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Certain non-algebras in harmonic analysis

Lynette M. Butler

Given q_ ¢ [1, 2) , functions f = f& € n 4P ana
0 p>1

g =g € 47 are constructed such that fg { 4% for every
q 9,9, q9

q € [1, q.] - Inparticular, if p € (1, 2) , A is not an

algebra.

1. Introduction and preliminaries

We consider fﬁnctions on the circle group T and write

AP=cnfP, 1sp<w,

where ( denotes the set of continuous functions on 7 and

FiP = (et (r) : 7 e P2)} .
In private correspondence with the author, Professor Yitzhak

Katznelson suggested in outline a proof that AP s not an algebra when
1 <p <2, and has since formulated existential proofs of more general
results. Meanwhile the author has concentrated on a more constructive

approach, the details of which are set out below. The author would like
to thank Professor Katznelson for suggesting the use of the polynomials Dn

and Pc introduced below, and the form of Lemma 1.1.

It is known that Ap is a Banach space under the norm

N he B+ R = ikl + M (R) .
b =il + i Ilp izl p()
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We define e, to be the function ezt‘+ elvt on T and note that, for
hoedb,

1.1 N (eh)=uw(h); M (eh)=MI(h

(1.1) (e ) = k) s (e ) = ()

The spectrum of % € LI(T) is defined by
sp(h) = {n € 2 : A(n) # 0} .

Throughout the following we assume that p € (1, 2) , g € [1, 2)
ay, dz, ... will denote positive absolute constants. If ¢ and Y are

positive functions on {1, 2, ...} , we write ¢ Vv iff
0 < info 1Y < supe TP < o .
If Dn denotes the Dirichlet kernel of degree n ,

1 1 1

= = 5 14+=
(1.2) Ipfl,=2n+1n; Mp(Dn) = (en+1)P A AP Mp[D] v P

In [7], p. 33, the Rudin-Shapiro polynomials P (m=0,1,2, ...)
are defined by

21

P = ) sm(n)en s
n=0

where the sm(n) € {-1, 1} are chosen in such a way that

m+l m
2
Pl =2° 3 Mp(Pm) =2, m=o0,1, 2,
We shall use the polynomials P: (v=1, 2, ...) , where Ps = Pm for
the unique m such that 2m =v < 2’”+l . Then

ml 1m 11

(1.3) B3], <2 @ = 2%2 < 2B
and
1 mo 1 11
\
(1.1) W = Mp(P;] =2P> [-E—JP =2 PP,
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The following lemma will be needed.

LEMMA 1.1 (Katzneison). Let & be a positive integer, ¢ a
trigonometric polyﬁomial of degree less than & , and Y any
it otast )

trigonometric polynomial. Write ¢<2S) t e Then

Mp(w(zs)) = Mp(cp)Mp(W) .
Proof. We can write

6 = o¥ipgy = T Dime

]
mez 2sm

a finite sum. Also, eesmw and e23m'¢ have disjoint spectra whenever

m# m' . Thus, by (1.1),
0 - 3, Pyl
= 1 18m) P (9))P
mez P
= (Mp(«o)]p(Mp(w))p .
2. Construction
Let fn’p = DBr (2s,) °nd 9np.q = Dufmy(2s,) » ¥heTe

n

[ZQQ—leI [2§g—12
my = s M2 =

n 2P 2-q ] and the choice of 81, §, will be
specified below.

If 8, >n , Lema 1.1 and (1.2) - (1.4) show that

i 11
Np(fn,p) < al[nmi + npmg]

(2.1) 1
< a2n2-P
Similarly, if 8, >n ,
i
(2.2) Nq( ) = a3n2-q
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Again, if s, > 2n + 2symy; and s} > 2n ,

- 2
Mq (fn,Paq) ) MCI (D"P;1(231 )P;Iz(?-‘sz)
=M (D?)M
q'\’n

Taking &, = Un and s, = Un + 16mnm; , we have

> K
(2.3) M Cpnp.g) = @

where

K= T q(ep)(2q)
From (2.1), (2.2) and (2.3),
M F 9 n.0)
(2.4) ol el ad = asno
p(fn;)qugn’p,qJ
where
_ (p-1)(e-
o= q(2-p) -

We next estimate the size of sp (f'n p) and
3
c [- +

sp(fn,p) < [-n, n+28m; ]

Sp[gn,p’q

Thus, according to the choice of s; and s, specified above,

)

Q(P’,’;l(%l ))Mq (P;:fz(?sz))

8g-k4-292+pg2-5pg+lip

b

sp(g

bl

) € [-n, n+2sm;,] .

(2.6) Sp(fn’p) v sp(g ,p,q) c [-n, n(1+8rz +32n")] ,
where
_ 2§g—12 _ 6(p+q)=l(pg+2)
P=lmq) » T 77 (e-q)(2-p)
Define

n—zf‘k(
2 = n),p(n)
n W) Fa(n) o))
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o D) pg
n,q Nq(gk(n),p(n),q)
where
2 _;[.211},7
k(n) = oM , pn) =1+ é% , B(n, q) =2 2\2q
Then (2.4) gives
(2.6) o [ngo ] > asn_22w , wvhere Y = (2-q)(2n+1)
AR hq(g_lj
n

+® as n +®

Since Np is a decreasing function of p , the formula

-2
v [0] _r Np(fk(n),p(n)}
prn Np(n)(fk(n),p(n))

shows that to any p > 1 corresponds no(p) such that

o] -2
(2.7) Np{fn] =n for n 2 no(p) .
Also,
2.8 N [ ° ] = B(n,
(2.8) 19n.q B(n, q)
. _ 0 - o .
Flnally,'let fn = evnfn . gn,q evngn,q , where the integers
vn = vn q will be chosen appropriately, and consider
’%o
(2.9) f=f =117, 9,9, . =14
A =1 " q 4,4, ,21 "4

By (1.1) and (2.7),
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1A

n) = 1o (5,)

(o]

L %l

n=1
n_(p)
(o]

o
N [f ] +
nzl pin n>n§(p)

I

-2
n

A

<o for all p > 1

£

and so f € N AP . similarly, by (1.1) and (2.8),
p>1

o

!

N
n=1 q
o
o
N
nzl q [gn,q]

I B(n, q)
n=1

A

v (g,) (9,,,)

1A

<°°,

and so gq(Aq for 1 =g<2.

By (2.9),
fgq = r?s 9 a
(2.10)
= + .
fna (r,s>§(m,m, Fif5.a
Let
— o . <
Fraa, U{SP[fﬁ] v SP(gn,qj P4 qo}

(2.11)

= U sP(fk(n),p(n)) U sP(gk(n),p(n),q) P q = qo} .

Then, for q = qo N

sp(f,) v splg, ) c

v
n,q n,q, nsq,
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(=Y + F + v +F .
sp(f‘rgs,q) - T, r,q, 8,9, 89,

Moreover, (2.5) and (2.11) show that Fn q is finite. Supposing the
3
)

\Y to be chosen to satisfy
",qo

[v +F +V +F ] N [v +F +v +F ] =g
(2.12) My M4, My M4, Taldy Tad, 8,4, 8,4,
whenever (r, s) # (m, m) ,

then, for every q =gq_ , (fyq) and Lﬂwgm,q) will agree on the

support of the latter, and (2.10) will show that
q q
M > M
[ q(fyq)} ( q(fmgm,q)]

q
~ o 0
) LWQ[fmgm,QJ] ’
the last step by (1.1). Hence, by (2.6),
M&(fyq) = for 1 =g = q, -

Reverting to (2.12) it is simple to check that (omitting explicit

reference to qo) it suffices to choose v) € Z freely, and to make a

choice by recurrence to satisfy

] . " .
Ve € Z\Fn[vl, cees V3 qo) s 20, € Z\Fn(vl, s V3 qo) s

where
F;[ul, cees U3 qo) = iin (ui+Fi,qo+Fn+l,qo_Fn+l,qo—Fn+l,qo]
v, (2“i‘“j*Fn+1,qo+Fn+1,qo'Fi,qo’iﬁ,qo] ’
J=n
FZ(“l’ e U3 qo) = is;fn [ui+u'+Fi,qo+Fj,qo_Fn+l,qo_Fn+l,qo] >

for every n € N and every (ul, ooy un] € Z
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REMARK. The preceding simple construction encounters difficulties if

one tries to handle all g < 2 in one move. This is because the sets

Fn = U{sp[fﬁ] U sp[gz q] i q < 2} are infinite and it is no longer clear
>

that integers v, can be chosen so that the analogue of (2.12) is

satisfied. On the other hand, in one of the stronger existential results

mentioned in §1, Professor Katznelson indicates that the existence of

fen 4 anda g €eFP (1= q < 2) satisfying fg ¢ FI¥ (1 <gq<2)
o1 p q

follows on combining (2.4) with convexity and category arguments.
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