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Abstract

We show how finiteness properties of a group and a subgroup transfer to finiteness proper-
ties of the Schlichting completion relative to this subgroup.n Further, we provide a criterion
when the dense embedding of a discrete group into the Schlichting completion relative to
one of its subgroups induces an isomorphism in (continuous) cohomology. As an applica-
tion, we show that the continuous cohomology of the Neretin group vanishes in all positive
degrees.

2020 Mathematics Subject Classification: 22D99, 20F99 (Primary)

1. Introduction

Finiteness conditions of discrete groups are higher-dimensional generalisations of the
notions of being finitely generated and finitely presented. If a group satisfies suitable finite-
ness conditions, one can expect the group homology to enjoy nice properties, like, for
example, being finitely generated. The appeal of studying finiteness conditions stems from
the interaction between topology (specifically, the topology of classifying spaces) and alge-
bra (notably, homological algebra involving chain complexes over the group ring). A similar
theory for total disconnected locally compact Hausdorff groups, which we refer to as tdlc
groups, was still in its infancy a few years ago. What is different from the discrete case? On
the topological side, tdlc groups often admit nice actions on CW-complexes or simplicial
complexes but these actions are never free. On the algebraic side, smooth modules con-
stitute a suitable abelian category; however, it possesses enough projectives only over the
rationals.

If one is content with studying finiteness conditions of a tdlc group G modulo the fam-
ily of its compact-open subgroups, an elegant framework encompassing both topological
and algebraic aspects becomes available. The class of G-equivariant CW-complexes with
compact-open stabilisers enjoys a well-developed equivariant homotopy theory, similar to
the discrete case [16, 18]. Its algebraic counterpart, the category of chain complexes over
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2 L. BONN AND R. SAUER

the orbit category of G with respect to the family of compact-open subgroups, is an abelian
category, even when considered with integral coefficients [18]. Generally, however, it is
unsatisfactory to be restricted to working modulo the family of compact-open subgroups.
Thompson’s group V, for example, satisfies the finiteness condition F∞ in the usual sense
– an important early result of Geoghegan and Brown [8] – but not in the category of chain
complexes of the orbit category with respect to the family of finite subgroups. There is a
similar situation for Neretin’s group, which is a totally disconnected analog of Thompson’s
group V [21].

The recent work of Castellano and Corob Cook [10] drops all these limitations and estab-
lishes a convenient and elegant algebraic theory of finiteness conditions for tdlc groups,
which works also with integral coefficients. Many of the fundamental properties of the dis-
crete theory, as presented in Brown’s foundational book [5], now find analogs in the study
of tdlc groups.

An important construction of tdlc groups from discrete groups is the Schlichting com-
pletion of a discrete group relative to a commensurated subgroup (see Section 2). The
contribution of this paper is to prove finiteness properties of the Schlichting completions
and to relate finiteness properties and cohomology of the Schlichting completion to the ones
of its defining discrete group.

If the commensurated subgroup is normal, then the Schlichting completion is just the
quotient, in particular, it is discrete. One should read Theorems 1·1, 1·2 and 1·5 below with
this in mind; the results for quotient groups are well known.

The definitions of properties FPR
n and Fn are recalled in Section 3.

THEOREM 1·1 Let G = �//� be the Schlichting completion of � relative to the commensu-
rated subgroup �<�. Let R be a commutative ring. Then the following holds:

(i) if � and G have type FPR
n , then � has type FPR

n ;

(ii) if � and G have type Fn, then � has type Fn.

THEOREM 1·2 Let G = �//� be the Schlichting completion of � relative to the com-
mensurated subgroup �<�. Let R be a commutative ring. Then the following holds:

(i) if � has type FPR
n−1 and � has type FPR

n , then G has type FPR
n ;

(ii) if � has type Fn−1 and � has type Fn, then G has type Fn.

Theorems 1·1 and 1·2 are proved in Section 3.
It is an interesting question when the restriction map from the continuous cohomology of

a locally compact group to the cohomology of a dense subgroup is an isomorphism. For the
inclusion SLn (Q) ↪→ SLn (R) this was proved by Borel-Yang [3] in order to solve the rank
conjecture in algebraic K-theory. In the next result, which is proved in Section 4, we consider
the easier situation of the inclusion of a discrete group into its Schlichting completion.

THEOREM 1·3 Let G = �//� be the Schlichting completion of � relative to a locally finite
commensurated subgroup �<�. Then the restriction map H∗

c (G, R) → H∗(�, R) is an
isomorphism in all degrees.
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On homological properties of the Schlichting completion 3

Neretin’s group Nd, which is the group of almost automorphisms of a non-rooted (d + 1)-
regular tree, is the Schlichting completion of the Higman-Thompson’s group Vd,2 relative
to a locally finite commensurated subgroup [9] example 6·7. Brown [7] showed the rational
acyclicity

1
of Vd,2.

We obtain the following consequence.

COROLLARY 1·4. Let d ≥ 2. The continuous cohomology Hi
c(Nd, R) of Neretin’s group Nd

vanishes for every i> 0.

In the next result, χ (2)(G,μ) denotes the Euler characteristic of an unimodular tdlc group.
This invariant is discussed in Section 5. If G is a discrete group with a finite model of its
classifying space and μ is the counting measure, then χ (2)(G,μ) is the usual Euler char-
acteristic. If G is discrete and has torsion, it is the �2-Euler characteristic whenever it is
defined.

THEOREM 1·5. Let G = �//� be the Schlichting completion of � relative to the commen-
surated subgroup �<�. Suppose that G is unimodular and that � and G have type FPQ.
Then � has type FPQ and we have

χ (2)(�) · χ (2)(G,μ) = χ (2)(�)

for the Haar measure μ with μ(U) = 1 where U <G is the closure of �.

2. The Schlichting completion

The Schlichting completion of a discrete group � relative to the commensurated subgroup
� is a tdlc group which we denote by G = �//�. This construction was introduced in [25],
following an earlier idea of Schlichting [22].

A nice background reference is the work of Shalom and Willis [23] who call the
Schlichting completion the relative profinite completion of � with respect to �.

Let � be a discrete group and �<� be a commensurated subgroup. Then � acts by left
multiplication on �/� and thus defines a homomorphism

α : �→ Sym (�/�).

We equip Sym (�/�) with the topology of pointwise convergence. The closure

G = �//�= α(�)

is the Schlichting completion of � relative to the commensurated subgroup �. Strictly
speaking, the Schlichting completion is not a completion of � since α might not be injective.

In the following, we collect some properties of this construction.

PROPOSITION 2·1 ([23, Section 3]). Let G = �//� be the Schlichting completion of �
relative to the commensurated subgroup �<�.

(i) If � is normal in � then G = �/�.

(ii) G is a tdlc group.

1 Szymik and Wahl proved the much stronger integral acyclicity [24].

https://doi.org/10.1017/S0305004125101357 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004125101357


4 L. BONN AND R. SAUER

(iii) The map α : �→ G has a dense image. Its kernel is the largest subgroup that is
normal in � and contained in �.

(iv) The closure of the image α(�) is a compact open subgroup of G. In particular, it is
commensurated in G.

For the proof of Theorem 2·3 we use the following easy fact about the Schlichting
completion.

LEMMA 2·2 ([9, Lemmas 6.3 and 6.4]). The following holds for the Schlichting
completion:

(i) �//�= α(�)α(�);

(ii) α(�) ∩ α(�) = α(�).

An easy consequence is that α induces an isomorphism �/�
∼=−→ G/U where G = �//�

and U = α(�). This fact will be used frequently.

THEOREM 2·3. Let G = �//� be the Schlichting completion of � relative to the commen-
surated subgroup �<�.

(i) If G is compactly generated and � is finitely generated, then � is finitely generated.

(ii) If G is compactly presented and � is finitely presented, then � is finitely presented.

(iii) If � is finitely generated, then G is compactly generated.

(iv) If � is finitely presented and � is finitely generated, then G is compactly presented
[9] Theorem 6·1.

Before we prove this, we consider the following two propositions which show that
Theorem 2·3 implies Theorem 1·1 part (ii) and Theorem 1·2 part (ii) for the cases n = 1, 2.
For the notion of type Fn see Definition 3·1.

PROPOSITION 2·4 ([14, Proposition 7.2.1]). Let G be a discrete group. Then the following
equivalences hold:

(i) G is of type F1 if and only if G is finitely generated;

(ii) G is of type F2 if and only if G is finitely presented.

The analogous proposition can be formulated for tdlc groups.

PROPOSITION 2·5 ([10, Proposition 3.4]). Let G be a tdlc group. Then the following
equivalences hold:

(i) G is of type F1 if and only if G is compactly generated;

(ii) G is of type F2 if and only if G is compactly presented.

Proof of Theorem 2·3. The proof of (iii) immediate since the union of a generating set of
� and a compact-open subgroup of G is a generating set of G. As indicated in the statement,
(iv) is proved by Le Boudec.

Next we prove (i) and (ii). If G is compactly generated or compactly presented, then G is
of type F1 or F2, respectively. Being of type F1 or F2 is witnessed by a contractible proper
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On homological properties of the Schlichting completion 5

smooth G-CW complex X with cocompact 1-skeleton or 2-skeleton. Since the stabilizers
of G are compact-open, they are commensurable with α(�). It follows from Lemma 2·2
that the stabilizers of the restricted �-action on X are commensurable with �. In the first
case the stabilizers of the �-action are finitely generated, in the second case they are finitely
presented. Therefore, � is finitely generated by a special case of the Schwarz-Milnor lemma
or finitely presented by a theorem of Brown [4, Proposition 3.1], respectively.

3. Finiteness properties of the Schlichting completion

Finiteness properties of tdlc groups over Q were introduced and studied by Castellano-
Weigel [12]. Castellano-Corob Cook developed a theory of finiteness properties of tdlc
groups over an arbitrary commutative ground ring [10] which we briefly review first.

A natural setting for the homological algebra of tdlc groups is the category R[G]dis of
discrete R[G]-modules, that is, of R-modules equipped with a left action of G such that
the stabilizer of each element is open. A discrete R[G]-module of the form R[�] where �
is a discrete set with a continuous G-action is called a discrete permutation R[G]-module.
This means that the continuous G-action on� has open stabilizers. If the stabilizers are also
compact, then R[�] is proper.

The category R[G]dis is an abelian category that has enough injectives. If Q⊂ R, then
R[G]dis also has enough projectives, and every proper discrete permutation R[G]-module
is projective. For R =Z this is no longer true in general. For any R, the category R[G]dis
embeds into a quasi-abelian category R[G]top that has enough projectives. Although proper
discrete permutation R[G]-modules are not necessarily projective for arbitrary rings R we
still have the equivalence (ii) in Theorem 3·2. As a consequence, a reader of this paper does
not really have to know what R[G]top and KPR

n are and can just work with the more intuitive
notions R[G]dis and FPR

n . However, the reason that the notion of FPR
n works well, as in e.g.

Proposition 3·5, is that there is the quasi-abelian category R[G]top in the background.

Definition 3·1. Let R be a commutative ring and n ∈N∪ {∞}. We say that a tdlc group
G has:

(1) type Fn if there is a contractible proper smooth G-CW-complex with cocompact n-
skeleton;

(2) type FPR
n if the trivial R[G]-module R has a resolution P∗ → R by proper discrete

permutation R[G]-modules P∗ such that P0, . . . , Pn are finitely generated;

(3) type KPR
n if the trivial R[G]-module R has a projective resolution P∗ in the category

R[G]top such that P0, . . . , Pn are compactly generated.

Furthermore, a tdlc group G that admits a finite resolution by finitely generated proper
discrete permutation R[G]-modules is said to have type FPR.

For the definition of G-CW-complexes see [16]. A G-CW-complex is proper or smooth if
all its stabilizers are compact or open subgroups, respectively.

THEOREM 3·2 (Castellano-Corob Cook). Let G be a tdlc group. Let R be a commutative
ring and n ∈N∪ {∞}. Then the following holds:

(i) if G is compactly presented and G has type FPZ
n then G has type Fn [10, Proposition

3.13];

(ii) the group G has type FPR
n if and only if G has type KPR

n [10, Theorem 3.10].
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LEMMA 3·3. Let G = �//� be the Schlichting completion of � relative to the commen-
surated subgroup �<�. Let M = R[�] be a finitely generated proper discrete permutation
G-module over R. If� is of type FPR

n , then resG
� (M) has a projective R[�]-resolution P∗ � M

such that P0, . . . , Pn are finitely generated. If � is locally finite and Q⊂ R, then resG
� (M) is

a flat R[�]-module.

Proof. If � has type FPR
n then so does any subgroup of � that is commensurated with

� by [5, (5.1) Proposition on p. 197]. Let �′ <� commensurated with �. Let Q∗ → R be
a projective R[�′]-resolution of the trivial module such that Q0, . . . , Qn are finitely gener-
ated. Then R[�] ⊗R[�′] Q∗ is a projective resolution of R[�/�′] that is finitely generated
in degrees 0, . . . , n. Hence the R[�]-module R[�/�′] has type FPR

n . The finitely generated
proper discrete permutation G-module M is a finite sum of modules of the type R[G/U]
where U <G is a compact-open subgroup. By Lemma 2·2 we have G/U ∼= �/α−1(U), and
α−1(U) is commensurable with α−1(α(�)) =�. Therefore resG

� R[G/U] is of type FPR
n .

If� and thus�′ are locally finite and Q⊂ R, then R is a flat R[�′]-module [2, Proposition
4·12 on p· 63]. Therefore R[�] ⊗R[�′] R = R[�/�′] is a flat R[�]-module.

LEMMA 3·4 ([6, Lemma 1.5]). Let C∗ be a chain complex over a ring. Let P(i)∗ be a projec-
tive resolution of Ci. Then there is a chain complex Q∗ with Qn = ⊕

i+j=n P(j)
i and a weak

equivalence Q∗ → C∗.

Proof of Theorem 1·1. We only need to prove part (i), because part (ii) follows directly
from part (i), Theorem 3·2 and Theorem 2·3.

Let

· · · → Pn+1 → Pn → · · · → P0 → R → 0

be a resolution of the trivial G-module by proper discrete permutation modules such that
P0, . . . , Pn are finitely generated. By Lemma 3·3 each R[�]-module resG

� (Pj), j ≤ n, has a

projective resolution Q(j)∗ such that Q(j)
i is finitely generated for i ∈ {0, . . . , n}. For j> n let

be Q(j)∗ any projective resolution of resG
� (Pj). By Lemma 3·4 there is a projective resolution

Q∗ of the trivial R[�]-module R such that

Qk =
⊕

i+j=k

Q(j)
i ,

which concludes the proof.

The following proposition follows from combining Proposition 3·9 and Theorem 3·10
in [10].

PROPOSITION 3·5 (Castellano-Corob Cook). Let G be a tdlc group and R be a commutative
ring. Let 0 → A′ → A → A′′ → 0 a short exact sequence of discrete R[G]-modules. Then the
following statements hold true:

(a) if A’ has type FPR
n−1 and A has type FPR

n , then A” has type FPR
n ;

(b) if A has type FPR
n−1 and A” has type FPR

n , then A’ has type FPR
n−1;

(c) if A’ and A” have type FPR
n , then so does A.
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PROPOSITION 3·6. Let G = �//� be the Schlichting completion of � relative to the
commensurated subgroup �<�. Let R be a commutative ring. Let M be a discrete
R[G]-module. If � has type FPR

m and resG
� (M) has type FPR

n then M has type FPR
min{m+1,n}.

Proof. If resG
� (M) is not finitely generated, we are done. If resG

� (M) is finitely generated,
then M is clearly finitely generated. In particular, there is a short exact sequence

0 → K → P → M → 0, (3·1)

where P is a finitely generated proper discrete permutation module.
We show the statement by induction over n. The case n = 0 just means finite generation,

and there is nothing more to do. Suppose the statement holds true for every restriction of
an R[G]-module of type FPR

n−1. Let resG
� (M) be of type FPR

n and choose a sequence as in
(3·1). We apply Proposition 3·5 to the short exact sequence (1) for the tdlc group G and to
the short exact sequence

0 → resG
� (K) → resG

� (P) → resG
� (M) → 0 (3·2)

for the discrete group �. By Lemma 3·3 the module resG
� (P) has type FPR

m. By part (b) of
the above proposition the kernel resG

� (K) has type FPR
min{m,n−1}. By induction hypothesis, K

has type FPR
min{m,n−1}. By part (a) of the above proposition, applied to (1), we obtain that M

has type FPR
min{m,n−1}+1 = FPR

min{m+1,n}. This concludes the proof.

Proof of Theorem 1·2. The first part of the theorem follows by applying Proposition 3·6
to the trivial G-module R. If � is compactly generated and � is compactly presented, then
G is compactly presented by Theorem 2·3. By [10 Proposition 3.13] being compactly pre-
sented and having type FPZ

n is equivalent to having type Fn. Therefore the second part of the
theorem follows from the first one.

EXAMPLE 3·7 (The Abels-Brown group) Let R be a commutative ring. Let �n(R) denote
the subgroup of GLn+1 (R) that consists of upper triangular matrices (gi,j) such that g1,1 =
gn+1,n+1 = 1. For example, �2(R) consists of matrices of the form

⎛
⎝1 ∗ ∗

0 ∗ ∗
0 0 1

⎞
⎠ .

This group was studied by Abels and Brown [1]. They showed that �n(Z[1/p]) is of type
FPZ

n−1 but not of type FPZ
n . Moreover, for n ≥ 3 it is finitely presented. The subgroup �n =

�n(Z) has entries ±1 on the diagonal. Therefore,�n is finitely generated nilpotent, hence of
type FPZ∞. Let Gn be the Schlichting completion of �n(Z[1/p]) relative to �n. By Theorem
1·2, Gn is of type FPZ

n−1. By Theorem 1·1, Gn is not of type FPZ
n . By Theorem 2·3, Gn is

compactly presented for n ≥ 3.

4. Continuous cohomology vs. cohomology of the dense subgroup

The continuous cohomology of a locally compact group is defined by the complex of
continuous cochains in the standard resolution. In Proposition 4·1 below, we compare the
continuous cohomology to the discrete cohomology both with real coefficients. The discrete
cohomology can be computed from a resolution by proper discrete permutation modules and
was introduced as a derived functor in [12, Section 2.5].
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We do not claim originality for Proposition 4·1. It can be deduced from the results in
Guichardet’s book [15] but we give a proof because we need the specific chain map φ used
in the proof later. There is a similar statement in [13] but it seems to assume a discrete
topology on the coefficients. Note that we consider the reals R with the usual topology.

PROPOSITION 4·1. The continuous cohomology H∗
c (G, R) of a tdlc group G is isomorphic

to the real discrete cohomology dH∗(G, R).

Proof. Let U <G be a compact-open subgroup. Let μ be the left-invariant Haar measure
on G with μ(U) = 1. Then R[(G/U)∗+1] with the usual differentials of the bar resolution is
a resolution of the trivial G-module R by proper discrete permutation modules. It suffices to
show that the projection G → G/U induces a homotopy equivalence

φ : homR[G]
(
R[(G/U)∗+1], R

)G → C
(
G∗+1, R

)G. (4·1)

A homotopy inverse ρ is defined as follows. For a cochain f : Gn+1 →R let
ρ(f ) : (G/U)n+1 →R be the map

ρ(f )(g0U, . . . , gnU) =
∫

Un+1
f
(
g0u0, . . . , gnun

)
dμ(u0) . . . dμ(un).

Since Un+1 is compact and f is continuous the integral exists. The definition is independent
of the choice of representatives g0, . . . , gn of the U-coset classes by the left-invariance of μ.
Clearly, ρ is a cochain map and ρ ◦ φ = id.

The chain homotopy φ ◦ ρ � id is defined as follows. Let

Sn
i (f )(g0, . . . , gn−1) :=

∫
Ui

f
(
g0u0, . . . , gi−1ui−1, gi, . . . , gn−1

)
dμ(u0) . . . dμ(ui)

for every n ≥ 1 and every 0 ≤ i ≤ n − 1. Similarly as above, this formula defines a homomor-
phism Sn

i : C(Gn+1, R)G → C(Gn, R)G. Then Hn = ∑n−1
i=0 ( − 1)iSn

i is the chain homotopy
φ ◦ ρ � id.

Now we are able to quickly conclude the proof of Theorem 1·3.

Proof of Theorem 1·3. Let G = �//� and U be the closure of � in G. Let P∗ =
R[(G/U)∗+1] be the resolution of the trivial G-module R appearing in the proof of
Proposition 4·1. Each Pn is a proper discrete permutation module. By Lemma 3·3, the
restricted resolution resG

� P∗ =R[(�/�)∗+1] is a flat R[�]-resolution of R.
The map ψ in the following commutative square is induced by the projection �→ �/�.

The map φ is the one in (4·1).

C G∗+1,R G
homR R[Γ∗+1],R)Γ

homR P∗,R
G

homR resGΓ P∗,R
Γ

res

∼=

φ ψ

The statement of Theorem 1·3 is that the upper horizontal restriction is a weak isomor-
phism. The map φ is a weak isomorphism by the proof of Proposition 2·4. The forgetful
lower horizontal map is obviously an isomorphism. So it suffices to show that ψ is a weak
isomorphism.
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By [26, Lemma 3.2·8, p. 71] the projection from the projective resolution R[�∗+1] to the
flat resolution resG

� P∗ induces a weak isomorphism

R[�∗+1] ⊗R[�] R
∼−→ resG

� P∗ ⊗R[�] R.

Its dual map

homR

(
resG

� P∗ ⊗R[�] R, R
) ∼−→ homR

(
R[�∗+1] ⊗R[�] R, R

)

is isomorphic to ψ . The dual map is a weak isomorphism by the universal coefficient
theorem over R [26 Theorem 3·6·5, p. 89].

5. The Euler characteristic of the Schlichting completion

The Euler characteristic χ (2)(G,μ) ∈R of a unimodular tdlc group G with Haar mea-
sure μ that admits a contractible smooth proper G-CW-complex or a finite resolution by
proper discrete permutation R[G]-modules, R ⊂C, was introduced in [20]. A more general
approach can be found in [11].

If

0 →
⊕
i∈In

C[G/U(n)
i ] → · · · →

⊕
i∈I0

C[G/U(0)
i ] →C→ 0 (5·1)

is a resolution by proper discrete permutation modules, then

χ (2)(G,μ) =
n∑

p=0

( − 1)p
∑
i∈Ip

μ
(
U(p)

i

)−1. (5·2)

If G is discrete, then one usually takes the counting measure as Haar measure and omits the
Haar measure in the notation. In this case, χ (2)(G,μ) coincides with the �2-Euler character-
istic of the group [18, Section 7.2]. Moreover, if G is discrete and of type F, then χ (2)(G,μ)
coincides with the classical Euler characteristic of the group.

By [20, Theorem 4.9] the Euler characteristic of a unimodular tdlc group is the alternating
sum of its �2-Betti numbers, which were introduced by Petersen [19].

χ (2)(G,μ) =
∑
p≥0

( − 1)pβ(2)
p (G,μ) (5·3)

The terms in (5·2) can be interpreted in terms of the von Neumann dimensions dimG of
modules of the type L(G,μ) ⊗H(G) C[G/U] = L(G,μ)pU , that is,

dimG L(G,μ) ⊗H(G) C[G/U] =μ(U)−1,

where L(G,μ) is the von Neumann algebra of G relative to μ, and H(G) is the Hecke algebra
of complex-valued locally constant functions, and L(G,μ)pU is the projection onto the U-
invariant vectors in L2(G,μ). The proof of the second formula of χ (2)(G,μ) is then just a
matter of additivity of the von Neumann dimension. We refer to [20] for more details.

An important consequence of (5·3) and the corresponding property for �2-Betti numbers
[17] is the equality

χ (2)(�) = covol (�,μ) · χ (2)(G,μ) (5·4)
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for every lattice � in a locally compact group G with Haar measure μ. In particular, if�<�
is a subgroup of finite index in a discrete group � of type FPQ, then

χ (2)(�) = [�:�] · χ (2)(�). (5·5)

Proof of Theorem 1·5. As before, we denote the canonical map of � into the Schlichting
completion G = �//� by α. Further, U is the closure of α(�). Consider a projective resolu-
tion of the trivial G-module by proper discrete permutation modules as in (5·1). For every
j ∈ {0, . . . , n} and every i ∈ Ij we choose a finite projective C[α−1(U(j)

i )]-resolution Q̃(i, j)∗
of the trivial C[α−1(U(j)

i )]-module C. Since α−1(U(j)
i ) and�= α−1(U) are commensurable,

the group α−1(U(j)
i ) is of type FPQ (thus, FPC). This follows from the combination of

[2, Theorem 5.11, p. 78] and [5, Proposition 5.1, p. 197 and Proposition 6·1, p. 199].
Tensoring this resolution with C[�] we obtain a finite projective C[�]-resolution of
C[�/α−1(U(j)

i )] which we denote by Q(i, j)∗. For every j ∈ {0, . . . , n}, the sum
⊕

i∈Ij
Q(i, j)∗

is a finite projective C[�]-resolution of

resG
�

(⊕
i∈Ij

C
[
G/U(j)

i

]) ∼=
⊕
i∈Ij

C
[
�/α−1(U(j)

i )
]
.

Similarly as in the proof of Theorem 1·1, we find a projective resolution Q∗ of the trivial
C[�]-module C such that

Qn ∼=
⊕

k+j=n

⊕
i∈Ij

Q(i, j)k.

Using the compatibility of the von Neumann dimension under induction, we conclude
that

χ(�) =
∑
n≥0

( − 1)n dimL(�)
(
L(�) ⊗C[�] Qn

)

=
∑
j≥0

( − 1)j
∑
k≥0

( − 1)k
∑
i∈Ij

dimL(�)
(
L(�) ⊗C[�] Q(i, j)k

)

=
∑
j≥0

( − 1)j
∑
i∈Ij

∑
k≥0

( − 1)k dim
L(α−1(U(j)

i ))

(
L(α−1(U(j)

i )) ⊗
C[α−1(U(j)

i )]
Q̃(i, j)k

)

=
∑
j≥0

( − 1)j
∑
i∈Ij

χ (2)(α−1(U(j)
i )

)

=
∑
j≥0

( − 1)j
∑
i∈Ij

μ
(
U(j)

i

)−1
χ (2)(�) (use (5·5) and μ(U) = 1 and �= α−1(U))

= χ (2)(G,μ) · χ (2)(�).

EXAMPLE 5·1. The group �= SLn (Z[1/p]) is a lattice in G = SLn (R) × SLn (Qp). Let
�= SLn (Z)<�. We compare Theorem 1·5 for �//� to computations we obtain from
the theory of �2-Betti numbers of locally compact groups via (5·3). Let μ and ν be Haar
measures of the left and right factor of G, respectively. Then

χ (2)(�) = covol (�,μ× ν) · χ (2)(SLn (R),μ) · χ (2)(SLn (Qp), ν
)
.
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Similarly, since SLn (Z) is a lattice of SLn (R) we obtain that

χ (2)(SLn (Z)
) = covol

(
SLn (Z),μ

) · χ (2)(SLn (R),μ
)
.

We normalize ν so that ν( SLn (Zp)) = 1. The push-forward measure ξ on PSLn (Qp) under
the projection SLn (Qp) → PSLn (Qp) satisfies ξ ( PSLn (Zp)) = 1. By [19] and (5.3) we have

χ (2)(SLn (Qp), ν
) = χ (2)(PSLn (Qp), ξ

)
.

Therefore,

χ (2)(�) = covol (�,μ× ν)

covol ( SLn (Z),μ)
· χ (2)(SLn (Z)

) · χ (2)(PSLn (Qp), ξ
)
. (5·6)

There is an isomorphism SLn (Z[1/p])// SLn (Z) ∼= PSLn (Qp) under which the closure of
SLn (Z) is mapped onto PSLn (Zp). See [23, example 3.10]. By Theorem 1·5,

χ (2)(�) = χ (2)(SLn (Z)
) · χ (2)(PSLn (Qp), ξ

)
.

As a consequence, the ratio of covolumes in (5·6) is 1.
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