SIMPLE ALGEBRAS THAT GENERALIZE THE JORDAN
ALGEBRA M

ARTHUR A. SAGLE

In this paper we discuss a generalization of the split exceptional Jordan
algebra M;3(€) of the 3 X 3 hermitian matrices with elements in the split
Cayley-Dickson algebra € (1). The generalization consists of replacing € by
the non-commutative Jordan algebra I = (4, f, s, ¢) discussed in (2; 3) and
forming the set of 3 X 3 hermitian matrices M;™(A) = M with elements in the
m-dimensional algebra A. With the usual definition of multiplication
X YV =%XY+ YX), M becomes a commutative algebra and we have the
following theorem, which shows how the structure of M is reflected by that of 9.

THEOREM. Let A and M be as above, then:

(1) M 1s simple if and only if U is simple;

(2) if A is simple, then every element of M satisfies a generic minimum poly-
nomial of degree three or M is power associative if and only if M is Jordan;

(3) the bilinear form (X, Y) = trace R(X-Y) is an invariant form, which is
non-degenerate if and only if U is simple.

In §1 we develop further relations for the algebra ¥, which are used in §2 to
prove the simplicity of M = M3;™(A). Now noting that if M is Jordan, then it
is a power associative ‘‘cubic’’ algebra, we prove in §3 the converse statement
given above in (2) by essentially showing that M3;™(A) C M;3(€). Finally in
§4 we prove statement (3) concerning the bilinear form (X, Y). We shall
assume that the base field F is of characteristic zero since we want to consider
trace; but it should be clear when this condition can be relaxed.

1. Some identities for A(Y, f, s, ¢). In this section we discuss briefly the
properties of the algebra I = %A(4, f, s, t) necessary for this paper. The non-
commutative Jordan algebras in (2; 3) are constructed as follows. Let 4 = 0
be an anti-commutative algebra with an invariant form f(e, 8) (i.e. f(aB, v) =
f(a, Bv)), and let A = A(4, f, s, ¢) denote the set of matrices

5 3]

B b’

where @, 8 € 4 and @, b € F. For these matrices define the usual vector space
operations co-ordinate-wise and define multiplication of two such matrices by

[a a] [c 'y] _ [ ac + f(a, 8) ay + da + tﬁé]
B blls d B+ b5+ say  bd+f(B,v) |’
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where f(a, 8) is the invariant form on 4 and s,¢ € F. Thus letting
(x, ¥, 3) = (xy)z — x(y2) denote the associator function, A becomes an algebra
with the following properties (2):

(i) (x,y,x) =0 forall x,y € A, and x> — (¢ + b)x + [adb — f(a, B)]1 = 0

for all
a «
—1 9
¥ [B b] €4,

that is, %A is a flexible quadratic algebra with identity element 1. Thus
(x2, y,x) = 0, so that ¥ is a non-commutative Jordan algebra.

(ii) A is simple if and only if f(e, B) is non-degenerate on A4 ; a proof of an
analogous statement may be found in (3).

Next we derive some new relations for A, which are similar to conjugation
in the split Cayley—Dickson algebra. For

_la a e v
S

define

then a straightforward computation shows that x — & is linear and
(1 xT = Tx = n(x), where n(x) = (ab — f(e, B))1,

@) Ty =37,

so that x — & is an involution. Next define the bilinear form on ¥,

n(x,y) = 3nx+y) —nkx) —n®], xyc A
Then

3) n(x,y) = 3(xy + y2) = 3@y + x)
and n(x, y) is non-degenerate if and only if f(a, 8) is non-degenerate on 4
(which is equivalent to 2 being simple (2)). For, using (1),
“4) n(x,y) = 3l@a+o)@®+d) — flat+v,8+9
— (@b — f(e, B)) — (cd — f(v, )il

= 3lcb + ad — f(a, 0) — f(v, B

= 3(xy + y2),
and from the second equation we see that if #(x, y) is non-degenerate, so is
f(e, B). Conversely, suppose f(a, 8) is non-degenerate and n(x, y) = 0 for all
y € A. Then using the above equations with ¢ = 1,d = § = v = 0, we have

b = 0;similarly @ = 0. Choosing v = 0 and ¢ arbitrary yields « = 0; similarly
B8 = 0 so that x = 0 and therefore #(x, y) is non-degenerate. Next we have

6 n(xy, z) = n(z, y).
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For, letting (x, v, 2) denote the association function, we have, using (3),
2n(xy, z) — 2n(éx,y) = (v, %, 2) + (v, &, 2) = 0,

since for any «x, v, 2 € A we have

(x, 9,28 = — (2, %), since ¥ is flexible,
= (z,9, 1), sincex +& = (¢ + b)1 € 1/
= (2,5, %)

()T — 2(3%)
x(y,2) — (xy)z
= - (x» Y, Z).

Il

We shall need the following lemma.

LemMmAa. Let A # 0 be an anti-commutative algebra with a non-degenerate
invariant form f(a, B) such that for all a, B,v € A

stB(ay) = fla, B)y — f(B, @)a

Then A = A(A, |, s, t) is a split Cayley—Dickson algebra € or a ‘‘split’” quaternion
associative algebra Q. In either case M*(€) and M;*(Q) are Jordan algebras
and if F is algebraically closed, we may consider € D L and therefore M;8( €)
D M34(Q) as Jordan algebras.

Proof. Since A is flexible, we first show that x*y = x(xy) so that A is
alternative. Thus for x, y € A as in the first part of this section we have

. [+ f@B (a+ b
N '[ (a+ b)B b2+f(a,6)}

an
[c(a + f(e, B) + (@ + b)f(e, 8) [a2 + fa, By + (a + b)da ]|
+ s(a + )85
Lc(a + 0)B8 + 62 + fle, B)16 d®* + f(e, B) + (@ + 0)f (B, v)
+ tla + b)ay i
Also
a(ac + f(a, 8) a(ay + da + sB9) ]
+ fla, cB + b6 + tay) + (bd + f(B, ¥))a
x(xy) + sB(cB + b + tay)
(ac + f(a, 8))B+ b(c B + b6 + tay) b(bd + f(B, 7))
+ ta(ay + da + sB6) + f(8, avy + da + sB9)

and using the hypothesis we obtain the desired equality.

Now since f(e, B) is non-degenerate, % is simple and therefore is the split
Cayley—Dickson algebra €, or an associative algebra. In the latter case we let

e A
z—[# f]é?l
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and compute the 2 X 2 matrix (x, y,2) = 0 in . From the (1, 1) position in
this matrix we obtain (86, u) — sf(y\, @) = 0. If st % 0, then since the
elements in A4 in this expression are arbitrary, we have by choosing a = 0
(or p = 0) that (88, u) = 0 (or f(y\, ) = 0), which implies that 42 = 0 by
the non-degeneracy of f(a, 8). But by hypothesis this yields f(e, 8)y = f(8, 7)a,
and consequently the dimension of 4 is one; the same result holds if st = 0.
Thus for f(B,8) = b # 0 we have A = BF, and Q = A(BF, [, s, t) is asso-
ciative. In both of these cases M3*(€) and M3*(Q) are Jordan algebras.

Next for 4 = BF and F algebraically closed, we can find « € 4 such that
f(a, @) = 1; and consequently the map

an a2 ayy Q2
—
(123 A22 as1 Q22

is an isomorphism of L onto the 2 X 2 matrix algebra over F, which may be
regarded as the ‘‘split”’ quaternion algebra (4, pp. 135 and 162). Now we may
regard € D Q as follows. Since f is non-degenerate and symmetric, there
existsa € A (where € = A4, f, s,t)) with f(a, @) # 0; assume that f(a, a) = 1.
With this « € A, we see that Q is isomorphic to A(aF, f, s, t) and therefore
consider that € D £ by this isomorphism; consequently M;*(€) D M;4(Q).

2. Simplicity of M. Let

l_al as dz_l @1 b3 52
(§] X=:a , Y=10b b
“ [ o o b

be 3 X 3 hermitian matrices in M, where a;, b; € U, a;, B; € F, and where
x — & is the involution in A4 defined in §1. The commutative multiplication in
Misgivenby XV = 3(XY + YX) and the resulting 3 X 3 matrix is formally
the same as obtained in M;3( €).

Next let {e;;} denote the usual matrix basis for the 3 X 3 matrices over F.
Then e; = e,;, 1 = 1, 2, 3, are orthogonal idempotents in M. For a € A define
for 1 # j

a“« = (a)” = ae” + deji.
Then @;; = a;; and setting
Mi; = )’aij ta € ?I}
we have the Peirce decomposition relative to the e; given by

M=t F®eF®eFO® Mi® Mz ® M.

From this we see that if the dimension of 4 is # (so that the dimension of
A is m = 2(n + 1)), then the dimension of M is

34+32(n+ 1] =32x+1) +1].
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For a, b € ¥ the multiplication of the basis elements of M is given by

eice; = 045€q

er@ij = 3045 = Qi€

ek‘ail 201 k#l,k#],
@by = n(a, b)(e; + ¢y),
20505 = (ab) , 17 ]k #

Next we consider the simplicity of M. Assume that f(a, 8) is non-degenerate
and therefore #(a, b) is non-degenerate on M. Suppose B is a non-zero ideal of
M containing the non-zero element

X =are1+ azes + azes + a1z + bis + cos.

NOV\" 61'X = 1 €1 + %(112 + %513 E B; therefore (el-X)-eg = iaxg E B and
(er-X)-e3 = 1by; € B. Thus since e;-X € B, aier € B. Similarly as e, and
ag ez are in B. Now suppose that some a; # 0, say a; # 0. Then e; € B and
therefore

Alm = 61'11[12 C B,

Myz = er- M3 C B,

M23 = M21'M13 = MIZ'MHI C B-

Next since #(a, b) is non-degenerate on U, there exists a € A with n(a) # 0
and therefore n(a)(es + €3) = a93* € M3 C B. Thus e, + e; € B; similarly
e1 + e, € B. Since e; € B, es and e;3 are in B so that B = M.

We now show that there exists X € B with some «; # 0. Suppose
Y = a1s + b1s + cas € B with, say, ais # 0, the other cases being similar.
Then (e1-Y)-e2 = }a12 € B. Now since #(a, b) is non-degenerate on 2, there
exists b € A with n(a, d) # 0 and therefore

0 5~ n(a, b)(e1 + €2) = a12-b12 € B.

Thus X = e; + e2 € B isthe desired element with a; ¢ 0. Thus we have shown
that M is simple if f(a, B) is non-degenerate, which is equivalent to ¥ being
simple.

Conversely, if f(a, B) is degenerate on 4, set C = {a € 4 ;f(a, 4) = 0};
then

©) N = {[g ‘6‘] ‘a, B € c}

is a proper ideal of ¥ and from (4) we have fora € o, b € N that n(a, &) = 0.
Next noting that & € N implies b € N, we see that B = Nya + Niz + Nos is
an ideal of M, where N;; = {b;; : b € N}. For if a € A, we have
e,--sﬁij = Sﬁij-ej = %SR” C B,
ek-ﬁ)}“=0, k#i,k#j,
a;°by; = n(a, b)(e; +e;) =0, where b € N,
20505 = (abd) € B,
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since ab € N. Thus B is a proper ideal of M, and this proves the first statement
in the theorem.

3. Identities. In this section we prove the second statement of the main
theorem. Let X = ay é1 + ag € + a3z €3 + a1 + bls + Ca3 be in M; then

a4+ n(a,a) + n(b, d) (o1 +ag)a+bé (1 + as)b + ac
X = (a1 4+ ag)a + cb a? + n(a,a) + n(c,c) (s +az)c+ab
(a1t az)b+ca (a2 + az)é + ba as> + n(b, b) + n(c,c)
Then computing 2X3 =2X-X2 = A1 ey + A2 €2 + A3 €3 +f12 + g13 + h23,
we obtain
(8) %A] = a13 + (20[1 + ag)n(b, b) + (20[1 + ag)n(a, d) _
+ n(b, ¢ a) + n(a, beé),
9 f1z = (a1 + a2)?a + (o1 + a2)b ¢ + [aa? + a2? + 2n(a, a)
+ n(b, b) + n(c, ¢)la + blas + as)é + ba] + [(e1 + a3)b + aclé.
Now if X is to satisfy a generic minimum cubic polynomial mx(\), we see, by
comparing the elements in the (1, 1) position of 1, X, X2 and X3, that we
must have

mx(\) = N — (a1 + a2 + az)\2 + (@102 + a1 a3 —_{— asaz — ad — bb — cC)\
bt (ou a9 O3 + s(a, b, C) — a1 cC — a9 bb — Qa3 ad)l,
where s(a, b, ¢) = n(b, ¢ a) + n(a, b é). Next since X must satisfy mx()), we
compare the elements in the (1, 2) position of 1, X, X?, and X? to obtain
0 = 3fie — (1 + a2 + as)[(n + az)a + b ¢] )
_ + (alag +a1a3 + ay g — ald — bb — CE)(Z
= b(ba) — (bb)a + (ac)c — a(ce)
for all @, b, ¢ € A. This equation is satisfied if and only if Z(xy) = (Zx)y for

all x, y € 9; but a straightforward computation shows that the above equation
holds if and only if

Slﬁ(a’)’) = f(ar 3)7 - f(ﬁv ’Y)a
for all @, 8, v € A. Thus by the lemma of §1 M is a Jordan algebra.
Finally we consider the power associativity of M. Computing
X2.X2 = B1€1 +Bz€2+B3€3 + e s ey

we obtain
B,

[a1?2 4+ n(a, a) + n(d, b)]?

+ n[(a1 + az)d + 55, (a1 + 012)(1 + 56]

-+ n[(al -+ Ols)b 4+ ¢a, (cu + O£3)b + 5(3]
art + n(a, a)? + n(b, )% 4+ 2a:%n(a, a)

+ 2a12n(b, b) + 2n(a, a)n(b, b)

+ (1 + az)*n(a, @) +n(b ¢, b o)

+ (al + a3)2n(b7 b) + n(é dr C_d)

+ 2(2&1 + a2 + ag)n(a, 55),
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using (5) to obtain this last term. Next computing X-X3 = Cie; + Caeq
+ Cses + ..., we obtain

Cl = al(%Al) + n(a, %fn) + n(br %gl&)),
where A1 and f1s are given by (8) and (9) and

g13 = (a1 + a3)? + (a1 + a5)c a
+ [a1? + a3® + n(a, a) + 2n(b, b) + n(c, ¢)]b
+ [(a2 + a3)é + bala + é[(ar + az)a + cb].

Expanding the formula for C;, we obtain

Cl = al[a13 + (20[1 + a2)n(a, d) + (2&1 + aaz’ﬂ(b, b) + n(b, C-d) + 1’1((1, 65)]
+ %n(a, (a1 + a2)2a + (a1 + az)b ¢
+ [er? + as? + 2n(a, a) + n(b, b) + n(c, ¢)]a
+ 5[((]2 + aq)é + ba] + [(a1 + (13)6 + GC]C_)
+ in(b, (a1 + a3)? + (01 + az)é a
+ [ea? + as? + n(a, a) + 2n(b, b) + n(c, ¢)]b
+ [(ag + a;;)c' + bd]d + c'[(ozl =+ Olg)d + Cb])

Now if M is power associative, we must have By = Ci; and using (5) on Cj,
this yields

n(a, a)n(b, b) +n(cd,éca) + nbé be)
= In(c, c)n(a, a) + in(c, c)n(b, d)
+ in(a, (ac)é) + 3n (b, &(ch)) + n(a, b(ba)).

for all a, b, ¢ € A. Thus setting ¢ = 0 and using (5),
n(a,a) n(b, b) = n(a, 6(ab)) = n(ab, ab) = n(ab, ab).
But using (1) this equation yields
fB, f(v, 8o — fle, )y + sté(ay)) = 0
for all @, B,v,8 € A; and since f(e, B) is non-degenerate, we have by the

lemma of §1 that M is Jordan.

4. Concerning invariant forms. Let R(X) denote the mapping ¥ — V-X
and let (X, Y) = trace R(X-Y); then we shall show in this section that
(X, Y) is an invariant form (i.e. (X-Y,Z2) = (X, Y-Z)), which is non-

degenerate if and only if f(e, 8) is non-degenerate. Let zi, ..., 22,41y be a
basis for ; then ey, es, €5, (2))12, (3))13, (2j)23, 7 = 1,...,2(n + 1) is a basis
for M. Let

X =ares+ases + azes + (a3)12 + (@2)13 + (a1)2s

be in M, where a; = Y a;;2; € A with az; € F. Then to compute trace R(X)
we have
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61R(X) = a1e1—|-...,
es R(X) = asea+ ...,
esR(X) =azes+ ...,
()12 R(X) = (a1 + a2) (3)12 + .. .,
()1 R(X) = 3(er + ) (2 + .. .,
(3)2s R(X) = F(az + @) (z)2s + ...,

where . . . denotes elements that make no contribution to the diagonal of the
matrix of R(X). Thus if I denotes the 2(n 4+ 1) X 2(z + 1) identity matrix,

we have
a
a9 *

a3

trace R(X) = trace

Il

3(a1 + a2l
3(a1 + as)!
* $(ae + a3)]

[2(1’1, + 1) + 1](061 + ag + aa).
Next for X, Y as in (6) we can show that

XY = (o181 + n(as, bs) + n(as, bs))ex
+ (a2 B2 + n(ay, b1) + n(as, b3))e:
+ (a3 Bs 4 n(as, bs) + n(ay, b1))es + . ..

Il

so that

(X,Y) = trace RX-Y)
[2(n + 1) 4+ 1][a1 81 + a2 B2 + a3 Bs + 2n(ay, b1) + 2n(as, b2)
+ 211((13, ba)]

From this equation we see that if f(a, 8) is non-degenerate, so is (X, Y). For
suppose that (X, V) = 0 for all ¥ € M; then for 81 = 1 and the rest zero we
obtain a; = 0; similarly as = a3 = 0. Next for &, arbitrary and b; = b3 = 0
we obtain % (a1, b1) = 0, and since #n(a, b) is non-degenerate when f(a, 8) is
non-degenerate, then a; = 0; similarly @2 = a3 = 0. Thus X = 0. Conversely,
if f(a, B) is degenerate, then for by, bs, b5 € N, the ideal given in (7), and for
B1 = B2 = B3 = 0 we see from the above formula that the element Y is such
that (X, Y) =0forall X € M.
Next we shall show that (X-V, Z) = (X, V-Z), that is

trace R[(X-Y)Z — X-(Y-Z)] = 0.
For

Z = vie1+ vaes + vs€3 + (63)12 + (52)13 + (61)23,
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a lengthy computation yields

trace R[(X-Y)-Z] — trace R[X-(Y-2Z)]
=221 + 1) + 1)[n(as by + b3 a@s, c1)
+ n(a1 bs + b1 as, ¢2) + (@2 by + b @y, c3)
— n(Cs lzz + lza G2, @1) — n(C1bs + b1 é3, ay)
— n(C2 b1 + b2 ¢4, a3)]
=0,

using (5) in the form #(Zy, z2) = n(yZ, x). Thus (X, Y) is an invariant form
on M.
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