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Abstract
I develop a novel method to detect election fraud from irregular patterns in the distribution of vote-shares. I

build on awidely discussed observation that in some electionswhere fraud allegations abound, suspiciously

manypolling stations return coarse vote-shares (e.g., 0.50, 0.60, 0.75) for the rulingparty,which seemshighly

implausible in large electorates. Using analytical results and simulations, I show that sheer frequency of such

coarse vote-shares is entirely plausible due to simple numeric laws anddoes not by itself constitute evidence

of fraud. To avoid false positive errors in fraud detection, I propose a resampled kernel densitymethod (RKD)

to measure whether the coarse vote-shares occur too frequently to raise a statistically qualified suspicion of

fraud. I illustrate the method on election data from Russia and Canada as well as simulated data. A software

package is provided for an easy implementation of the method.

1 Introduction
Detecting election fraud from official voting returns is an increasingly important and popular

topic in political methodology. Given that roughly half of elections held these days result in some

form of allegations about manipulation and fraud,1 the wide interest in the statistical methods of

fraud detection is clearly understandable. Since election fraud often cannot be observed directly,

researchers and policy makers often have to rely on inferential methods to uncover unusual

patterns in the official election data that might serve as plausible evidence that election results

were tampered with.

Existing fraud-detection methods explore various features of election data that can be

suggestive of fraud: unusual distributions of digits in vote count data (Mebane 2008; Beber

and Scacco 2012; Medzihorsky 2015), a systematic relationship between turnout and party

support rates (Myagkov, Ordeshook, and Shakin 2009; Klimek, Yegorov, Hanel, and Thurner 2012),

skewness and kurtosis (Myagkov, Ordeshook, and Shakin 2009) and statistical outliers in election

data (Mebane and Sekhon 2004). Cantú and Saiegh (2011) and Levin, Pomares, and Alvarez (2016)

use machine learning tools for probabilistic detection of election fraud. Montgomery, Olivella,

Potter, and Crisp (2015) propose a method combining multiple tools of fraud forensics and

incorporating covariate information.

Statisticalmethods of fraud detection are often invoked in public debates on electoral integrity

as was the case, for example, in the 2004 referendum in Venezuela (Weisbrot, Rosnick, and Tucker

2004; Cordero andMárquez 2006), in the 2009presidential election in Iran (Mebane 2009; Berman

andRintoul 2009), in the 2011 parliamentary elections in Russia (Gehlbach 2012;Mebane2013), the

2014 parliamentary elections in Turkey (Meyersson 2014), among others. These analyses suggest

that depending on the political context, election fraud can be committed in diversely ingenious

ways. To be able to detect various forms of fraud, it is essential to continuously expand the set of

forensic tools and explore different features of election data that can be indicative of fraud.

Author’s note: I thank Walter Mebane, Denis Stukal, Milan Svolik, participants of the 2015 Political Methodology Annual

Meeting at theUniversity of Rochester, the reviewers and the editor for comments and suggestions. Themethoddeveloped

in this paper can be implemented in R software (R Core Team 2016) package spikes (Rozenas 2016b). The replication

materials for this article are available online (Rozenas 2016a).

1 Based on the NELDA dataset (Hyde and Marinov 2012).
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I propose a method of fraud detection based on identification of irregular patterns in the

distribution of party (or candidate) vote-shares across the polling stations. The method builds on

an observation that in some allegedly fraudulent elections, there aremany polling stations where

the ruling party receives the percentage of votes that is evenly divisible by five – e.g., 50%, 65%,

75% (Klimek, Yegorov, Hanel, and Thurner 2012; Gehlbach 2012). Intuition would dictate that in

large electorates, it is exceedingly unlikely for a party to receive exactly such a coarse vote-share

across many precincts without some form of vote falsification.

I first considerwhether the frequentoccurrenceof coarsevote-shares inelectiondata is actually

indicative of fraud. Using analytical results and simulations, I argue that whenever election data

contain a large number ofmoderately sized electoral units (less than tens of thousands of voters),

it is entirely expected that coarse vote-shareswill occur relatively frequently. Thus, impressionistic

judgements about incidence of fraud will inevitably result in false positive inference.

To avoid the false positive errors, I propose a systematic method to detect whether the

observed distribution of vote-shares deviates from the hypothetical distributionwewould expect

toobserve inelectionswithout fraud. I refer to thismethodas the resampledkerneldensitymethod

(RKD), since it draws inference by comparing the kernel density of the observed data against a

sample of kernel densities drawn from the null distribution. I illustrate and evaluate this method

with data frommultiple elections in Russia andCanada aswell as simulated data. Finally, I discuss

how the proposedmethod differs from the digit-basedmethods to fraud detection (Mebane 2008;

Beber and Scacco 2012; Medzihorsky 2015), and show that the two methods are designed to

capture different types of fraud.

Although the main contribution of this paper is the new forensic method for detecting fraud,

it also makes a wider normative point about the potential pitfalls of statistical fraud detection. It

shows that completely clean election data can exhibit some highly irregular patterns, which could

be easily mistaken for fraud if the data generating process is not carefully accounted for. Given

the growing consensus in the empirical literature that allegations of election fraud often spark

postelection violence (Tucker 2007; Collier 2009; Daxecker 2012), fraud-detectionmethods should

put a particularly high weight on avoiding false positive errors.

2 A Motivating Example
To motivate the idea behind the method, consider the parliamentary elections in Russia held in

Decemberof 2011. TheUnitedRussiaparty, ledby the incumbentpresidentVladimirPutinofficially

received 49.3 percent of votes and 64 percent of seats. Although the United Russia performed

worse than expected, there were many indications that the election results were manipulated.

Russian and Western analysts pointed out various “irregularities” in the official voting data: the

distribution of votes was not bell-shaped, turnout rates and support for the United Russia were

highly correlated, and in many precincts the United Russia party received a coarse proportion of

votes. I focus on the latter feature.

The upper panel of Figure 1 shows the kernel density estimate of the vote-shares for the United

Russia part in the 2011 parliamentary elections. The density shows very clear spikes of probability

mass that peak at coarse vote-shares. This pattern is especially evident at the upper tail of the

distribution where the United Russia received overwhelmingly high support (0.6, 0.75, 0.8). As

has been suggested by some analysts (Klimek, Yegorov, Hanel, and Thurner 2012; Gehlbach 2012;

Mebane2013), thesemass spikes appear so implausible that they should raisequalified suspicions

of election results having been falsified inmanyprecincts by rounding up theUnitedRussia’s vote-

shares. Remarkably, this statistical evidence of fraudwas publicly displayed on posters during the

protests that ensued shortly after the election.

The lower panel in Figure 1 shows a different visualization of the same data. It displays the

distribution of raw frequencies of each observed vote-share. The raw frequency plot makes it
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Figure 1. Estimated density (Gaussian kernel, bandwidth = 0.0001) and the raw frequencies of the United

Russia vote-shares in the 2011 elections.

even clearer that election outcomes with exactly 50, 60, or 75 percent of votes occurred with

significantly higher frequencies than other outcomes. Given that an average Russian electoral

precinct has about 1000 registered voters, the high frequency of such coarse vote-shares indeed

appears suspicious.

The idea that these peculiar patterns could be driven by falsification of results at the precinct

level is sensible for at least two reasons. First, psychologists have documented a natural human

tendency to use round numbers as reference points (Pope and Simonsohn 2011; Alter and

Hershfield 2014). If a party’s local agentwants to falsify election results, he is likely to choose some

focal number indicating that a particular electoral benchmark (e.g., 60 percent) has been reached.

Second, recent formal theories of election fraud argue that the government’s local agents may

actually have incentives to signal their loyalty by falsifying election results in a detectable and

conspicuous fashion (Rundlett and Svolik 2016). The fact the United Russia party has received

exactly 55 or 70 percent of votes in so many precincts is consistent with this story of “loyalty

signaling.”

Although both of these explanations are reasonable, one must also consider a simpler

alternative that the seemingly irregular patterns in the vote-share data are not driven by fraud. In

the next section, I argue that inferring fraud impressionistically from the presence of “spikes” in
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Table 1. Possible vote-fractions outcomes in a small electorate.

Support Turnout

1 2 3 4 5 6 7 8 9

1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9

2 2/3 1/2 2/5 1/3 2/7 1/4 2/9

3 1/4 3/5 1/2 3/7 3/8 1/3

4 4/5 2/3 4/7 1/2 4/9

5 5/6 5/7 5/8 5/9

6 6/7 1/4 2/3

7 7/8 7/9

8 8/9

9

the distribution of vote-shares might result in a high rate of false positive errors – many elections

are at risk of being judged as fraudulent even if they are clean.2

3 Distribution of Vote-Shares Without Fraud
To understand why election data may frequently contain coarse vote-shares, it is important to

recognize two facts about the nature of such data. First, contrary to what is almost universally

assumed in empirical research, vote-shares are not continuous variables because they represent

rational (hence, discrete) numbers. While inmany applications this discrete nature of vote-shares

might be of no consequence, it plays a key role in understanding why the distribution of vote-

shares has visible mass spikes at certain “focal” numbers.

Second, note that the mass spikes in the distributions of vote-shares do not necessarily occur

at numbers that are integral multiples of five (e.g., 0.5, 0.55), but at specific fractions with low

denominators. As we see in Figure 1, some of the very common spikes (e.g., at 1/3 or 2/3) are

not located at vote-shares that are integral multiples of five. Instead, the integral multiples of five

can be expressed as fractions with a low denominator. Thus, explaining why the distributions of

vote-shares have spikes at some focal numbers requires explainingwhy vote-share datamay have

many fractions with a low denominator.

For brevity, I use the term “low-order fraction” to refer to a vote-share that can be expressed as

an irreducible fraction with a ‘small’ denominator. In contrast, I refer to a vote-share which can be

expressed only as an irreducible fraction with a large denominator as a “high-order fraction.” For

example, 500/1000 is a low-order fraction as it can be expressed as an irreducible fraction 1/2 (the

lowest-order fraction), whereas 98/200 is a higher-order fraction because it can only be reduced

to a fraction 49/100.

To see thebasic intuitionofwhy low-order fractions canbequite frequent even in cleanelection

data, consider the following unrealistic but helpful example. Suppose the electorate consists of

nine voters. Table 1 shows all possible voting outcomes in such an electorate (for brevity, and

without loss of generality, I exclude the caseswhere the party received zero votes or all votes). The

lowest-order fraction 1/2 appears most frequently in the matrix of results, whereas higher-order

fractions appear less often. The reason for this pattern is simple: in an electorate with nine voters,

the outcome 1/2 can occur in four different scenarios (when turnout is equal to 2, 4, 6, and 8),

whereas higher-order fractions occur in fewer scenarios.

More generally, in an electorate with n voters, the number of election outcomes (combinations

of turnout and support) that yield a vote-share with the denominatorm is equal to �n/m�, where

2 Distributions of proportionswith largemass points at coarse numbers have also beendiscovered in biological andmedical

data (Trifonov et al. 2011).
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�x � denotes the largest integer smaller than x (see Supplementary Appendix A for derivation).

Evidently, thenumberof electionoutcomes that yieldahigh-order vote-share is strictlydecreasing

inm, which is why low-order fractions are expected to appear relatively frequently in voting data

even in large electorates. In an electorate of one thousand voters, it is far more surprising for a

party to receive 63.9 percent of votes than exactly 50 percent of votes because the only way it

can actually receive 63.9 of votes is if all voters turnout to vote and the party receives exactly 639

votes. In contrast, there are five hundred ways the party can receive exactly 50 percent of votes

(1/2, 2/4, . . . , 500/1000) in such precinct.

Of course, the likelihood with which low-order vote-shares occur depends not only on the

number of outcomes that yield such vote-shares (combinations of turnout and support), but also

on the joint probability distribution of turnout and support. For a more formal treatment, let

T ∈ {1, . . . , n} denote the random variable representing the turnout, and let t represent the

realized turnout. LetV ∈ {0, . . . , t} denote the number of people who support the party at the

ballot box, with v representing its realized value. Let G = {(T ,V ) �V ≤ T } denote the sample

space of all possible election outcomes. Let R = V /T denote the random variable representing

the vote-shares of the party. Finally, let Pr{T = t ,V = v} be the joint probability mass function

(PMF) of turnout and support. I refer to the PMF’s of the random variablesT andV as “generative

distributions.” The probability that R takes a value k /m is given by

Pr

{
R =

k

m

}
=

�n/m�∑
a=1

Pr {V = a · k ,T = a · m} . (1)

For heuristic reasons, it is useful to briefly consider the most tractable (though not the most

realistic) case where the variablesT andV are distributed jointly uniformly so that Pr{T = t ,V =

v} = 1/�G� for all (t ,v ) ∈ G. In this case, we have

Pr

{
R =

k

m

}
=

2�n/m�

n(n + 1)
, (2)

(see Supplementary Appendix A for the proof). Hence, for any given number of voters n , the

probability of an irreducible fraction k /m decreases in m – low-order fractions are expected to

occur with a greater likelihood than high-order fractions even in a large electorate. As the number

of voters (n) increases, the probability of observing any given vote-share k /m diminishes, but the

relative probability of a low- vs high-order fraction remains large.

The same strong patterns where the probability of a fraction is monotonically decreasing in its

denominator will not hold for all generative distributions. For instance, if the joint distribution of

(V ,T ) is such that Pr(V > T /2) = 1 for allT , then 1/2 will not be the most frequent vote-share, in

contrast to the jointuniformcase.However, aweaker versionof the samepatternwill hold formost

generative distributions that we can realistically encounter: the PMF of vote-shares will exhibit

relatively large mass points at low-order fractions that are “significantly” covered by the PMF.

The left panel of Figure 2 illustrates this point. It shows the PMF of vote-shares derived from

the generative model where T ∼ Binomial(1000, 0.5) andV �T ∼ Binomial(T , 0.59). Most of the
probability mass in this function is concentrated in the interval between 0.55 and 0.65 and so

1/2 is not significantly covered by the PMF, which is the reason why there is no mass spike at 1/2.

However, another low-order fraction (3/5) is significantly covered by the PMF. Accordingly, there

is a large spike of mass at 3/5 and other low-order fractions that are covered by this PMF.

The vote-shares tend to cluster at low-order fractions even if the expected vote-share in a given

precinct is not a low-order fraction. Given the above generativemodel, the probability of receiving

exactly 60 percent of votes in a precinct of 1000 voters is
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Figure 2. Precinct-level PMF of vote-shares from the binomial generative model (left) and the resulting

population-level distribution of vote-shares across 50,000 precincts (right).

Pr {R = 0.6} =
∑

t ∈{5,10,...,1000}
Pr{V = 0.6t �T = t}Pr(T = t )

=
∑

t ∈{5,10,...,1000}

(
t

0.6t

)
0.590.6t0.410.4t

(
1000

t

)
0.5t0.5n−t = 0.007.

By comparison, the probability that the party receives 59 percent of votes is about 7 times smaller:

Pr{R = 0.59} =
∑

t ∈{100,200,...,1000}
Pr{V = 0.59t �T = t}Pr{T = t} = 0.0009.

Hence, a low-order fraction is more likely to occur relative to a nearby higher-order fraction, even

if the high-order fraction is the expected value of the random variable.

The argument so far explains why low-order fractions are likely to occur if we take a draw

from the PMF of vote-shares in a single precinct. However, real life data do not represent multiple

draws of vote-shares from the same precinct, but a collection of single draws of vote-shares from

apopulation of precincts, eachwith its owndata generatingmodel. More formally, letN represent

the number of precincts, let {t i }
N
i=1 be the sample of turnout from each precinct, and let {vi }

N
i=1 be

the sample of supporting votes from each precinct. Accordingly, r = (v1/t1, . . . ,vN /tN ) represents
the realized population-level sample of vote-shares.

Interestingly, the population-level distribution of vote-shares exhibits even more pronounced

spikes of probability mass than each individual precinct-level PMF of vote-shares. First, if low-

order fractions are likely to occur under each individual PMF, then they will also be likely to occur

in a population of such PMF’s. Second, andmore importantly, the population-level distribution of

vote-shares will typically have a much wider coverage (if there is heterogeneity across precincts)

than each individual PMF. In sum, this will lead to a pattern where a sample of vote-shares from a

cross-section of precincts will exhibit large spikes of probability mass.

This is illustrated in the right panel of Figure 2 showing a population-level sample of vote-

shares. Here, I assume that there N = 50, 000 precincts, that the precinct sizes {ni }
N
i=1 are drawn

independently from the discrete uniform distribution on {500, . . . , 1500}, and the turnout rates

{t ∗i }
N
i=1 and the support rates {v

∗
i }

N
i=1 were each drawn from beta distributions Beta (2, 2) and

Beta (2, 1), respectively. Under this model, the PMF of each individual precinct looks similar to

that in the left panel of the Figure 2 (only each located at differentmean) and has fewmass spikes,

but the population-level distribution showsmuchmore pronounced spikes.

Arturas Rozenas � Detecting Election Fraud from Irregularities in Vote-Share Distributions 46

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

01
6.

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2016.9


Figure 3.Number of voters and the relative probability of party receiving 60 versus 59 percent of votes when

its expected support is 59 percent.

The degree to which population-level distribution of vote-shares will exhibit mass spikes

depends on the properties of the data generating process in each individual precinct. The two key

properties are the size of the precinct and the degree of over-dispersion in turnout and support

at the level of each precinct. As the size of the precinct increases, the PMF of vote-share becomes

less spiky, but this happens at a very low rate if the data generating process is over-dispersed.

Figure 3 shows how the likelihood of low- vs high-order fractions changes with the size of

voting population and over-dispersion. The figure compares the binomial (under-dispersed) and

beta-binomial (over-dispersed) generative models, in both cases assuming that the expected

turnout rate is 0.5 and the expected support rate is 0.59. The two curves represent the log-ratio of

probabilities Pr{R = 0.5} vs Pr{R = 0.59} as the size of the precinct increases. In both cases, the

ratio is significantly larger than zero, indicating that the low-order fraction is more likely than the

high-order fraction. The ratio decreases nonmonotonically in n , but very slowly: even with 5,000

voters the probability of the event {R = 0.6} is ten (in the binomial model) and seventeen (in the

beta-binomialmodel) times larger than that of {R = 0.59}despite the fact that the expected value

of R is 0.59.

Under the binomial model, the log-ratio crosses the zero line (at which point the probability of

the event R = 0.6 becomes smaller than the probability of the event R = 0.59), when the precinct

has about 33,000 voters. Under the beta-binomial model, due to over-dispersion, the log-ratio of

the probabilities decreases at an extremely low rate and does not reach zero even with 500,000

voters. In conclusion, inmoderately sized electoral units, we can expect vote-shares to havemass

spikes at low-order fractions under a variety of distributional assumptions. When electoral units

are very large (e.g., Congressional districts in the United States), we should not expect to seemass

spikes in the distribution of vote-shares unlesswe strongly believe that turnout and support levels

are highly over-dispersed.

In Supplementary Appendix B, I show the PMF’s of vote-shares for a number of alternative

generative models— conditionally uniform, beta-binomial, hypergeometric. The distributions of

vote-shares follow the same pattern as the binomial model shown in Figure 2: they each exhibit

large mass points at low-order fractions that are significantly covered by the PMF. Consistent

with the above analysis, the examples also clearly indicated that the degree of spikiness in the

PMF’s directly depends on the over-dispersion in the generative models: when the generative

distributions are not over-dispersed (binomial or hypergeometric), the mass spikes are less

pronounced compared towhen they are over-dispersed (conditionally uniformor beta-binomial).
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As over-dispersion of the generative distributions increase, the coverage of the resulting PMF’s of

the vote-shares widens, leading to more numerous andmore sizable probability mass spikes.3

In sum, a sample of vote-shares from a set of precincts is likely to exhibit noticeable spikes

of probability at low-order fractions in a wide set of conditions: (1) when the voting population

in each electoral unit is not too large, (2) when there is variability (over-dispersion) in voting

patterns within each electoral unit, and (3) when there is variability in turnout and support

rates across electoral units. When at least some of these conditions hold, vote-share data will

likely show pronounced mass spikes at coarse proportions due to simple numeric laws. Judging

impressionistically elections as fraudulent based on the presence of spikes in the histogramor the

kernel density of vote-share data risks flawed inference.

However, this argument does not in any way imply that all mass spikes we observe in a given

dataset are necessarily the artifacts of these numeric laws. The next section develops a systematic

way to measure whether the irregularities in the election data are due to the numeric laws or

(possibly) fraud.

4 Resampled Kernel Density Method
The resampled kernel density method (RKD) detects fraud by comparing the kernel density of

the observed vote-shares against a sample of kernel densities drawn from the null distribution

of vote-shares. I build upon the following stochastic model of elections:

t ∗i ∼ Pt ∗ , (3)

Ti �t
∗
i ∼ Binomial(ni , t ∗i ), (4)

v ∗i ∼ Pv ∗ , (5)

Vi �t i ,v
∗
i ∼ Binomial(t i ,v ∗i ), (6)

for each precinct i = 1, . . .N . The turnout Ti is a binomial draw from the population of size ni

(the number of registered voters in precinct i ) with the precinct-specific success probability t ∗i .
The number of people who vote for the ruling party is also a binomial draw from the population

of size t i (the realized value of Ti ) with the success probability v
∗
i . The functions Pt ∗ and Pv ∗

represent the unknown population-level distributions of precinct-level turnout rates and support

rates, respectively.

The key assumption behind the RKD method is that Pt ∗ and Pv ∗ are both continuous

distributions without anymass points. The continuity assumption simply rules out the possibility

that a country contains many precincts with exactly the same, let alone coarse, latent turnout

rates and support rates. The assumption is highly reasonable because we should not expect a

country to containmany precincts where the latent support for a party is exactly 50 or 65 percent.

Even though the latent turnout and support rates are distributed continuously across the

precincts, the vote-shares sampled from each precinct will exhibit large mass points at some

lower-order fractions for the reasons given in the earlier section. The distribution of vote-shares

generated from the stochastic process in equations (3)–(6) can serve as a benchmark as to how

often certain vote-shares are expected to occur in clean elections. Under the null hypothesis of no

fraud, the size of thesemass points in the resampleddata should be similar to that in the observed

data. However, substantial differences between the number and size of probability mass spikes

between the observed data and the data resampled from the generative model in (3)–(6) would

indicate fraud.

3 In Supplementary Appendix B, I show that increased over-dispersion in the generative distributions leads to substantial

increase inmasspoints in thepopulation-level distributionof vote-shares. In fact, as thedispersionof thegenerativemodel

increases, the population-level distribution of vote-shares becomes very similar to the jointly normal model discussed

earlier.
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To compare the observed data with the samples from the above generative model, we need to

estimate the distributions Pt ∗ and Pv ∗ , fromwhich the variables {τ∗i }
N
i=1 and {v

∗
i }

N
i=1 are drawn. To

approximate the unknown densities Pt ∗ and Pv ∗ , I use the finite mixture of beta distributions:

t ∗i ∼
Lt∑
�=1

π�Beta
(
θ (t )
�

)
(7)

v ∗i ∼
Lv∑
�=1

π�Beta
(
θ (v )
�

)
, (8)

where θ� =
�
θ1,� , θ2,�

�
are the two shape parameters of the beta distributions for the mixture

component � . Since the latent turnout and support rates are contained in the unit interval, we

cannot use the more common Gaussian mixtures model to estimate densities Pt ∗ and Pv ∗ . A

simpler approach would be to fit the standard beta model by setting Lt = Lk = 1 (this would

imply that Ti ’s andVi ’s each, marginally, follow the beta-binomial distribution). However, since

real election data often have multiple interior modes, the standard beta distribution fits these

data very poorly. Instead, themixture betamodel allows to approximate the distributions of latent

support very flexibly without sacrificing continuity.

The resampled kernel density algorithm (RKD) proceeds in the following steps:

1. Estimate the smooth distributions Pt ∗ and Pv ∗ .

2. Iterate the following stepsM times:

(a) sample
�
t ∗i

�N
i=1 ∼ P̂t ∗ and

�
v ∗i

�N
i=1 ∼ P̂v ∗ , where P̂t ∗ and P̂v ∗ denote estimated

distributions from step 1;

(b) for i = 1, . . .N , sample t i ∼ Binomial(ni , t ∗i ) and vi ∼ Binomial(ni ,v ∗i );
(c) compute the resampled vote-shares y = (v1/t1, . . . ,vn/tN );

(d) estimate the kernel density f̂y(z ) of the resampled vote-shares y at points z =

{z1, . . . , zK }.

3. Estimate the proportion of precincts with fraudulent election results by comparing the

kernel density of the observed vote-shares r, f̂r(zk ), with the kernel densities of the sampled
vote-shares

�
f̂y(1) (zk ), . . . , f̂y(M ) (zk )

�
, where y(j ) denotes the set of vote-shares sampled at

iteration j .

The technical details of the density estimation in Step 1 are discussed in the Supplementary

Appendix C. Steps 2(a)–2(c) are fairly straightforward. In step 2(d), to estimate the kernel density

f̂ given the sample of vote-shares y, the usual Gaussian kernel density estimator is used:

f̂y(zk ) =
1

n

n∑
i=1

1

h
φ
( zk − yi

h

)
, (9)

where φ denotes the standard Gaussian density function, h denotes the bandwidth of the

estimator, and zk denotes the point at which the density is evaluated. The grid {z1, . . . , zK } is

the set of equally spaced points on the closed unit interval (the choice ofK is discussed later). It is

important that the chosen bandwidth h is not too large, because otherwise the estimated density

will not exhibit any spikes and the resulting measure will not detect fraud. I discuss the choice of

the bandwidth h later in this section and in the Supplementary Appendix D.

After estimating the set of kernel density functions f̂y(j ) (z ) for j = 1, . . .M in step 3 of the

algorithm, we compute the proportion of precincts with fraudulent election results using the

following formula:
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F =
K∑
k=1

wk1
{
f̂r(zk ) > max

�
f̂y(1) (zk ), . . . , f̂y(M ) (zk )

�}
, (10)

where the indicator function 1{·} is equal to one if the observed density at point zk is greater than
the estimated density at point zk across all simulated datasets.

4 The first term inside the indicator

function, f̂r(zk ), denotes thekerneldensityof theobserveddata r = {r1, . . . , rN }evaluatedatpoint

zk ,whereas thesecond termdenotes theupperenvelopeof thekerneldensityatpoint zk basedon

the simulateddatasets {y(1), . . . , y(M )}. The value of the indicator function at point zk will be equal

to one if the kernel density of the observed data at that point is higher than the upper envelope of

the all kernel densities estimated from the resampleddata. For example, ifwe let zk = 2/3and find

that the kernel density of the observed data at point 2/3 is higher than in any of the simulations,

then it serves as an indication that there are toomany precincts in the datawhere the vote-shares

are equal to 2/3. Themeasure F estimateswhether the spikes in the observed distribution are too

large relative to the null distribution of vote-shares.

The weights wk in the definition F refer to the estimated proportion of precincts around the

point zk with election results inconsistent with the null hypothesis of no fraud. Formally, this

quantity is defined aswk = max{0, ŵk }where

ŵk =
1

n

n∑
i=1

1
{
zk − l ≤ ri < zk + l

}
− 1

nM

n∑
i=1

M∑
m=1

1
{
zk − l ≤ y (m)

i
< zk + l

}
. (11)

Although the above expression appears complex, it has a very intuitive interpretation. 1{·}
denotes the indicator function equal to one if the vote-share vi falls in the interval [zk − l , zk +

l ), where l is equal to the half-distance between zk and zk+1. Thus, the first term represents

the proportion of observed voting results that fall in an interval centered around point zk . The

second term represents the proportion of sampled observations that fall within the same interval,

averagedover all simulations 1, . . . ,M . For example, if we take again zk = 2/3, then ŵk represents

the excess proportion of precincts where the party received 2/3 of the vote. In contrast to many

existing measures of fraud, which only test an omnibus null hypothesis that elections are not

tainted by fraud, the RKD method estimates the proportion of precincts where fraud is likely to

have happened, and identifies precincts with possibly fraudulent results.

The RKD method is a version of the posterior predictive check often used to evaluate model

fit in the Bayesian analysis (Gelman, Carlin, Stern, and Rubin 2003). As in the standard posterior

predictive checking,we first use theobserveddata toestimate theparametersof themodel (in this

case, the latent distributions Pt ∗ and Pv ∗ ) and then compare the data sampled from the estimated

model against the observed data. The standard posterior predictive check proceeds by choosing

a statistic T (e.g., average) and then compares the statistic of the observed dataset, T (y ), with

the set of statistics fromM sampled datasets, {T (y ∗1 ), . . . ,T (y
∗
M )}. The RKD algorithm is different

only in that one evaluates multiple statistics (the kernel density f̂ is evaluated at each point

z ∈ {z1, . . . , zK }) and then aggregates them to measure how strongly the observed data deviate

from the smooth latent model.

As described up to this point, the RKD algorithm yields a point estimate of fraud without any

measure of statistical uncertainty. The statistical uncertainty in the estimation of fraud originates

from the uncertainty regarding latent distributions Pt ∗ and Pv ∗ . Calculating this uncertainty is

difficult in the frequentist framework, but feasible (though computationally intensive) in the

Bayesian setting. The following procedure can be readily implemented by iterating over the

following steps:

4 I also experimented using a 95th or 99th quantile instead of the maximum as a benchmark of fraud, but it appears this

overestimates the degree of fraud.
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1. Draw a sample from the posterior distributions Pt ∗ and Pv ∗ .

2. Use the posterior draw fromStep 1 in place of P̂t ∗ and P̂v ∗ in the RKD algorithmand compute

the fraud statistic F .

Repeating this procedurem times yields a posterior sample of {F1, . . . , Fm}, which then can be

used to compute the credible intervals from the sample quantiles. The Bayesian estimation of the

functions Pt ∗ and Pv ∗ amounts to computing the posterior distributions of the parameters in the

beta-mixturemodel given in Equations (7)–(8) above. The Bayesian density estimation procedure

is described in Supplementary Appendix C.

The RKD algorithm has three parameters that have to preset by the user: the number of

resamples (M ), the size of the grid {z1 . . . , zK } on which the kernel density is estimated (K ), and

the bandwidth for the kernel density (h). The choice of M involves a trade-off between type I

and type II errors, the choice of K involves a trade-off between the computational efficiency and

precision. The calibration exercise in Supplementary Appendix D suggests that choosing M =

1, 000 andK = 1, 001 balances these trade-offs fairly well, and overall the results are not sensitive

to these choices. The choice of the bandwidth h is more straightforward as the RKD algorithm is

not sensitive to the choice of the bandwidth as long as it is sufficiently small (h ≤ 0.001) so that

the kernel density can capture spikes in the vote-share density.

5 Applications
To illustrate and assess the proposed method, I apply it to five real elections and a battery of

simulated elections. The first batch of data are from parliamentary (2003, 2007, and 2011) and

presidential (2012) elections in Russia. For presidential elections, I study votes for Vladimir Putin,

while for the parliamentary elections I study votes for the United Russia party. The 2011 and

2012 elections (and to as smaller degree, the 2007 elections) were criticized for election fraud

by various observers and agencies, but the 2003 elections were considered relatively clean. As

a contrasting case where fraud should be highly unlikely, I use precinct-level vote-shares of the

Canadian Conservative Party from the 2011 parliamentary elections.

In addition, I apply the method on six simulated datasets: one of the simulated datasets is

“clean” in that it does not contain any fraud, while other five datasets are “contaminated” by

variable degrees of fraud. The data are simulated using the generative model in (3)–(6). For the

latent distribution of turnout, Pt ∗ , I choose a beta distribution with mean 0.5, and for the latent

distribution of support I use a two-componentmixture of beta distributionswith themeanof 0.56.

The precinct sizes {ni }
N
i=1 are drawn from the uniformdistribution on the interval {500, . . . , 1500},

as in earlier simulations. To create the contaminated datasets, I samplewithout replacement a set

of precincts from the clean simulated dataset and then randomly assign them a coarse fraction

from the set {0.60, 0.65, . . . , 0.90, 0.95}.5

Table 2 shows the results – the estimated levels of fraud (F ) with the 95 percent credible

intervals. By this count, elections in Russia were becoming increasingly fraudulent from 2003 to

2012. If in 2003, the results could be deemed as suspicious in about 0.24 percent of precincts,

by 2011 and 2012, roughly one percent of precincts reported fraudulent results. Given the 95

percent credible intervals, we can say that with 95 percent probability between 0.86 and 1.01

percent of precincts reported fraudulent results in the 2011 parliamentary elections in Russia (the

results are very similar for the 2012 presidential elections). Thus, the probabilitymass spikes in the

distribution of the United Russia vote-shares discussed earlier indeedwere not statistical artifacts

and are indicative fraud, consistent with what analysts and activists suggested. Although one

5 Since I want to keep the turnout and the number of registered voters constant and only contaminate the vote-shares, the

resulting contaminated vote-shares may not necessarily be exactly equal to one of the coarse fractions, but very close to

it. All datasets are made available online (Rozenas 2016a).
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Table 2. RKD-based estimates of fraud with 95 percent credible intervals.

Estimate (F ) 95% Credible Interval

United Russia, 2003 0.24 (0.19, 0.29)

United Russia, 2007 0.86 (0.74, 1.01)

United Russia, 2011 0.94 (0.87, 1.01)

Vladimir Putin, Russia, 2012 0.97 (0.89, 1.06)

Conservative Party, Canada, 2011 0.07 (0.02, 0.12)

Simulated elections
0% contamination 0.01 (0.00, 0.05)

1% contamination 1.03 (0.95, 1.05)

2% contamination 2.03 (2.03, 2.09)

3% contamination 2.97 (2.94, 3.06)

4% contamination 4.01 (3.99, 4.06)

5% contamination 5.03 (5.03, 5.07)

percent might appear tiny, it is important to note that this number only represents the estimated

amount of the specific kind of fraud. Most likely, the estimated one percent fraud constitutes the

lower bound on the total amount of fraud perpetrated in these elections.

There is no strong evidence of fraud in the 2011 Canadian elections as the estimated proportion

of precinctswith suspicious coarse vote-shares is only 0.07 percentwith the lower boundof the 95

percent credible interval very close to zero. Furthermore, theRKDmethoddetects the true levelsof

fraud quite accurately across all six simulated elections. In electionswithout fraud, the 95 percent

credible interval includes zero, as it should. Theestimated levelsof fraud forall electionsarewithin

a fewdecimalpointsof theground truthand the95percent credible intervalsmostly cover the true

values.

Figure 4 illustrates the mechanics of the RKD method. The figures show kernel densities of

observedvote-sharesand theupperenvelopeof thekerneldensities fromthe resampleddata. The

gray vertical bars represent the points at which the kernel density of the observed data exceeds

the upper envelope of the kernel density of the resampled data – these are the points where the

indicator function 1{·} in the equation (10) is equal to one. The width of the vertical gray bars is
proportional to the value of the weight wk , and so that it indicates how many precincts with a

voting result around zk are suspected to have fraudulent results. For example, a wide gray bar

located at 0.75 indicates that many precincts where the party received 75 percent of votes are

suspicious.

The left panel of Figure 4 plots the results for the United Russia party in the 2011 elections.

The kernel density of the observed data (lower gray curve) exceeds the upper envelope of the

kernel density of the resampled data (upper black curve) at multiple points, and especially so in

precincts where the United Russia party received a high proportion of votes (at 0.75, 0.85, and

at multiple points above 0.9). Given that the government’s local agents would commit fraud by

inflating the vote-share of the ruling party to some large number, this pattern appears plausible.

It is also consistent with previous research on these elections, which concluded that the Russian

government was committing fraud not in marginal precincts, but in precincts where it had strong

support (Rundlett and Svolik 2016).

It is instructive to note that large spikes in the observed data do not necessarily indicate fraud.

In case of the Russian 2011 elections, the largest spike in the observed vote-shares is at point 0.5.

However, themagnitudeof this spike isbelow theupper envelopeof the resampledkernel density;

thus, we cannot conclude that a large proportion of precincts with exactly 50 percent of votes for

the United Russia party indicates fraud. This example serves as a useful reminder that seemingly

strange patterns in voting data do not necessarily indicate fraud.
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Figure4.Kerneldensitiesofobservedvote-shares (lower curve) and their resampledupperenvelopes (upper

curve). Vertical gray bars indicate potentially falsified results.

The right panel of Figure 4 shows how the measure of fraud performs on a simulated dataset

with two percent of precincts contaminated by fraud. First, the method correctly identifies the

set of precincts with fraudulent results – the vertical gray bars are located precisely on the points

where election datawere contaminated in the simulation. Second, the estimated amount of fraud

is very close to the ground truth. Third, someprobabilitymass spikes in these data (e.g., 1/2 or 2/3)

are correctly identified as not indicative of fraud.

6 Comparison To Digit-Based Methods
Currently themost popular approaches to fraud detection use distributions of digits in vote count

data to identify fraud.6 The digit-based methods are designed to detect manipulation of vote

counts, whereas the RKD method proposed here is designed to detect manipulation of vote-

shares.While these are different types of fraud, it is important to considerwhether the digit-based

methods would detect the manipulation of vote-shares, since manipulation of vote counts could

potentially have spillover effects on the distribution of vote-shares.

I consider two digit-based tests – the second-digit test and the last-digit test. The second-digit

test is based on the idea that second significant digits in vote count data should approximately

follow Benford’s law (Mebane 2008). According to this law, the probability that the second digit

takes valued ∈ {0, . . . , 9} is∑9
k=1 log10

�
1 + 1

10k+d

�
.7 Inferenceabout fraudcan thenbemadeusing

a chi-squared test comparing the observed frequency of vote counts against the null distribution.

The last-digit test is based on the notion that, in normal circumstances, any last digit between 0

and9 should occurwith equal likelihood in vote count data (Beber andScacco 2012). Thus, if some

digits (e.g., zeroor five) occur significantlymoreoften thanothers, it can serveasevidenceof fraud.

The null hypothesis of no fraud can then be tested using the chi-squared test that compares the

observed distribution of last digits with the null uniform distribution.8

6 For a conceptual discussion and criticism of these methods, see Deckert, Myagkov, and Ordeshook (2011), Mebane (2011).

7 The data can be expected to follow the Benford’s law when they cover several orders of magnitude, when they are not

truncated at any particular value, and when their mean is greater than the median (Janvresse et al. 2004; Tam Cho and

Gaines 2007; Mebane 2008). The first and the third conditions writ large hold in both real and simulated data used in this

paper because precinct sizes vary significantly and the data are positively skewed. However, the second condition is likely

to fail in these data because precinct sizes typically have a mandated upper bound.

8 Last digits are more likely to follow the uniform distribution when vote counts span a large range and when the mean of

vote counts is larger than their standard deviation (Beber and Scacco 2012), which is the case in the real and simulated

data used in this paper.
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Table 3. Chi-square test statistics (df = 8) for the Benford’s second-digit tests (BL2) and the last-digit tests.

BL2 test Last-digit test

Votes Turnout Votes Turnout

United Russia, 2003 153.0† 1101.5† 28.5† 23.6∗∗

United Russia, 2007 74.9† 1858.4† 20.6∗ 13.8

United Russia, 2011 24.7∗∗ 866.2† 14.8 36.7†

Vladimir Putin, Russia, 2012 123.9† 1073.3† 13.1 41.9†

Conservative Party, Canada, 2011 1641.6† 300.3† 9.8 6.8

0% contamination 120.1† 96.1† 11.5 8.3

1% contamination 65.2† 112.0† 7.2 10.4

2% contamination 138.6† 106.1† 14.8 1.1

3% contamination 130.4† 126.5† 8.6 8.5

4% contamination 148.4† 132.5† 5.5 3.4

5% contamination 103.9† 90.8† 8.8 8.1

Bootstrapped p-values: † < 0.001, ∗∗ < 0.01, ∗ < 0.05.

Table 3 shows the results of the two digit-based tests for the eleven datasets analyzed earlier.

The chi-square statistics for the second-digit test are very large in all cases leading us to reject

the null hypothesis of no fraud both in the elections were fraud is likely to have happened or did

happen (Russia 2011 and 2012 as well as contaminated synthetic data) and in elections where

fraud likely or surely did not happen (Canadian data and clean synthetic data).9 According to

the last-digit tests, all four Russian elections were fraudulent,10 but the Canadian ones were not.

However, the test fails to correctly detect fraud in the simulated elections.

The results reported in Table 3 in no way suggest that the digit-based tests are somehow

inferior to the vote-share based method. They merely indicate that manipulation of election

results through falsification of vote-shares would not be correctly detected using the digit-based

tests – the second-digit test would most likely lead to false positive errors, whereas the last-digit

testmost likely would lead to false negative errors. Conversely, as amethod constructed to detect

falsification of vote-shares, the RKD algorithm should not be expected to detect falsification of

vote counts.

7 Discussion
I presented a method of fraud detection based on patterns in the distribution of vote-shares. The

analysis shows that without a statistical model describing the distribution of data under the null

hypothesisofno fraud,one is likely tomakea falsepositiveerror.When thedataset containsa large

set (tens of thousands) of moderately sized electoral units (thousands of voters or fewer), it will

exhibit seemingly irregular behavior: there will be many electoral units with coarse vote-shares,

easily detectable in a histogramwith narrow bins or a kernel density plot with a small bandwidth.

I explained the theoretical reasons as to why this pattern holds in clean elections and showed this

to be the case with examples of admittedly fraud-free elections in Canada as well as simulated

elections.

Thepaperproposedasystematicmethod, the resampledkerneldensity, todetectmanipulation

of vote-shares. Using the RKD method, one can reduce the risk false positive errors, identify the

9 As noted by Mebane (2008), the distribution of digits can be expected to follow Benford’s law only if the data generating

process is sufficiently heterogeneous, whichmight fail at the precinct level, but hold in larger electoral units. This could be

the reason (in addition to the issue of truncation discussed earlier) why the second-digit test over-rejects.

10 From this evidence, we can also conclude that Russian elections in 2011 and 2012 were manipulated in at least two ways –

by falsifying the vote count and by falsifying the vote-shares.
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types of precincts (based on their returns) where fraud is most likely to have taken place, and

estimate the proportion of precincts subjected to fraud. When elections are manipulated by

falsifying vote-shares as opposed to vote counts, such manipulation cannot be detected using

the standard digit-basedmethods.

The method proposed here detects only a specific kind of fraud where local agents falsify

election results by inflating the pro-government’s vote-share to some focal number. The motive

of the local officials to signal their loyalty to the central government is one of the central features

of many many countries where election fraud is known to happen, including Russia, Ukraine,

Mexico (Magaloni 2006), or Indonesia (Martinez-Bravo 2014). Although the method of the paper

was largelymotivated by the example of Russiawhere the incentives of the local agents to commit

fraud in order to signal their loyalty to the incumbent partymachine arewell documented (Kalinin

and Mebane 2012; Simpser 2013; Rundlett and Svolik 2016), it could be productively applied to

other polities were such incentives for local agents exist.

Finally, as any other forensic method that relies on a specific feature of election data (digits,

fractions, skewness, etc.), the RKD method is susceptible to the “feedback effect” problem: once

a government learns that a specific form of fraud is detectable, it might switch to another form

of fraud. On the one hand, this problem underscores the need for continuous innovations in the

methodology of fraud detection. On the other hand, the problem can be alleviated by integrating

the RKD method with other forensic tools through ensemble learning algorithms (e.g. Levin,

Pomares, and Alvarez 2016) to detect multiple types of election fraud simultaneously.

Supplementarymaterial
For supplementary material accompanying this paper, please visit

https://doi.org/10.1017/pan.2016.9.
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