et al. (2013). Then one derives low values of
€p, well below the canonical one, which may be interpreted as the partial dissipation
of the Weibel-generated turbulence, as described here (Lemoine 2013); in particular,
assuming a power-law decay €z oc (twp)* as a function of comoving time, one derives
—0.5 £ o, £ —0.4 from a handful of gamma-ray burst afterglows seen in radio,
optical, X-ray and at high energy (Lemoine et al. 2013), i.e. a net dissipation. The
decay of Weibel turbulence behind relativistic shock waves, thus, appears as a key
ingredient in describing accurately the light curves of these extreme astronomical
phenomena.

The present work presents a calculation of the damping rate to the first nonlinear
order, by computing the effects of particle diffusion in the micro-turbulence. As
mentioned in Sec. 1, one interest of such a calculation is to study the dependence
of this correction on the power spectrum of magnetic fluctuations, which at present
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cannot be reconstructed with confidence by PIC simulations. An exact calculation is
possible, thanks to the small-scale and magneto-static nature of the turbulence, which
allows for an explicit calculation of the trajectory correlators which determine the
amount of resonance broadening. As discussed in the main text, this work assumes
that the particles are not trapped in the micro-turbulence, i.e. the scattering length is
assumed larger than the coherence length of the magnetic fluctuations.

The overall influence of nonlinear terms is found to be of order unity at the
maximum wavenumber, and to decrease with decreasing wavenumbers k, provided
the three-dimensional power spectrum of magnetic fluctuations &5z oc k"# has an
index ny > —1. In this case, indeed, the ratio of the particle scattering timescale ¢
to the coherence time 7. of the magnetic fluctuations increases, therefore the particle
trajectories become more and more ballistic as & decreases and one recovers the
linear result in the small k limit. The results obtained also indicate that the nonlinear
correction systematically increases the damping rate.

The present results would suggest that the damping rate does follow roughly
the scaling y, oc k* predicted by linear theory, however one cannot exclude at
present that the power spectrum of magnetic fluctuations is such — i.e. ng < —1 —
that effects associated to particle trapping become more and more prominent
as dissipation progresses (meaning, as the time-dependent maximum wavenumber
decreases). Actually, if ¥, oc k%, one can relate the decay exponent ¢, to the power
spectrum index np and ¢, (Chang et al. 2008; Lemoine 2013):

3 + np

o0 = — . (4.1)
(077

Then, oy ~ 3 with a value o, ~ —0.5 as suggested by observations (Lemoine et
al. 2013) would imply ngy ~ —1.5, in which case the ratio #,/t. oc k"#~! would
decrease with decreasing k: i.e. the nonlinear effects would become more prominent
as dissipation progresses.

The present calculations cannot address the situation in which particles are
effectively trapped and other theoretical tools are needed to probe this regime and
to make the connection with observations. Further PIC simulations, extended in time
and dimensionality, would also provide useful guidance to better characterize the
scaling of y, versus k. Finally, dedicated PIC simulations with an artificially set-up
power spectrum might be used to probe the regime np < —1 in which trapping is
expected to become more effective as dissipation progresses.

It is a pleasure to thank Laurent Gremillet and Guy Pelletier for very valuable
suggestions and discussions. This work has been financially supported by the
‘Programme National Hautes Energies’ (PNHE) of the CNRS.

Appendix A

Separating the average and random parts as usual, as described in Sec. 2.2, one
finds that the fluctuating part of the distribution function obeys:

9 _
[at +z)} flr, p.t) = 5L Lol po1)) = —5£TF, (A1)
with:
_ _ 3 9
P =P8, L= 2, 8$=q<8E+B><SB>~—. (A2)
ar c ap
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Following Weinstock (1969) and Weinstock (1970), one introduces the averaging
operator .o/, which takes the average over the statistical realization of the
fluctuations of all quantities to its right, i.e. ¥((r, p, 1)LV (r, p,t),..., ¥, (r, p,t) =
Yi{¥s, ..., ¥,). One then defines the following propagators:

A aatJrff] Ut 10) =0, Uty 1) = 1
[
U ar + (1 — /) g] Uyt 1) = 0, Uy(to, 10) = 1
B :a 1 _
LR +$] Ut 1) = = (8L U), Ui, o) = 1. (&3)

AU(t,ty) of course represents the full propagator of the Vlasov equation; acting
on a function ¥ (r, p,t), it propagates it backward in time, i.e. %(¢t, to)¥(r, p,t) =
Y (rs(ty), ps(ty), to) with re(zy), ps(tp) the solutions of the characteristic equations for
the trajectories, such that r¢(tr) = r and p,(t) = p. The merit of the propagator % .,
is to provide an explicit solution for §f,(r, p,t) in terms of its initial data and the
average distribution function f,,.

The various propagators %, 4., and % are related through series expansions
in powers of ¥ (Birmingham and Bornatici 1971). In order to obtain a tractable
expression for %, one generally truncates such series to the lowest order, which
leads to #., ~ % (Dupree 1966; Weinstock 1969, 1970). Explicitly, one finds to the
next-to-leading order (Birmingham and Bornatici 1971):

QZZA(Z,I()) = %(l,lo)—/ d‘L’l @(l,‘[l)(l —ﬂ)g(fl)ﬁ(fl,lo) =+ (A4)

The magnitude of the next-to-leading order term relatively to the first order term is
1.e(8B%)1/?/(ymc), with y the Lorentz factor of the particle.

The propagator % acts on a function ¥ by propagating it backwards in time and
taking the statistical average over the exact orbits:

A, to)(r, p.t) = (W [rs(to), ps(to), to]) , (A5)

with the boundary conditions ry(t) = r and p,(t) = p. Consequently, Z commutes
with quantities that depend solely on time.

Appendix B

This Appendix calculates the correlators over the characteristic trajectories in the
turbulence, which enter the expression (2.20) for the nonlinear susceptibility. All
throughout this section, the index ; for the characteristic trajectories is dropped, for
clarity.

The particle suffers pitch-angle scattering in a magnetostatic turbulence. As
discussed in Plotnikov et al. (2011), a convenient way to calculate the transport
coefficients is to write the time evolution of its velocity as a time-ordered product of
an exponentiated Liouville operator:

(') = T exp {— /T drlz@} v(1), (B1)
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where a minus sign has been introduced in order to compute quantities at time ¢ < ¢
as a function of quantities at time z. The rotation operator 352 is defined as

ed B
ymc

§Q = 8Q°L,, 80° = (B2)
with y the Lorentz factor of the particle, a = 1, 2, 3, Za a generator of the rotation
group, with matrix components: L,;! = eu' (€. denotes the Levi-Civita symbol).
Equation (B 1) solves the equation of motion of the particle.

The rotation operator is assumed to behave as isotropic white noise with correlation

time 7.:
2
(824(m)) =0, (8Q2%m)sR"(n)) = 37T —1,)882°6°, (B3)
with 622 = [e(SBz)l/z/(ymc)]z. A useful identity is: 8°°L,L, = —21, which implies
<8/S\2(rl )8/.{\2(12) = —452°1.8(1) — 12)7. Therefore, the average over the exact orbit
gives
1/ ! ~ 2
(v(t")) = exp {2/ drl/ dr, <5.Q(‘L’1)5.Q(‘L’2)>:| v = exp |:—3‘L'c(l‘ —t/)SQZ} v.
t t (B 4)

This correlator defines the scattering time 7, = 3 (rczS.Qz)*l, which depends on the
momentum of the particle. In the following, the generic notation C,(t) = exp(—at/t)
is adopted, with a a rational number.

The calculation of the correlator (v;(f;)v;(t,)) is more involved as it involves
the product of two time-ordered exponentials. One must stress that it differs from
usual velocity correlators in diffusion calculations because of the particular boundary
conditions: v;(t) = v; and v;(¢) = v;. This correlator is written:

k

t t )
vi(t)v(r) = T exp [—/ dr 8.(2} T exp [—/ dr 8!2] AVR (B9)
I %) j

1

Now, if #{ > t,, one rewrites

t
T exp {—/ dr 89}
n

and conversely if t, < t;. In the following, t = max(t, ) and ¢t = min(t, t).
Furthermore, due to the white noise nature of 552,

t t T
<9‘ exp {—/ dr 8.{2} g exp {—/ dr 8.{2} g exp l—/ dr 39]>
T T t
t . t . T P
= <<7exp {—/ dr 89} T exp [—/ dr 8Q}> <3~exp l—/ dr 89] >
T T t

(B7)

l

t m I -
= 7 exp {—/ dr 89} I exp [—/ dr 69} (B6)
n %)

j m

J

l

J

Finally, the action of <9‘ exp [— ft? dr (S/.(\ZD on vy gives a factor Cy (7 — 1) vy, see

(B4). One, therefore, needs to calculate only the first average on the r.h.s. of (B7).
Here, a key observation is to note that the product of those two time ordered
exponentials can be rewritten as the time ordered exponential of a tensorial operator;
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this is demonstrated in Appendix C. Expliciting the matrix components:

t t t
T exp [—/ dr(S.Q] K T exp [—/ dr(S.Q] I'= T exp {—/ dr(SW] K (BY)
7 i 7 7

J

ij
with
Wit = sw= M +sw M, sweM = sef sl sweM = sfsl. (BY)
The tensor product rule in the time ordered exponential is understood as:
SW-8W ;K = sW;;m"sW,,,". (B 10)
One, therefore, obtains:
(vi(t)vj(ra)) = T exp B /tt /tt dridn (W (1)) - §W(12)) ”klcl(f—g)vkvl. (B11)

L

Now, using the identity
(82"(1)882,"(12)) = (82(11)82"(12)) Lu" Ly ;"
= %rcs(q — 1)8827 [8;;8™ — 88" (B12)
one finds
BW(t1) - sW (), M = %wm —1)882% 4858, —28/'8,F +25,;6"] . (B13)

This operator eventually acts on v,v;, which is symmetric in k and [, therefore one
can keep only the symmetric part. Define, therefore,

2
MM = 858" +8,8,% — ga,»,-(sk’ (B 14)
in terms of which one rewrites the symmetrized average, as indicated by the symbol
(kl):
(W(t1) - 8W(r2)),; M) = —2te8(t1 — 12)882° M;M. (B15)
Finally, the M operator satisfies: M - M = 2M so that
M M
exp(aM) = 1 — — + ™ —, (B 16)
2 2
and
Kl 2 5
Mij VUV = ZU,‘UJ' — gU (Sij‘ (B 17)

Combining together the above results, one ends up with:

2

<U,'(l‘1)vj(l‘2)> = C (f—z) {C3 (f —f) V;V; + %5,‘] [1 —C; (l —t)]} s (B 18)

which has a simple interpretation: the correlator vanishes for time intervals 7 —¢ larger
than 1, else it tends towards v;v; (the boundary conditions at time 7) if t —7 < £,/3,
or to the isotropic average §;;v*/3 in the opposite limit.
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One then derives easily the position correlator, with Ar;(t') = r;(t') — r;, including
the boundary condition r;(t) = r;:

/ / dndn (v (0);(r2)

1 1 1
= 213{ |: + 8C3(t — t/) — iCl(I —l/):| Viv; +

(Ar(t)Ary(t))

3

{t z r_ % + %Cl(t —1) — éC3(l - t’)} v;ai_,}.
(B19)
Similarly, one obtains
(Ari(1")) = —t5 [1 = C1(t — )] vy, (B 20)
hence
(Ari(t)Ar (1) — (Ar(t) (Ar(t')
= tf{ {—; +Ci(t—1)—Co(t — 1)+ %C3(Z — t/)} i)
+§v28ij {IZI/ - g - %Cl(t —t)— éC3(t - t')} }
(B21)

The average (exp [ik - Ar(t')]) can be truncated at the first cumulant, leading to

<exp [lk . Ar(t’)]> ~ exp{iki . (Ar,«(t’)) — %k,k] |:<Ar,‘AI‘j> — (Ar,-) (Ar,)} } (B 22)

In particular, the small-time limit t — ¢’ < ¢, will be useful:
1
(exp [ik - Ar(')]) ~ exp {—ikv,u(t —t')— gkzvz(l —u’)(t— t’)3 /ts} ., (B23)

with u = kv/(kv).
The correlator which enters the expression for the nonlinear susceptibility is

(exp [ik - Ar()] v;(r")) = (exp [ik - Ar(t') + Av-93/0v])v;. (B24)

It is understood that Av = v(¢#') — v and the partial derivative 9/0v does not act on
Av. As before, the average of the exponential can be truncated at the first cumulant,
leading to

(exp [ik - Ar(t)] v;(t'))
_ exp{iki . <Ar,-(t')> _ %kikj <A75AV/‘> — <Ar,»> <AVJ'>:|
+iki (Ari(t")Av(t')) 3/, — ik; (Ari(t)) (Av(t')) Wavk}vj’ (523

where the second-order cumulant (Av;Av)d/dv;8/dv, has not been considered
because it vanishes when acting on v. Expanding the exponential in 9/0v; to first
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order, one ends up with
(exp [ik - Ar(t)] v;(t)) = (exp [ik - Ar(t)])
s ) (80,0 = (8t (B0, |
= (exp [ik - Ar(1)]) {Cl(t — '),

1 1
+ kvt [2C1(Z —t)—Cy(t —1')+ §C3(t — t’)] v;

i 3 N1 ,
—gkjvzts {1—2C1(Z—t)+2c3(t—t)]}. (B26)
In calculating the transverse susceptibility, the (longitudinal) last term oc k; disappears,
of course.
Appendix C

In order to demonstrate (B 8), one needs to expand the time ordered exponentials.
The left hand side reads
k !

1 t
I exp [—/ dr 6[2} I exp [—/ dr 8!2]
T i T j

m arguments n arguments

+o0 !
1 t ; 7 ; t , ) 7 ) )
- Z o / drlé.Ql.lz/ dtQSQi;.../ dtj S.Qj’f/ dr; 6827 ...
: N t t t 12

m,n=0

(C1)

and it is understood that i; =i, i,,»1 = k, j1 = j, juy1 = I. The product of the m by
n integrals can be written as a single time ordered sequence as follows. For the sake
of clarity, one first rewrites §§2< the operators with i indices and §$2~ the operators
with j indices and one keeps in mind that all §§2< operators are contracted one
with the other according to the time ordered sequence, and similarly for the §§2~
operators. Then, one breaks the integral f; drl’(S.Q;h over the time intervals [f, 1,,],

[Tws Tm—tls - . » [T1, ] and one reorders the sequence, noting that (indices discarded):
/ dT,’H §2° de 52 = / de 8Q>/ dT,‘Jrl §82°. (C2)
7 Tisl T T

Repeating this exercise for all 62~ integrals, in the order of the time sequence, one
ends up with a time ordered sum over all possible permutations o,,, of the operators:

k 1

t t
I exp [—/ dr 89} I exp [—/ dr 8.{2]
T i T i

J

+% 1 t T Tm+n
= Z T Z / dTl SQﬂmﬂ(l) / dfz 8[2‘71»111(2) . / dtm-i»n SQ”rrxn(m+n)'
o0 m:n.: o 7 7 7

(C3)
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The permutation is defined by: 0,,,(a) = (> or <), with m copies of < and n copies
of >. The indices have been discarded, but it is understood that all operators are
contracted within their respective < or > families, as mentioned previously. One
then notes that this contraction sequence can be rewritten as the tensor product of
SW=, W= operators introduced above, namely:

[890'””(1)8.(20”"(2) o (SQann("1+Vl)] ijkl — [SWUmn(l) CSWOom@ . (SWU’”"(M+H)] ijkl (C4)

since 8 W= acts non-trivially only on i —type indices, while §W> acts non-trivially only
on j—type indices.
Finally, one uses:

+0o0 1
Z ' 'F/dfl8Wanzn(1)/dT28WUmn(2) e
m:n.

m,n=0

= — _ O, p—m (1) Om.pm(2)
m=0

p=0

(C5)

to obtain

t e k ¢ . 1 0 1 7 r
T exp {—/ dr(S.Q} T exp [—/ d‘L’5.Q:| = ng‘ / dr W= +sWw™)| ;¥
T i r j =0 p: t

(Co)

which gives the desired result.
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